
CSC 310: Information Theory

University of Toronto, Fall 2011

Instructor: Radford M. Neal

Week 10

Extensions of Channels

The Nth extension of a channel consists of N independent copies of the

channel, replicated in space or time.

The input alphabet for this extension, AX , consists of N -tuples

(ai1 , . . . , aiN). The output alphabet, AY , consists of N -tuples (bj1 , . . . , bjN
)

Assuming the N copies don’t interact, the transition probabilities for the

extension are

Qj1,...,jN |i1,...,iN = Qj1|i1 · · ·QjN |iN

If we use input probabilities of

pi1,...,iN = pi1 · · · piN

it is easy to show that the input and output entropies, the conditional

entropies, and the mutual information are all N times those of the original

channel.

Capacity of the Extension

We can maximize mutual information for the extension by using an input

distribution in which

• each symbol is independent

• each symbol has the distribution that maximizes mutual information

for the original channel.

It follows that the capacity of the extension is N times the capacity of the

original channel.

But treating the N copies independently is uninteresting — we gain

nothing over the original channel.

The strategy: We don’t chose an input distribution that maximizes

mutual information, but rather use one that almost maximizes mutual

information, while allowing us to correct almost all errors.

Codes for the Extension

A code, C, for the Nth extension is a subset of the set of all possible

blocks of N input symbols — ie, C ⊆ AN
X .

The elements of C are called the codewords. These are the only blocks that

we transmit.

For example, one code for the third extension of a BSC is the “repetition

code”, in which there are two codewords, 000 and 111.

The Nth extension together with the code can be seen as a channel with

|C| input symbols and |AY |
N output symbols.

Decoding to a Codeword

When the sender transmits a codeword in C, the receiver might (in

general) see any output block, bj1 · · · bjN
∈ AN

Y .

The receiver can try to decode this output in order to recover the

codeword that was sent.

The optimal method of decoding is to choose a codeword, w ∈ C, which

maximizes

P (w | bj1 · · · bjN
) =

P (w) P (bj1 · · · bjN
|w)

P (bj1 · · · bjN
)

In case of a tie, we pick one of the best w arbitrarily.

If P (w) is the same for all w ∈ C, this scheme is equivalent to choosing w

to maximize the “likelihood”, P (bj1 · · · bjN
|w).

Example: A Repetition Code

Suppose we use the three-symbol repetition code for a BSC with f = 0.1.

Assume that the probability of 000 being sent is 0.7 and the probability of

111 being sent is 0.3.

What codeword should the decoder guess if the received symbols are 101?

P (w = 000 | b1 = 1, b2 = 0, b3 = 1)

=
P (w = 000) P (b1 = 1, b2 = 0, b3 = 1 |w = 000)

P (b1 = 1, b2 = 0, b3 = 1)

=
0.7 × 0.1 × 0.9 × 0.1

0.7 × 0.1 × 0.9 × 0.1 + 0.3 × 0.9 × 0.1 × 0.9
= 0.206

P (w = 111 | b1 = 1, b2 = 0, b3 = 1)

=
P (w = 111) P (b1 = 1, b2 = 0, b3 = 1 |w = 000)

P (b1 = 1, b2 = 0, b3 = 1)

=
0.3 × 0.9 × 0.1 × 0.9

0.7 × 0.1 × 0.9 × 0.1 + 0.3 × 0.9 × 0.1 × 0.9
= 0.794

The decoder should guess that 111 was sent.

Associating Codewords with Messages

Suppose our original message is a sequence of K bits. (Or we might break

our message up into K-bit blocks.)

If we use a code with 2K codewords, we can send this message (or block)

as follows:

• The encoder maps the block of K message symbols to a codeword.

• The encoder transmits this codeword.

• The decoder guesses at the codeword sent.

• The decoder maps the guessed codeword back to a block of K

message symbols.

We hope that the block of decoded message symbols is the same as the

original block!

Example: To send binary messages through a BSC with the repetition

code, we use blocks of size one, and the map 0 ↔ 000, 1 ↔ 111.

Decoding for a BSC By Maximum Likelihood

For a BSC, if all codewords are equally likely, the optimal decoding is the

codeword differing in the fewest bits from what was received.

The number of bits where two bit sequences, u and v, differ is called the

Hamming distance, written d(u, v). Example: d(00110, 01101) = 3.

The probability that a codeword w of length N will be received as a block

b through a BSC with error probability f is

(1−f)N−d(w,b) f d(w,b) = (1−f)N

(

f

1−f

)d(w,b)

If f < 1/2, and hence f/(1−f) < 1, choosing w to maximize this

likelihood is the same as choosing w to minimize the Hamming distance

between w and b.

