CSC 310: Information Theory

University of Toronto, Fall 2011
Instructor: Radford M. Neal

Week 2

What’s Needed for a Theory

of (Lossless) Data Compression?

e A context for the problem.

What are we trying to compress, and what are we compressing it into?

e A notion of what data compression schemes are possible.

A data compression scheme must allow us to encode data, and then

decode 1t, recovering the original data.
e A measure of how good a data compression scheme is.
We will have to look at how good a scheme is on average, given some

model for the source.

One Danger: If we don’t formalize things well, we might eliminate data

compression schemes that would have been practical.

What Might We Hope for From a
Theory of Data Compression?

e LEasier ways of telling whether a data compression scheme is possible,

and if so, how good it is.

e A theorem that tells us how good a scheme can possibly be — the

“theoretical limit”.
e Some help in finding a scheme that approaches this theoretical limit.
e Insight into the nature of the problem, which may help for other

problems.

One insight: Compression is limited by the entropy of the source, which

is a measure of information content that has many other uses.

Formalizing the Source of Data

We'll assume that we are trying to compress data from a digital source
that produces a sequence of symbols, X, Xo, These will be viewed as
random variables; some particular values they take on will be denoted by

L1y T2y o ...
These source symbols are from a finite source alphabet, Ax.

Examples:
Ax ={A, B, ..., Z, _}
Ax =10, 1, 2, ..., 255}
Ax ={C, G, T, A}
Ax =40, 1}

The source alphabet is known to the receiver — who may be us at a later

time, for storage applications.

Formalizing What We Compress To

The output of the compression program is a sequence of code symbols,
71,25, ... from a finite code alphabet, A.

These symbols are sent through the channel, to the receiver. We assume
for now that the channel is noise-free — the symbol received is always the

symbol that was sent.

We’ll almost always assume that the code alphabet is {0, 1}, since
computer files and digital transmissions are usually binary, but the theory

can easily be generalized to any finite code alphabet.

Possible Compression Programs

A compression program (ie, a code) defines a mapping of each source

symbol to a finite sequence of code symbols (a codeword).
For example, suppose our source alphabet is Ax = {C, G, T, A}.

One possible code is

Cc — 0

G — 10
T — 110
A — 1110

We encode a sequence of source symbols by concatenating the codewords

of each:
CCAT — 001110110

We require that the mapping be such that we can decode this sequence.

Later, we’ll see that the above formalization isn’t really right...

What Codes are Decodable?

Let’s consider only codes that can be decoded. What does that mean?

This may depend on how the channel behaves at the end of a

transmission. Four possibilities:

e The end of the transmission is explicitly marked, say by “$”:

011101101%

e After the end of the transmission, subsequent symbols all have a

single known value, say “0”:
0111011010000000000. ..

o After the end of the transmission, subsequent symbols are random

garbage:
0111011011100100101 ...

e There is no end to the transmission.

When Do We Need the Decoding?

Another possible issue is when we require that a decoded symbol be

known. Possibilities:

e As soon as the codeword for the symbol has been received.

If this is possible, the code is instantaneously decodable.

e With no more than a fixed delay after the codeword for the symbol

has been received.

If this is possible, the code is decodable with bounded delay.

e Not until the entire message has been received.

Assuming that the end of transmission is explicitly marked, we then

require only that the code be uniquely decodable.

How Much Difference Does it Make?

We could develop theories of data compression with various definitions of
decodability.

Question: How much difference will it make?

Will we find that we can’t compress data as much if we insist on using a

code that is instantaneously decodable?

Or will we find that a single theory is “robust” — not sensitive to the

exact details of the channel and decoding requirements.

Easiest: Assume the end of transmission is explicitly marked; don’t

require any symbols be decoded until the entire message is received.

Hardest: Require instantaneous decoding. (It then won’t matter whether
the end of transmission is marked, as far as decoding the symbols that

were actually sent is concerned.)

