
CSC 310: Information Theory

University of Toronto, Fall 2011

Instructor: Radford M. Neal

Week 7



Solving the Dilemma of What

Order Markov Model to Use

We would like to get both:

• the advantage of fast learning of a low-order model

• the advantage of ultimately better prediction of a high-order model

We can do this by varying the order we use.

One scheme for this is the “prediction by partial match” (PPM) model.



Contexts Used by PPM

PPM maintains frequencies for characters that have been seen before in

all contexts that have occurred before, up to some maximum order.

Suppose we have so far encoded the string

this_is_th

If we are using contexts up to order two, then we will record frequencies

for the following contexts:

Order 0: ()

Order 1: (t) (h) (i) (s) (_)

Order 2: (th) (hi) (is) (s_) (_i) (_t)



“Escaping” From a Context

The frequency tables maintained by PPM contain only the characters that

have been seen before in that context.

Examples: if “x” has never occurred, none of the frequency tables will

have an entry for “x”. If “x” has occurred before, but not after a “t”, the

frequency table for order 1 context (t) will not contain “x”.

The main idea: If we need to encode a character that doesn’t appear in

the context we’re using, we transmit an “escape” flag, and switch to a

lower-order context.

What if we escape from every context? We end up in a special “order -1”

context, in which every character has a frequency of 1.



Frequencies in Contexts

Two details about frequencies need to be resolved.

First, what characters do we count in a context?

• We might count every character that appears following the characters

making up the context.

• We might count a character in a context only when it does not appear

in a higher-order context.

One could argue for either way, but we’ll go for the second option.

Second, what do we use as the frequency of the “escape” symbol? There

are many possibilities. We’ll just give it a frequency of one.



Basic PPM Encoding Method

Loop until end of file:

Read the next character, c. Let dK , . . . , d1 be the preceding K characters.

Set the context size, k, to the maximum, K.

While (dk, . . . , d1) hasn’t been seen previously:

Set k to k − 1.

While k ≥ 0 and c hasn’t been seen in context (dk, . . . , d1):

Transmit an escape flag using context (dk, . . . , d1).

Set k to k − 1.

If k = −1:

Transmit c using the special “order -1” context.

Set k to 0.

Else

Transmit c using context (dk, . . . , d1).

While k ≤ K:

Create context (dk, . . . , d1) if it doesn’t exist.

Increment the count for c in context (dk, . . . , d1).

Set k to k + 1.



Frequencies After Encoding this_is_th

Order -1: _:1 a:1 b:1 · · · z:1

Order 0:

() Escape:1 t:2 h:1 i:2 s:1 _:1

Order 1:

(t) Escape:1 h:2

(h) Escape:1 i:1

(i) Escape:1 s:2

(s) Escape:1 _:1

(_) Escape:1 i:1 t:1

Order 2:

(th) Escape:1 i:1

(hi) Escape:1 s:1

(is) Escape:1 _:2

(s_) Escape:1 i:1 t:1

(_i) Escape:1 s:1

(_t) Escape:1 h:1



Learning a Vocabulary

One reason PPM works well for files like English text is that it can

implicitly learn the vocabulary — the dictionary of words in the language.

This is because early letters of a word like “Ontario” almost completely

determine the remaining letters.

A more direct approach is to store a dictionary explicitly. When a word is

encountered, a short code for it is sent, rather than the letters. Or rather

than store English words, we might store any string of symbols that has

occurred before.

The “LZ” (for Lempel-Ziv) family of data compression algorithms build

such a dictionary adaptively, based on the text seen previously. The

“gzip” program is an example.



How Well Do These Methods Work?

I applied a version of PPM (by Bill Teahan) and the gzip program to the

three English text files (Latex) I previously used to test Markov models.

PPM: Uncompressed Compressed Compression Bits per
file size file size factor character

2344 1042 2.25 3.56

20192 5903 3.42 2.34

235215 51323 4.58 1.75

GZIP: Uncompressed Compressed Compression Bits per
file size file size factor character

2344 1160 2.02 3.96

20192 7019 2.88 2.78

235215 70030 3.36 2.38

One other difference: On the long file, PPM took 2.2s to encode and 2.3s

to decode; gzip needed only 0.06s to encode, and an unmeasurably small

time to decode.