An Example Code for the BSC

Here’s a code with four 5-bit codewords:

00000, 00111, 11001, 11110

We might decide to map between 2-bit blocks of message bits and these

codewords as follows:

00 ↔ 00000 01 ↔ 00111

10 ↔ 11001 11 ↔ 11110

Suppose the sender encodes the message block 01 as 00111 and transmits

it through a BSC, and that the receiver then sees the output 00101.

How should this be decoded? If all 2-bit messages are equally likely to be

encoded, we just look at the Hamming distances to each codeword:

d(00000, 00101) = 2 d(00111, 00101) = 1

d(11001, 00101) = 3 d(11110, 00101) = 4

So the decoder picks the codeword 00111, corresponding to the message

block 01. Here, this is correct — but the decoder won’t always be right!

The Rate of a Code

A code C with |C| binary codewords of length N , is said to have rate

R =
log2 |C|

N

Suppose we are sending binary messages through a binary channel, using

a code with 2K codewords of length N . Then the rate will be

R = K/N

For example, if we encode message blocks of 100 bits into codewords

consisting of 300 bits, the rate will be 1/3.

A Preview of the Noisy Coding Theorem

Shannon’s noisy coding theorem states that:

For any channel with capacity C, any desired error probability,

ǫ > 0, and any transmission rate, R < C, there exists a code with

some length N having rate at least R such that the probability of

error when decoding this code by maximum likelihood is less than ǫ.

In other words: We can transmit at a rate arbitrarily close to the channel

capacity with arbitrarily small probability of error.

A near converse is also true: We cannot transmit with arbitrarily small

error probability at a rate greater than the channel capacity.

Why We Can’t Use a BSC Beyond

Capacity With Vanishing Error

We’ll see here that if we could transmit through a BSC beyond the

capacity C = 1−H2(f), with vanishingly small error probability, we could

compress data to less than its entropy, which we know isn’t possible.

In particular, suppose that we can encode blocks of length K into

codewords of length N , with a very small probability of decoding error...

Continuing...

Here’s how we use this code to compress data:

• Represent our data as two blocks: x is of length K and has bit

probabilities of 1/2, y is of length N and has bit probabilities of f

and 1−f . The total information in x and y is K + NH2(f).

• Encode x in a codeword w of length N , and compute z = w + y,

with addition modulo 2. This z is the compressed form of the data.

• Apply the decoding algorithm to recover w from z, treating y as noise.

We can then recover x from w and also y = z − w.

• The encoder checks whether the previous step would produce any

errors, and if so transmits extra bits to identify corrections. This

adds only a few bits, on average.

The result: We compressed a source with entropy K + NH2(f) into

only slightly more than N bits.

This is possible only if N ≥ K + NH2(f), which implies that

R = K/N ≤ 1 − H2(f) = C

The Finite Field Z2

From now on, we look only at binary channels, whose input and output

alphabets are both {0, 1}.

We will look at the symbols 0 and 1 as elements of Z2, the integers

considered modulo 2.

Z2 (also called F2 or GF (2)) is the smallest example of a “field” — a

collection of “numbers” that behave like real and complex numbers.

Specifically, in a field:

• Addition and multiplication are defined. They are commutative and

associative. Multiplication is distributive over addition.

• There are numbers called 0 and 1, such that z + 0 = z and z · 1 = z

for all z.

• Subtraction and division (except by 0) can be done, and these

operations are the inverses of addition and multiplication.

Arithmetic in Z2

Addition and multiplication in Z2 are defined as follows:

0 + 0 = 0 0 · 0 = 0

0 + 1 = 1 0 · 1 = 0

1 + 0 = 1 1 · 0 = 0

1 + 1 = 0 1 · 1 = 1

This can also be seen as arithmetic modulo 2, in which we always take the

remainder of the result after dividing by 2.

Viewed as logical operations, addition is the same as ‘exclusive-or’, and

multiplication is the same as ‘and’.

Note: In Z2, −a = a, and hence a − b = a + b.

Vector Spaces Over Z2

Just as we can define vectors over the reals, we can define vectors over any

other field, including over Z2. We get to add such vectors, and multiply

them by a scalar from the field.

We can think of these vectors as N -tuples of field elements. For instance,

with vectors of length five over Z2:

(1, 0, 0, 1, 1) + (0, 1, 0, 0, 1) = (1, 1, 0, 1, 0)

1 · (1, 0, 0, 1, 1) = (1, 0, 0, 1, 1)

0 · (1, 0, 0, 1, 1) = (0, 0, 0, 0, 0)

Most properties of real vector spaces hold for vectors over Z2 — eg, the

existence of basis vectors.

We refer to the vector space of all N -tuples from Z2 as ZN
2 . We will use

boldface letters such as u and v to refer to such vectors.

Linear Codes

We can view ZN
2 as the input and output alphabet of the Nth extension

of a binary channel.

A code, C, for this extension of the channel is a subset of ZN
2 .

