
CSC 310, Fall 2011 — Solutions to Theory Assignment #3

Question 1 (35 marks): Consider a channel for which the input alphabet and output
alphabet are both {0, 1, 2}, and for which the channel transition probabilities are given by
Q0|0 = Q2|2 = 1, Q0|1 = Q2|1 = 1/4, and Q1|1 = 1/2.

a) Find the mutual information between the channel input and output if the input prob-
abilities are p0 = 1/2, p1 = 0, and p2 = 1/2.

Let the channel input be X and the channel output be Y . The mutual information
can be written as I(X; Y) = H(X) − H(X|Y). With the input distribution above,
H(X) = 1 bit. H(X|Y) is zero, since if symbol 1 is never sent, symbol 1 will never be
received, and if symbol 0 or 2 is received, the symbol that was sent must be the same
as what was received. The mutual information is therefore 1 bit.

b) Find the mutual information between the channel input and output if the input prob-
abilities are p0 = p1 = p2 = 1/3.

We can write the mutual information as I(X; Y) = H(Y) − H(Y |X). We can find
the output probabilities as q0 = p0 + (1/4) p1 = 5/12, q1 = (1/2) p1 = 1/6, and
q2 = p2 + (1/4) p1 = 5/12. Hence

H(Y) = (5/12) log
2
(12/5) + (1/6) log

2
(6) + (5/12) log

2
(12/5) = 1.483

H(Y |X) = (1/3) H(Y |X = 0) + (1/3) H(Y |X = 1) + (1/3) H(Y |X = 2). Since both
H(Y |X =0) and H(Y |X =2) are zero, we get that

H(Y |X) = (1/3) H(Y |X =1)

= (1/3)
[

(1/4) log
2
(4) + (1/2) log

2
(2) + (1/4) log

2
(4)

]

= (1/3) (3/2) = 0.5

The mutual information is therefore 1.483 − 0.5 = 0.983 bits.

c) Find the capacity of this channel, and an input distribution that achieves this capacity.
Once you have reduced this to a one-dimensional optimization problem, you may use
a numerical method to find the solution, written in any language you choose. Hand
in the command or program that you use, which may be quite short if you’re using
something like Maple. Giving the capacity in bits to three decimal places is sufficient,
and a brute force numerical search is acceptable.

We need to maximize I(X; Y) with respect to p0, p1, and p2, which must be positive
and sum to one.

First, we can show that I(X; Y) will be maximized with an input distribution in which
p0 = p2. To see this, we fix p1 and consider changing p0, and hence p2 = 1−p1−p0. The
output probabilities will be q0 = p0 + (1/4) p1, q1 = (1/2) p1, and q2 = p2 + (1/4) p1.
We then write I(X; Y) = H(Y)−H(Y |X), and note that H(Y |X) depends only on p1,
not on p0 or p2. Furthermore, for a given value of p1, and hence q1, H(Y) is maximized

1

when q0 and q2 are equal, which will happen when p0 and p2 are equal. So if we fix p1,
the maximum value of I(X; Y) will be when p0 and p2 are both (1−p1) / 2.

Maximizing I(X; Y) now reduces to a one-dimensional optimization problem. As for
part (b), we see that H(Y |X) = (3/2)p1, and when p0 = p2, we can write q0 = q2 =
(2 − p1)/4, so that

H(Y) = −(1 − p1/2) log
2
((2 − p1)/4) − (p1/2) log

2
(p1/2)

The mutual information when p0 = p2 is therefore

I(X; Y) = −(1 − p1/2) log
2
((2 − p1)/4) − (p1/2) log

2
(p1/2) − (3/2)p1

The following R commands plot this function, and find its maximum and the value of
p1 where this maximum is acheived:

> p1 <- seq(0.001,0.999,by=0.001)

> I <- -(1-p1/2)*log((2-p1)/4,2) - (p1/2)*log(p1/2,2) - (3/2)*p1

> plot(p1,I,type="l",xaxs="i",yaxs="i",xlim=c(0,1))

> max(I)

[1] 1.087462

> p1[which.max(I)]

[1] 0.118

The maximum of the mutual information, and hence the channel capacity, is 1.087
bits, acheived when p1 = 0.118 and p0 = p1 = 0.441. Here is the plot produced above:

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

p1

I

Question 2 (30 marks): Suppose that we send a two-bit message by sending five bits
through a Binary Symmetric Channel with error probability 1/3, using the [5, 2] linear code
from the lectures, in which the codewords are 00000, 00111, 11001, and 11110. Suppose that
these four codewords are equally likely to be sent, and suppose that the decoder decodes
by maximum likelihood. What is the probability that the decoder will decode to the wrong
codeword? Does this error probability depend on any arbitrary choices made by the decoder?

