T he Integration Problem

Integration is the process of finding totals,
areas, volumes, etc.

The integral from a to b of a function f(z),
written as

b
| @) de
a
is the area beneath the curve defined by f(x):

f(x)

a

Where f(x) is negative, the area counts as
being negative.

The integral of a function of two variables is
the volume under the surface it defines, and
so forth in higher dimensions.

Applications of Integration

In statistics, the probability of an event is
the integral of the probability density for
all the possible ways it could happen. Eg,

Pr(z > 10) = /:;Op(:c) dx

The arc length for a curve can be defined
in terms of a parametric representation,
(z(t),y(t)), with tg <t <tq, as

/t T2+ ()2 dt
0

When rendering an image with intensity
function I(xz,y), in terms of 1 x 1 pixels,
we should set pixel p, extending over

x € [zvp—%, a:p—l—%] and y € [yp—%, yp—l—%], to
have intensity

2p+35 (ypts
/p12/p12l(af;,y)dacdy

Tp—2 “Yp—3

Symbolic Integration

As you know from calculus, if we can find a
function F(xz) whose derivative is f(x), then
we can evaluate an integral for f(x) as

[fz)ds = F@) - Fa)

a

Unfortunately, finding such an F (an
“anti-derivative” of f) is not always easy.
Maple knows many tricks for doing this, so
it sometimes succeeds:

> int ((1+x)/(1+x72) ,x) ;
2
1/2 1In(1 + x) + arctan(x)
> int ((1+x)/(1+x72) ,x=0..1);

1/2 1n(2) + 1/4 Pi

But often it won't succeed (and neither will
any other program or person).

What if Symbolic Integration Fails?

One time-honoured thing to do when you
can't find an integral is to just define a new
function to be the answer! For example, the
“Gamma’ function:

M(a) = /Oooxa_l exp(—x) dx

You can then try to figure out how to
approximate the new function, and use it to
solve other integrals. Eg,

(a)l(b)
(a+b)

1
/O 2211 -2 ldr =

If we don't find this satisfying (eg, we want an
actual answer!), then we can use numerical
integration, also called numerical quadrature.

Numerical Integration with Rectangles

One way to approximate an integral is as the
sum of the areas of rectangles:

f(X) __
e TN
~ e 7 N

L =

X
a b

Using n rectangles, of width h = (b —a)/n:
b n

/ f(@)de ~ Y hf(a+ (i—1/2)h)
a i=1

The following Maple program implements this:

int_rectangle := proc(fn,rng,n)
local low, high, sum, i, h;
low := evalf(op(l,rng));
high := evalf(op(2,rng));
h := (high-low)/n;

sum := 0;
for 1 from 1 to n do

sum := sum + h * fn(low+(i-0.5)%h);
od;

sum;
end:

Numerical Integration with Trapezoids

Rather than using a piecewise constant
approximation to the function, we might use a
piecewise linear approximation:

f(x)
< N\

a b

The integral is then the sum of the areas of n
trapezoids.
The formula is as follows (with h = (b —a)/n):

b n a i— a—+1
[1aria = 3o pLHG=DD T Satin

1=1
We can combine some terms, to give

n—1
[f@yds ~ 2 (f@) +FG) + Y hfatin)

1 =1

Two Maple Programs for Integration
Using Trapezoids

int_trapezoidl := proc(fn,rng,n)
local low, high, sum, i, h;
low := evalf(op(1l,rng));
high := evalf(op(2,rng));
h := (high-low)/n;
sum := 0;
for i from 1 to n do
sum := sum
+ (h/2) * (fn(low+(i-1)*h) + fn(low+ix*h));
od;
sum;
end:

int_trapezoid2 := proc(fn,rng,n)
local low, high, sum, i, h;
low := evalf(op(1l,rng));
high := evalf(op(2,rng));
h := (high-low)/n;
sum := (fn(low) + fn(high)) / 2;
for i from 1 to n-1 do

sum := sum + fn(low+ixh);

od;
h * sum;

end:

Accuracy of Integration Using
Rectangles and Trapezoids

Some experimental results:

> int(sin(x) ,x=0..Pi/2);
1

> int_rectangle(x->sin(x),0..Pi/2,10) - 1;
.00102882415

> int_trapezoidl(x->sin(x),0..Pi/2,10) - 1;

-.002057013638

> int_rectangle(x->sin(x),0..Pi/2,100) - 1;
.00001028092

> int_trapezoidl(x->sin(x),0..Pi/2,100) - 1;

-.000020561752

For both methods, the error seems to be
proportional to 1/n2. Why doesn’'t the better
piecewise linear approximation of the trapezoid
method produce a better answer?

