
CSC 310, Fall 2011 — Solutions to Theory Assignment #2

Question 1 (50 marks): Suppose that the designer of a data compression system uses a
model for a source of binary symbols, X1, X2, . . . , Xn, in which these symbols are inde-
pendent given the probability, p1, of symbol 1. (Of course, the probability of symbol 0 is
p0 = 1−p1.) The designer doesn’t know p1, but uses a prior model in which p1 is either 0,
1, or 1/2, with P (p1 = 0) = P (p1 = 1) = 1/4 and P (p1 = 1/2) = 1/2.

Consider two ways of encoding such a sequence of length n. (We assume that n is fixed, and
known to both the encoder and decoder.) These are:

Method A: Estimate p1 by examining the whole sequence of n symbols (with
the estimate being either 0, 1, or 1/2), then transmit the estimated p1 using an
optimal code based on the prior probabilities, and finally transmit X1, . . . , Xn

using an optimal code based on p1 (and the assumption that the symbols are
independent).

Method B: Transmit each of X1, . . . , Xn using a method such as arithmetic
coding that compresses nearly down to the entropy, basing the transmission of
Xi on the predictive distribution of Xi given X1, . . . , Xi−1. These predictive
probabilities are found by summing the predictive probabilties based on each
possible value of p1 times the posterior probability of that value of p1 given X1,
. . . , Xi−1 (which is the prior probability when i = 1).

Answer the following, justifying your answers:

a) When using Method A, what is the best way to estimate p1 — that is, the way that
results in the smallest number of bits being transmitted on average?

If X1, . . . , Xn consists of some 0s and some 1s, we must choose p1 = 1/2, since
otherwise sending some of the Xi symbols will take an infinite number of bits, since
they will have probability 0.

If X1, . . . , Xn are all 1s, then we can’t use p1 = 0, but we could use either p1 = 1 or
p1 = 1/2. Encoding X1, . . . , Xn takes n bits if we use p1 = 1/2, but it takes 0 bits
if we use p1 = 1, since then log2(1/p1) = 0. To this, we have to add the number of
bits used to send p1. The optimal code for p1 encodes p1 = 1/2 as one bit (say 0) and
p1 = 0 and p1 = 1 as two bits (say 10 and 11). The total number of bits sent if we
choose p1 = 1/2 is therefore n + 1, whereas the total number of bits sent if we choose
to use p1 = 1 is 2. It is therefore better to use p1 = 1 when all the Xi are 1 and n is
greater than 1. When n is equal to 1, p1 = 1 and p1 = 1/2 are equally good choices.

When X1, . . . , Xn are all 0s, the result is reversed, with p1 = 0 being best, unless
n = 1, in which case p1 = 1/2 is equally good.

b) When using Method A, and the estimation method from part (a) above, how many
bits (total) are transmitted when X1,. . . ,Xn has n0 0s and n1 1s (with n0 + n1 = n)?

As implied by the answer to part (a), the total number of bits is 2 if n0 = 0 or n1 = 0,
and otherwise is n + 1.

c) Derive a simple way of finding the predictive distribution for Xi given X1, . . . , Xi−1

that is needed to implement Method B.

The predictive distribution for X1 is P (X1 = 1) = 1/2, due to the symmetry of the
prior.

For i > 1, the posterior distribution of p1 given X1, . . . , Xi−1 will be P (p1 = 0) = 0,
P (p1 = 1) = 0, and P (p1 = 1/2) = 1 if both 0 and 1 appear at least once in X1, . . . ,
Xi−1. If all of X1, . . . , Xi−1 are 1s, then P (p1 = 0) = 0, and from the odds form of
Bayes’ Rule, we get

P (p1 = 1)

P (p1 = 1/2)
=

P (X1 = 1, . . . , Xi−1 = 1 | p1 = 1)

P (X1 = 1, . . . , Xi−1 = 1 | p1 = 1/2)

P (p1 = 1)

P (p1 = 1/2)

=
1 × (1/4)

(1/2)i−1 × (1/2)
= 2i−2

From this we get that P (p1 = 1/2) = 1/(1+2i−1) and P (p1 = 1) = 2i−1/(1+2i−1).
The predictive distribution for Xi is therefore

P (Xi = 1 | X1 = 1, . . . , Xi−1 = 1) = (1/2)
1

1+2i−2
+ (1)

2i−2

1+2i−2
=

1

2

1 + 2i−1

1+2i−2

Similarly,

P (Xi = 0 | X1 = 0, . . . , Xi−1 = 0) =
1

2

1 + 2i−1

1+2i−2

d) How many bits are transmitted using Method B when X1, . . . , Xn are all symbol 1?
Express your answer in as simple a form as possible. In this and later parts of this
question, assume that with the encoding method used, the number of bits that are
transmitted as a result of encoding a symbol having probability p is log2(1/p) (which
need not be an integer).