Merits of Probabilistic Models

N -th order Markov models and PPM models cleanly separate the model

for symbol probabilities from the coding based on those probabilities.

Such models have several advantages:

• Coding can be nearly optimal (eg, using arithmetic coding).

• It’s easy to try out various modeling ideas.

• You can get very good compression, if you use a good model.

The big disadvantage:

• The coding and decoding involves operations for every symbol and

every bit, plus possibly expensive model updates, which limits how

fast these methods can be.



Merits of Dictionary Methods

Compression using adaptive dictionaries may be less elegant, but has it’s

own advantages:

• Dictionary methods can be quite fast (especially at decoding), since

whole sequences of symbols are specified at once.

• The idea that the data contain many repeated strings fits many

sources quite well — eg, English text, machine-language programs,

files of names and addresses.

The main disadvantage is that compression may not be as good as a

model based method:

• Dictionaries are inappropriate for some sources — eg, noisy images.

• Even when dictionaries work well, a good model-based method may

do better — and can’t do worse, if it uses the same modeling ideas as

the dictionary method.



The LZ77 Scheme

This scheme was devised by Ziv and Lempel in 1977. There are many

variants, including the method used by gzip.

The idea of LZ77 is to use the past text as the dictionary — avoiding the

need to transmit a dictionary separately. We need a buffer of size W that

contains the previous S characters plus the following W − S characters.

We encode up to W − S characters at once by sending the following:

• A pointer to a past character in the buffer (an integer from 1 to S).

• The number of characters to take from the buffer (an integer from 0

to W−S−1, or maybe more).

• The single character that follows the string taken from the buffer.



An Example of LZ77 Coding

Suppose we look at the past 16 characters, and look ahead at the next 8

characters.

After encoding the first 16 characters of the following string, we would

proceed as follows:

W a y _ o v e r _ t h e r e _ i s _ w h e r e _ i t _ i s

W a y _ o v e r _ t h e r e _ i s _ w h e r e _ i t _ i s

W a y _ o v e r _ t h e r e _ i s _ w h e r e _ i t _ i s

Transmit (-,0,s)

Match with 9 back with here_i

Match 3 back with _

No match with string in window.

Transmit (3,1,w)

Transmit (9,6,t)



Encoding the Pointers

If we look back S characters, we can encode a pointer back in ⌈log2(S)⌉

bits.

If we look forward W − S characters, we can encode the length of the

match in ⌈log2(W − S)⌉ bits.

The character after the match can be encoded in ⌈log2(I)⌉ bits, if we have

I symbols.

If these lengths are multiples of 8, we can quickly output these codes as

one or more bytes.

An alternative: Use Huffman or arithmetic coding. This will give better

compression, but won’t be as fast.



LZ77 Encoding and Decoding Speed

Even if writing the codes for the match is fast, finding the longest match

may be slow.

Techniques such as hashing can speed this up, however. The gzip program

builds a hash table for all strings of length three, then searches within the

hash bucket for the next three characters to find the longest match.

Decoding can be very fast. Reading the codes is very quick if they take up

fixed numbers of bytes. Even if we use Huffman codes, table look up on

the next few bits (as in gzip) can be pretty fast. Once we have the codes,

we just copy text from the buffer.



The LZ78 Scheme

Ziv and Lempel introduced another scheme in 1978, in which the

dictionary is kept explicitly, and contains phrases from the entire past

text.

In the LZW variant, due to Welch, we start with a dictionary containing

just the alphabet. We then proceed as follows:

• Find the longest match of following characters with a dictionary item.

• Transmit the index of that dictionary item.

• Add the matched phrase plus the character following it to the

dictionary.

• Continue coding with the character following the matched phrase.

Codes for dictionary indexes will have to get longer as we go, but at a

fairly slow rate.