Notation for Sequences & Codes

Ax and Az are the source and code alphabets.

A;} and AJZF denote sequences of one or more symbols from the source or

code alphabets.
A symbol code, C, is a mapping Ax — A}. We use ¢(z) to denote the

codeword C maps x to.
We can use concatenation to extend this to a mapping for the

textitextended code, CT : AL — A}:

ct(

r1x2---xy) = c(x)e(xe) - --clxy)

That is, we code a string of symbols by just stringing together the codes

for each symbol.

We sometimes also use C to denote the set of codewords:

{w | w=c(a) for some a € Ax}

Formalizing Uniquely Decodable and
Instantaneous Codes

We can now define a code to be uniquely decodable if the mapping

CT . A;E —> .AJZr is one-to-one. In other words:
For all £ and =’ in A%, x # =’ imples ¢ (x) # ¢ (z)

A code is obviously not uniquely decodable if two symbols have the same
codeword — ie, if c¢(a) = c(a’) for some a # a’ — so we’ll usually assume
that this isn’t the case.

We define a code to be instantaneously decodable if any source sequences
x and =’ in A% for which x is not a prefix of ' have encodings z = C(x)
and z’ = C(a') for which z is not a prefix of z’. (Since otherwise, after
receiving z, we wouldn’t yet know whether the message starts with @ or
with x'.)

Examples with Ax = {a, b, ¢} and Az = {0,1}:

Code A:

Code B:

Code C:

Code D:

Examples

Code A | Code B | Code C | Code D
a 10 0 0 0
b 11 10 01 01
C 111 110 011 11

Not uniquely decodable
Both bbb and cc encode as 111111

Instantaneously decodable
End of each codeword marked by 0

Decodable with one-symbol delay

End of codeword marked by following 0

Uniquely decodable, but with unbounded delay:

O11111111111111 decodes as acccccee
O1111111111111 decodes as bececece

How to Check Whether a Code is Uniquely Decodable

The Sardinas-Patterson Theorem tells us how to check whether a code is

uniquely decodable.
Let C be the set of codewords.
Define Cy = C.
For n > 0, define
C, = {wEAJZr | uw = v where u € C, ve Cp_yoruec Cy_q, veCl}

Finally, define
Cxw = C7; UCyU(C3 U ---

The code C' is uniquely decodable if and only if C' and Cy, are disjoint.

We won’t both much with this theorem, since as we’ll see it isn’t of much

practical use.

How to Check Whether a Code is

Instantaneously Decodable

A code is instantaneous if and only if no codeword is a prefix of some

other codeword.

Proof:

(=) If codeword C(a) is a prefix of codeword C(a’), then the encoding of
the sequence x = a is obviously a prefix of the encoding of the sequence
x' =a.

(«=) If the code is not instantaneous, let z = C(x) be an encoding that is

a prefix of another encoding 2z’ = C(x’), but with x not a prefix of «’, and

let & be as short as possible.

The first symbols of and x’ can’t be the same, since if they were, we
could drop these symbols and get a shorter instance. So these two symbols

must be different, but one of their codewords must be a prefix of the other.

Existence of Codes With Given Lengths of Codewords

Since we hope to compress data, we would like codes that are uniquely

decodable and whose codewords are short.

If we could make all the codewords really short, life would be really easy.

Too easy.

Instead, making some codewords short will require that other codewords

be long, if the code is to be uniquely decodable.

Questions: What sets of codeword lengths are possible? Is the answer to
this question different for instantaneous codes than for uniquely decodable

codes?

McMillan’s Inequality

There is a uniquely decodable binary code with codewords having lengths

1, ..., l; if and only if

Examples:

There is a uniquely decodable binary code with lengths 1, 2, 3, 3, since

1/2 +1/4 4+ 1/8 +1/8 = 1

An example of such a code is {0, 01, 011, 111}.