Encoding X1 takes 1 bit. Adding to this the number of bits for each following 1 symbol,
using the predictive probabilities from part (c), we get that the total number of bits is

1 +
n

∑

i=2

log2

[

2
1 + 2i−2

1+2i−1

]

= n + log2

[

n
∏

i=2

1 + 2i−2

1+2i−1

]

= n + log2

[

2

1+2n−1

]

= n + 1 + log2

[

2−(n−1)

1+2−(n−1)

]

= 2 − log2(1+2−(n−1))

e) How many bits are transmitted using Method B when X1, . . . , Xn−1 are all symbol 1
and Xn is symbol 0? Express your answer in as simple a form as possible.

(Assumes n ≥ 2, as I intended.)

From part(d), we see that the number of bits to encode the first n−1 symbols, all 1s,
will be

2 − log2(1+2−(n−2))

Using the predictive probability from part(c), we see that the number of bits to encode
the final 0 symbol will be

− log2

[

1 −
1

2

1 + 2n−1

1+2n−2

]

= − log2

[

1

2

1

1+2n−2

]

= 1 + log2(1+2n−2)

= n − 1 + log2(1+2−(n−2))

Adding these gives a total of n + 1 bits.

f) How many bits are transmitted using Method B when X1 is symbol 0 and X2, . . . , Xn

are all symbol 1? Express your answer in as simple a form as possible.

The first 0 symbol takes 1 bit to encode. The predictive probability that the second
symbol is 1 given that the first is 0, from part (c), is 1/4, so the second symbol takes 2
bits to encode. The remaining n−2 symbols will be encoded with predictive probabilities
of 1/2, since at this point only p1 = 1/2 is possible, and hence will take 1 bit each. The
total number of bits is therefore n + 1.

(This is of course what is expected — since the distribution of X1, . . . , Xn is exchange-
able, the answers to parts (e) and (f) should be the same.)

g) Discuss which of Method A and Method B is better in terms of compression.

Using exchangeability, and proceeding as in part (f), we we see that Method B will
encode any sequence with at least one 0 and at least one 1 in n + 1 bits. From part
(b), we see that this is the same as for Method A, so there is no difference between the
methods in this case.

When the sequence is all 0s or all 1s, we see from part (b) that Method A takes 2 bits,
but from part (d) we see that Method B takes 2 − log2(1+2−(n−1)) bits. So Method B
is slightly better.

This inefficiency of Method A can be explained by the fact that it does not use all possible
output sequences. It will never say that p1 = 1/2 and then send a sequence of all 0s
or all 1s. This is a general deficiency of methods that first estimate probabilities, then
send them, and then send the message using a code based on these fixed probabilities.

Question 2 (50 marks): Recall that for each context the PPM method keeps track of which
symbols have been seen before, along with the count of how many times each such symbol
has been seen, and transmits a symbol that has been seen before using a probability for it
that is proportional to its count. A fixed count of 1 is allocated to an “escape” symbol, that
is used when a symbol not seen before needs to be transmitted, using a lower-order context.
In this question, we will consider using this scheme when the maximum order is 0, so that
symbols are modeled as being independent (not depending on any preceding symbols). In
this case, the order 0 context will contain all symbols that have been seen before, and the
escape from this context is to the order −1 context, in which all symbols have fixed counts
1, and hence are all equally likely.

Assume that an encoding method such as arithmetic coding is used, so that the number of
bits that are transmitted as a result of encoding a symbol having probability p is log2(1/p)
(which need not be an integer).

a) Describe two deficiencies in this scheme that lead to a code tree in which some nodes
have only one child — equivalently, these deficiencies result in the arithmetic cod-
ing interval from 0 to 1 having portions that can never contain the final transmitted
message.

First, a count of 1 is allocated to the “escape” symbol even in contexts (other than the
order −1 context) where all symbols occur, and where “escape” will therefore never be
used.