Integration by Interpolation

The trapezoid method can be seen as first
finding a piecewise linear interpolant, then
computing the integral of the interpolant.

We can use any other interpolation method
instead. For example:

e Piecewise cubic interpolation with
Catmull-Rom constraints. The book
considers this.

e Piecewise cubic interpolation with the
natural spline constraints. This may be

less attractive — it's harder to figure out
the interpolant for a given number of data
points.

e Piecewise Lagrange interpolation, of any
degree.

Note: The integral of a piecewise interpolant
IS just the sum of the integrals of the pieces.

Integration by Piecewise Quadratic
Interpolation: Simpson’s Rule

Recall the Lagrange interpolation formula:

n noot—t
z(t) = Z x; H y t]-
JF
Forn=3, tg =0, t1 =15, to =1, we get

_ t—1p 1 t—0 t—1 t—0 t—Y
x(t) — X0 0_1/22 0—1 + 1]_/2_0 1/2_1 + D 2

= x0 (2t°—3t+1) — x1 (4t°—4t) + x5 (2t2—t)

From this, we get
Loty d
x(t) dt
/O 1
= |zo (5t3-3t2+1)) — x1 (5t3-3t2) + o (%t3—%t2)]0

= [z0(G-3+1) — 21 (4-9) + 22G3-H)] - 0

= %[fb‘o + 421 + 23]

Compound Simpson’s Rule

We can integrate a function by applying
Simpson’s Rule to n pieces, as follows:

N

i g[f(a+z'h) + 4f(a+(i+3)h)
+ f(a+(i+1)h)]
where h = (b —a)/n.

We can combine terms in this sum to get
b
/ f(x) dx
a

= 2 (7@ + 45(a+3m) + 27(a+ 1)
+4f(a+3h) + 2f(a+ 2h)
.
+4f(a+ (n—3)h) + f(b)]

Simpson’s Rule in Maple

int_simpson := proc(fn,rng,n)
local low, high, sum, i, h;
low := evalf(op(1l,rng));
high := evalf(op(2,rng));
h := (high-low)/n;
sum := (h/6) * (fn(low) + fn(high));
for i from 1 to n-1 do
sum := sum + (h/3) * fn(low+ixh) ;
od;
for i from 1 to n do
sum := sum + (2*xh/3) * fn(low+(i-0.5)x*h);
od;
sum;
end:

How accurate is it?
> Digits:=30:
> int_simpson(x->sin(x),0..Pi/2,10) - 1;

-6
.21154659142360207800571*10

> int_simpson(x->sin(x),0..Pi/2,100) - 1;

-10
.2113928089365798526%*10

The error seems to be going down as 1/n4.

General Newton-Cotes Rules

The rectangle, trapezoid, and Simpson’s
methods are examples of “Newton-Cotes”
rules, in which the function is evaluated at
equally-spaced points.

There are other integration methods that
don’t use equally-spaced points, or that adapt
the number of point to the behaviour of the
function.

We can distinguish two kinds of integration
rules:

e (Closed rules, such as the trapezoid method
and Simpson’s Rule, evaluate the function
at the far left and far right endpoints.

e Open rules, such as the rectangle method
we looked at, do not evaluate the function
at the endpoints.

Integrating Functions with Singularities

Integrals can be well-defined even for
functions that go to infinity at an endpoint.
For example:

/Olzc_l/Qd:c = [2:1:1/2](1) = 2

How can we integrate such a function
numerically?

A closed rule will not work, since the function
IS undefined at one of the endpoints.

Open rules will be OK, however, though
because of the singularity, they may not
converge as rapidly as one might hope.

We could also try a transformation to get rid
of the singularity.

Integrating Over Infinite Regions

Integrals can also be well-defined when they
are over a region of infinite size. For example:
© _x _ -] __

/O e “dr = [—e }O = 1

How can we evaluate such an integral
numerically?

Newton-Cotes rules, with equally-spaced
points, can’'t work directly — we'd need an
infinite number of points!

Some other schemes do work. They select
points that go further out as the number of
points goes up.

We can also solve these integrals by using a
transformation that converts them to integrals
over a finite range.

A Transformation from [0, oo] to [0, 1]

An example: We can evaluate
oo
I = /O f(x)dz
by using the transformaton
y = 1—-e % = = —log(l-y)

This takes the bounds O — 0 and co — 1.
Also, dr = dy /(1 —vy).

The result is therefore:

_ [t f(=log(1l —y))
I = /O 1y dy

This is not the only possible transformation
from [0, 0] to [0, 1]. Which is best depends on
what f(zx) is like.