There is no uniquely decodable binary code with lengths 2, 2, 2, 2, 2, since

1/4 +1/4 +1/4+1/4 +1/4 > 1

Kraft’s Inequality

There is an instantaneous binary code with codewords having lengths

l1, ..., l; if and only if

Examples:

There is an instantaneous binary code with lengths 1, 2, 3, 3, since

1/2 +1/4 4+ 1/8 +1/8 = 1

An example of such a code is {0, 10, 110, 111}.

There is an instantaneous binary code with lengths 2, 2, 2, since

1/4 +1/4+1/4 < 1

An example of such a code is {00, 10, 01}.

Implications for Instantaneous and
Uniquely Decodable Codes

Combining Kraft’s and McMillan’s inequalities, we conclude that there is
an instantaneous binary code with lengths [y, ..., [; if and only if there is

a uniquely decodable code with these lengths.

Implication: There is probably no practical benefit to using uniquely

decodable codes that aren’t instantaneous.

Proving the Two Inequalities

We can prove both Kraft’s and McMillan’s inequality by proving that for

any set of lengths, [y, ..., {7, for binary codewords:
I
A) If Y 1/25% < 1, we can construct an instantaneous code with
i=1

codewords having these lengths.

I
B) If Y 1/2% > 1, there is no uniquely decodable code with codewords
i=1
having these lengths.

(A) is half of Kraft’s inequality. (B) is half of McMillan’s inequality.

Since instantaneous codes are uniquely decodable, we also see that
(A) gives the other half of McMillan’s inequality, and (B) gives the
other half of Kraft’s inequality.

Visualizing Prefix Codes as Trees

We can view codewords of an instantaneous (prefix) code as leaves of a
tree. The root represents the null string; each branch corresponds to

adding another code symbol.

Here is the tree for a code with codewords 0, 11, 100, 101:

0

NULL

- | 100
/ e T
\

11

Extending the Tree to Maximum Depth

We can extend the tree to the depth of the longest codeword. Each

codeword then corresponds to a subtree.

The extension of the previous tree, with each codeword’s subtree circled:

000

001

010

011

==

Short codewords occupy more of the tree. For a binary code, the fraction

of leaves taken by a codeword of length [is 1/2'.

Constructing Instantaneous Codes
When the Inequality Holds

Suppose that Kraft’s Inequality holds:

Order the lengths so [< --- </[;. In the binary tree with depth [;, how

can we allocate subtrees to codewords with these lengths?

We go from shortest to longest, : = 1,...,1I:

1) Pick a node at depth [; that isn’t in a subtree previously used, and let

the code for codeword 7 be the one at that node.

2) Mark all nodes in the subtree headed by the node just picked as being

used, and not available to be picked later.

Will there always be a node available in step (1) above?

Why the Construction Will be Possible

If Kraft’s inequality holds, we will always be able to do this.
To begin, there are 2! nodes at depth /.

When we pick a node at depth [,, the number of nodes that become

unavailable at depth [; (assumed not less than [,) is 2% ~/e.

When we need to pick a node at depth /;, after having picked earlier
nodes at depths /; (with 7 < j and [; <;), the number of nodes left to

pick from will be

j—1 I

1 1

Since E o < g - < 1, by assumption.
i=1 i=1

Why Uniquely Decodable Codes
Must Obey the Inequality

I
1
Let {1 <--- <l be the codeword lengths. Define K = Z o
i=1
For any positive integer n,
I
1qn 1 1
K" = Y] = X g
1=1 11 ,eeeylm
The sum is over all combinations of values for i1,...,4, in {1,...,1}.

Let’s rewrite this in terms of possible values for j =1;, +--- +1;, :

nl_r

n N',n
KT = Z 2].7'
j=1

N n, 1s the number of sequences of n codewords that have total length j.
If the code is uniquely decodable, N;, < 27 so K™ < nl, which for big
enough n is possible only if K < 1.