2

In the lecture slides, a syndrome decoding table was found for this code, as follows (with an
entry for a syndrome of zero added):

z n
000 00000
001 00001
010 00010
011 00100
100 01000
101 10000
110 10100
111 01100

For each possible syndrome, this table gives an error pattern of minimal weight that produces
that syndrome. If we decode using this syndrome table, we will correct all (and only) the
error patterns that appear in it. Since errors are independent and occur with probability 1/3,
the probability of correct decoding is

(2/3)5 + 5(2/3)4(1/3) + 2(2/3)3(1/3)2 = 0.5267

The probability of erroneous decoding is therefore 1 − 0.5267 = 0.4733.

The last two entries in the syndrome table are not unique — there are other patterns of
two errors that also produce those syndromes. A different maximum likeihood decoder could
therefore decode differently when one of these syndromes occurs. However, any error patterns
chosen for these two syndromes will have two errors, since the entry in the syndrom table has
to be an error pattern with mimimal weight. So the calculation of the probability of decoding
error above would be no different.

Question 3 (30 marks): Suppose that we use a linear code on a binary alphabet (ie, a
linear subspace of ZN

2
) to encode messages that are sent over a Binary Symmetric Channel.

Suppose also that decoding is done by maximum likelihood (and in case of ties, a codeword
is selected uniformly at random from among all those with the maximum likelihood). Prove
that the probability that the decoded message is not what was sent is the same regardless
of which message was sent.

One way to prove this is to consider the implementation of maximum likelihood using the
syndrome decoding table. You would need to expand the table to hold all minimal-weight error
patterns that produce a given syndrome, so the decoder could choose among them randomly,
and then argue that this is a correct implementation of maximum likelihood decoding, and
that the probability of error using this implementation doesn’t depend on the codeword sent.

There is a much more direct proof, however. The probability of decoding error will certainly
not depend on which codeword was sent if the stronger statement holds that for every error
pattern, the probability that decoding is successful does not depend on which codeword was
sent. We can prove that stronger statement.

Consider some error pattern n (a vector in ZN

2
), and two codewords, u1 and u2. We want

to show that if error pattern n occurs, the probability of correct decoding when u1 is sent is
the same as when u2 is sent.

3

When u1 is sent, the decoder will receive v1 = u1 + n. There are three possibilities for how
this will be decoded:

1) Decoding will be incorrect because there is anaother codeword, u′
1
, that is closer in

Hamming distance to v1 than u1 (that is, v1 −u′
1

has lower weight than v1 −u1 = n).

2) Decoding will be correct because the Hamming distance from v1 to u1 is less than the
Hamming distance from v1 to any other codeword, u′

1
.

3) Decoding will be correct with probability 1/h, with h an integer greater than one, because
there are h − 1 other codewords, u′

1
, u′′

1
, . . . , at the same distance from v1 as u1, and

there are no codewords that are closer to v1 than u1.

If instead u2 is sent, with the error pattern again being n, the decoder will receive v2 = u2+n.
Now, define d = u2 − u1, and note that since the code is linear, d is a codeword. We have
that v2 = v1 +d. Now consider how v2 is decoded in each of the three situations listed above:

1) In this case, v1 is decoded incorrectly, as u′
1
, and v2 will also be decoded incorrectly.

To see this, let u′
2

= u′
1
+ d, which will be a codeword since u′

1
and d are codewords.

The distance from v2 to u′
2

will be the same as the distance from v1 to u′
1
, since

v2 −u′
2

= (u1 +d+n)− (u′
1
+d) = v1 −u′

1
. Since this distance is less than the weight

of n, v2 will be incorrectly decoded to u′
2

(or to some other codeword that is also closer
to v2 than u2 is).

2) In this case, v1 is decoded correctly, since all the incorrect codewords are further from
v1 than u1 is, and v2 will also be decoded correctly. To see this, suppose that some
codeword, u′

2
, other than u2 is not further from v2 than u2 is (ie, the weight of v2−u′

2
is

not greater than the weight of n). Then the codeword u′
1

= u′
2
−d (which is not equal to

u1) would not be further from v1 than u1 is, since v1−u′
1

= (v2−d)−(u′
2
−d) = v2−u′

2

does not have weight greater than the weight of n. But this contradicts the assumption
that all codewords other than u1 are further from v1 than u1. So all the codewords
other than u2 must be further from v2 than u2, and hence v2 is decoded correctly.

3) In this case, v1 has probability 1/h of being decoded correctly, and the same is true for
v2. Arguing as above, one can see that there are no codewords closer to v2 than u2,
and that the set of other codewords at equal distance is u′

1
+ d, u′′

1
+ d, . . . , which

number h − 1. So the probability of v2 being decoded correctly is also 1/h.

So in all cases the probability of correctly decoding when u2 is sent and the error pattern is
n is the same as the probability of correctly decoding when u1 is sent and the error pattern
is again n, which implies what we wish to prove.

4