Second, when we escape to a lower-order context to encode a symbol, we use the counts
in that context, possibly including non-zero counts for symbols that appear in the higher-
order contexts we escaped from. These symbols are not possible for this encoding oper-
ation, since if such a symbol were what is to be encoded, it would have been encoded in
a higher-order context.

b) Show that this PPM scheme of maximum order 0 produces exchangeable codes — that
is, show that the number of bits in which a message is encoded remains the same if
the order of symbols in the message is permuted.

Every symbol that occurs in the message will be encoded the first time it occurs, say
at position i (counting from 1), by sending “escape” and then the symbol encoded with
equal probabilities from the order −1 context. The first occurrence of a symbol at
position i therefore takes log2(1+ i− 1) = log2(i) bits for the “escape” plus log2(I) bits
for the symbol. At a later occurrence of the symbol, say at position j, the number of
bits to encode it will be log2((1 + j − 1)/c) = log2(j) − log2(c), where c is the count of
how many times this symbol has occurred in positions before j.

We therefore see that whatever is sent at position i, a term of log2(i) is added to the
total number of bits sent. Furthermore, for every symbol that occurs C > 0 times in
the message, a term of log2(I) bits is added to the total, and the total is decreased by

C−1
∑

c=1

log2(c)

None of these terms depends on the order of symbols — only on the counts of how
many times they occur — so the code is exchangeable.

c) Consider a modified scheme in which the count for the escape symbol is not fixed at 1,
but instead is equal to (I−m)/I, where I is the size of the alphabet and m is the
number of distinct symbols seen previously (initially 0), and also, after a symbol is
encoded in the order −1 context, its count in the order −1 context is decreased to 0
(so that the probability in the order −1 context of a symbol not previously seen is
1/(I−m), rather than 1/I). Show that this modified scheme never encodes a message
in more bits than the original scheme, and characterize the set of messages that the
modified scheme encodes in fewer bits than the original scheme.

When sending “escape” and a new symbol, at position i, the original scheme uses
log2(1+ i− 1) = log2(i) bits for the escape, and log2(I) bits for the symbol in the order
−1 context, for a total of log2(i) + log2(I) = log2(iI) bits. The modified scheme uses

log2

[

(I−m)/I + i − 1

(I−m)/I

]

bits for the escape and log2(I−m) bits for the symbol in the order −1 context, so the
total number of bits sent is

log2

[

(I−m)/I + i − 1

(I−m)/I

]

+ log2(I−m) = log2(iI − m)

which is the same as the number for the original scheme when m = 0, and is less when
m > 0.

When sending a symbol that has been seen before, at position i, the original scheme
uses log2((1 + i − 1)/c) = log2(i/c) bits, where c is the number of times the symbol
has been seen before, whereas the modified scheme uses log2(((I − m)/I + i − 1)/c) =
log2((i − m/I)/c) bits, which is less than for the original scheme.

d) Show that the modified scheme of part (c) does not produce an exchangeable code.

Here is an example demonstrating this:

Using the results from part (c), we see that the number of bits used by the modified
scheme to encode AAB,

log2(I) + log2((2 − 1/I)/1) + log2(3I − 1)

whereas the number of bits to encode ABA is

log2(I) + log2(2I − 1) + log2((3 − 2/I)/1)

Considering the case where I = 2, the first expression above is log2(2) + log2(3/2) +
log2(5) = log2(15) whereas the second is log2(2) + log2(3) + log2(2) = log2(12).

e) [5 Mark Bonus] Find a further modification of the modified scheme that does produce
an exchangeable code, while still retaining whatever you consider to be its advantages.
Do you think being exchangeable makes it better?

We get an exchangeable method if we add 1/I to the count of every symbol in the order
0 context, while keeping the count for the “escape” at (I −m)/I. The total count when
encoding at position i is then (I −m)/I + (i− 1) + m(1/I) = i, which since it doesn’t
depend on which symbols came before, will lead to the method being exchangeable.

This modification retains the advantage that the escape probability goes to zero when
there is no more need for it (since all symbols have been seen). Exchangeability ought
to be good when the symbols to be encoded actually are independent given the symbol
probabilities. However, this is rarely the case. It’s conceivable that some form of non-
exchangeability could actually be desirable when the symbols aren’t independent, but I
think you have to be rather optimistic to hope for this when the non-exchangeability
is “accidental” rather than being designed to model your source of non-independent
symbols.