C is a linear code if the following conditions hold:

1) If u and v are codewords of C, then u + v is also a codeword of C.

2) If u is a codeword of C and z is in AX , then zu is also a codeword of C.

In other words, C must be a subspace of AN
X . Note that the all-zero

codeword must be in C, since 0 = 0u for any u.

Note: For binary codes, where AX = Z2, condition (2) will always hold

if condition (1) does, since 1u = u and 0u = 0 = u + u.

Linear Codes From Basis Vectors

We can construct a linear code by choosing K linearly-independent basis

vectors from ZN
2 .

We’ll call the basis vectors u1, . . . ,uK . We define the set of codewords to

be all those vectors that can be written in the form

a1u1 + a2u2 + · · · + aKuK

where a1, . . . , aK are elements of Z2.

The codewords obtained with different a1, . . . , aK are all different.

(Otherwise u1, . . . ,uK wouldn’t be linearly-independent.)

There are therefore 2K codewords. We can encode a block consisting of K

symbols, a1, . . . , ak, from Z2 as a codeword of length N using the formula

above.

This is called an [N, K] code. (MacKay’s book uses (N, K), but that has

another meaning in other books.)

Linear Codes From Linear Equations

Another way to define a linear code for ZN
2 is to provide a set of

simultaneous equations that must be satisfied for v to be a codeword.

These equations have the form c · v = 0, ie

c1v1 + c2v2 + · · · + cNvN = 0

The set of solutions is a linear code because

1) c · u = 0 and c · v = 0 implies c · (u + v) = 0.

2) c · v = 0 implies c · (zv) = 0.

If we have N − K such equations, and they are independent, the code will

have 2K codewords.

The Repetition Codes Over Z2

A repetition code for ZN
2 has only two codewords — one has all 0s, the

other all 1s.

This is a linear [N, 1] code, with (1, . . . , 1) as the basis vector.

The code is also defined by the following N − 1 equations satisfied by a

codeword v:

v1 + v2 = 0, v2 + v3 = 0, · · · , vN−1 + vN = 0

The Single Parity-Check Codes

An [N, N − 1] code over Z2 can be defined by the following single equation

satisfied by a codeword v:

v1 + v2 + · · · + vN = 0

In other words, the parity of all the bits in a codeword must be even.

This code can also be defined using N − 1 basis vectors. One choice of

basis vectors when N = 5 is as follows:

(1, 0, 0, 0, 1)

(0, 1, 0, 0, 1)

(0, 0, 1, 0, 1)

(0, 0, 0, 1, 1)

A [5, 2] Binary Code

Recall the following code from earlier in the lecture:

{ 00000, 00111, 11001, 11110 }

Is this a linear code? We need to check that all sums of codewords are

also codewords:

00111 + 11001 = 11110

00111 + 11110 = 11001

11001 + 11110 = 00111

We can generate this code using 00111 and 11001 as basis vectors. We

then get the four codewords as follows:

0 · 00111 + 0 · 11001 = 00000

0 · 00111 + 1 · 11001 = 11001

1 · 00111 + 0 · 11001 = 00111

1 · 00111 + 1 · 11001 = 11110

The [7, 4] Binary Hamming code

The [7, 4] Hamming code is defined over Z2 by the following equations

that are satisfied by a codeword u:

u1 + u2 + u3 + u5 = 0

u2 + u3 + u4 + u6 = 0

u1 + u3 + u4 + u7 = 0

Since these equations are independent, there should be 16 codewords.

We can also define the code in terms of the following four basis vectors:

1000101, 0100110, 0010111, 0001011

There are other sets equations and other sets of basis vectors that define

the same code.

We will see later that this code is capable of correcting any single error.

Generator Matrices

We can arrange a set of basis vectors for a linear code in a generator

matrix, each row of which is a basis vector.

A generator matrix for an [N, K] code will have K rows and N columns.

Here’s a generator matrix for the [5, 2] code looked at earlier:




0 0 1 1 1

1 1 0 0 1





Note: Almost all codes have more than one generator matrix.

Encoding Blocks Using a Generator Matrix

We can use a generator matrix for an [N, K] code to encode a block of K

message bits as a block of N bits to send through the channel.

We regard the K message bits as a row vector, s, and multiply by the

generator matrix, G, to produce the channel input, t:

t = sG

Every t that is a codeword will be produced by some s. If the rows of G

are linearly independent, each distinct s will produce a different t.

Example: Encoding the message block (1, 1) using the generator matrix

for the [5, 2] code given earlier:

[

1 1
]





0 0 1 1 1

1 1 0 0 1



 =
[

1 1 1 1 0
]

Parity-Check Matrices

Suppose we have specified an [N, K] code by a set of M = N − K

equations that any codeword, v, must satisfy:

c
1,1

v
1
+ c

1,2
v

2
+ · · · + c

1,N
v

N
= 0

c
2,1

v
1
+ c

2,2
v

2
+ · · · + c

2,N
v

N
= 0

...

c
M,1

v
1
+ c

M,2
v

2
+ · · · + c

M,N
v

N
= 0

We can arrange the coefficients in these equations in a parity-check

matrix, as follows:














c
1,1

c
1,2

· · · c
1,N

c
2,1

c
2,2

· · · c
2,N

...

c
M,1

c
M,2

· · · c
M,N















If C has parity-check matrix H, then v is in C if and only if vHT = 0.

Note: Almost all codes have more than one parity-check matrix.

Example: The [5, 2] Code

Here is one parity-check matrix for the [5, 2] code used earlier:
2

6

6

4

1 1 0 0 0

0 0 1 1 0

1 0 1 0 1

3

7

7

5

We see that 11001 is a codeword as follows:

h

1 1 0 0 1

i

2

6

6

6

6

6

6

6

4

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

3

7

7

7

7

7

7

7

5

=

h

0 0 0

i

But 10011 isn’t a codeword, since

h

1 0 0 1 1

i

2

6

6

6

6

6

6

6

4

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

3

7

7

7

7

7

7

7

5

=

h

1 1 0

i

Example: Repetition Codes & Single Parity-Check Codes

An [N, 1] repetition code has the following generator matrix (for N = 4):
h

1 1 1 1

i

Here is a parity-check matrix for this code:
2

6

6

4

1 0 0 1

0 1 0 1

0 0 1 1

3

7

7

5

One generator matrix for the [N, N − 1] single parity-check code is this:
2

6

6

4

1 0 0 1

0 1 0 1

0 0 1 1

3

7

7

5

Here is the parity-check matrix for this code:
h

1 1 1 1

i

Manipulating the Parity-Check Matrix

There are usually many parity-check matrices for a given code. We can

get one such matrix from another using the following “elementary row

operations”:

• Swapping two rows.

• Multipling a row by a non-zero constant (not useful for Z2).

• Adding a row to a different row.

These operations don’t alter the solutions to the equations the

parity-check matrix represents.

Example: This parity-check matrix for the example [5, 2] code:
2

6

6

4

1 1 0 0 0

0 0 1 1 0

1 0 1 0 1

3

7

7

5

can be transformed into this alternative:
2

6

6

4

1 1 0 0 0

0 0 1 1 0

0 1 0 1 1

3

7

7

5

Manipulating the Generator Matrix

We can apply the same elementary row operations to a generator matrix

for a code, in order to produce another generator matrix, since these

operations just convert one set of basis vectors to another.

Example: Here is a generator matrix for the [5, 2] code we have been

looking at:
"

0 0 1 1 1

1 1 0 0 1

#

Here is another generator matrix, found by adding the first row to the

second:
"

0 0 1 1 1

1 1 1 1 0

#

Note: These manipulations leave the set of codewords unchanged, but

they don’t leave the way we encode messages by computing t = sG

unchanged!

Equivalent Codes

Two codes are said to be equivalent if the codewords of one are just the

codewords of the other with the order of symbols permuted.

Permuting the order of the columns of a generator matrix will produce a

generator matrix for an equivalent code, and similarly for a parity-check

matrix.

Example: Here is a generator matrix for the [5, 2] code we have been

looking at:
"

0 0 1 1 1

1 1 0 0 1

#

We can get an equivalent code using the following generator matrix

obtained by moving the last column to the middle:

"

0 0 1 1 1

1 1 1 0 0

#

Generator and Parity-Check Matrices
In Systematic Form

Using elementary row operations and column permutations, we can

convert any generator matrix to a generator matrix for an equivalent code

that is in systematic form, in which the left end of the matrix is the

identity matrix.

Similarly, we can convert to the systematic form for a parity-check matrix,

which has an identity matrix in the right end.

For the [5, 2] code, only permutations are needed. The generator matrix

can be permuted by swapping columns 1 and 3:

"

0 0 1 1 1

1 1 0 0 1

#

⇒

"

1 0 0 1 1

0 1 1 0 1

#

When we use a systematic generator matrix to encode a block s as

t = sG, the first K bits will be the same as those in s. The remaining

N − K bits can be seen as “check bits”.

Relationship of Generator and Parity-Check Matrices

If G and H are generator and parity-check matrices for C, then for every

s, we must have (sG)HT = 0 — since we should only generate valid

codewords. It follows that

GHT = 0

Furthermore, any H with N − K independent rows that satisfies this is a

valid parity-check matrix for C.

Suppose G is in systematic form, so

G = [IK | P]

for some P . Then we can find a parity-check matrix for C in systematic

form as follows:

H = [−P T | IN−K]

since GHT = −IKP + PIN−K = 0.

