Representations of Numbers

Mathematical models almost always involve
numbers of some sort. When we implement a
model, we need to represent these numbers on
the computer.

We will look at representations for integers
and for real numbers.

We can judge a representation in several ways:

e What range of numbers can be
represented?

e How accurate is the representation?

e How efficient is the representation in
terms of time and space?

Maple can represent numbers in many ways.
Most other languages (eg, C or Turing) are
restricted to using the more efficient ways.

Representing Integers

Both people and computers usually represent
positive integers in positional notation, using
some base, b (often b = 2). The sequence of
integer digits dnd,,_1---didg, with 0 < d; < b,
represents

dnd" + dp 1"t 4+ oo 4 dib + dg

The scheme can be extended to negative
integers in several ways — we won't go into
the details.

Other schemes are certainly possible (eg,
Roman numerals), but are not used very often.

Fixed vs. Indefinite Size Integers

In languages such as C or Turing, there is a
limit on how big an integer can be represented
— ie, on how many digits (bits) are allowed.
This allows for some efficiencies.

Trying to compute a bigger integer gives an
error, or just the wrong answer.

In Maple, integers can be arbitrarily large,
limited only by the available memory.

> 271000;

1071508607186267320948425049060001810561\
4048117055336074437503883703510511249\
3612249319837881569585812759467291755\
3146825187145285692314043598457757469\
8574803934567774824230985421074605062\
3711418779541821530464749835819412673\
9876755916554394607706291457119647768\
6542167660429831652624386837205668069\
376

How About Fractions?

What if you want to represent a number that
isn't an integer — eg, 1/37

In languages such as C or Turing, such
numbers may not be exactly representable,
but Maple can do arithmetic on fractions, just
like you did in primary school:

> 5/15;

1/3
> 1/3+1/4;

7/12

> 643432432 x (1/4324234 + 3/9567435834
> + 434324/123432434234) ;

513440646811720847717711223424

212776077054644382876032271

Other Symbolic Representations

Maple can represent numbers symbolically in
many other ways as well:

> sqrt(4x5) ;
2V/5
> 1/sqrt(2);
1
5\/5
> sqrt(2)*sqrt(50) ;
10

> sin(Pi/8);

“\2 -2
2

All these representations are exact. The price
of exactness is that these representations can
become complex and cumbersome.

Approximate Representations

Most numerical calculations are done with
approximate representations of numbers.

These representations can remain simple even
through long, complex calculations — but
they may also become less and less exact.

Two schemes for approximate representations
are commonly used, distinguished by the type
of error they permit:

e Fixed-point representations have errors of
a certain absolute magnitude (eg, +0.001).

e Floating-point representations have errors
of a certain relative magnitude (eg, +1%).

With either representation, numbers can be
stored in memory slots of fixed size, and
special hardware can be used to do arithmetic
quickly.

Fixed-Point Representations

A fixed-point representation allows only
numbers that can be written with some fixed
number of digits (decimal or binary) in the
fractional part.

For instance, we might allow three decimal
digits in the fraction. We can then exactly
represent numbers such as

0.138, —12.901, 8.900, 12337.003

We can’t exactly represent numbers such as
3.1878 and —8.87309; we would have to round
them to 3.188 and —8.873.

As well, there is usually an upper limit on the
allowed magnitude of a fixed-point number.

Fixed-point representations can also be seen
as scaled-integer representations. We use the
integer ¢ to represent the number ¢ x S, for
some scaling factor S (above, S is 0.001).

Floating-Point Representations

A floating-point representation can exactly
represent numbers with a certain number of
digits (decimal or binary) in total, without
regard to where these digits are in relation to
the decimal point.

With three digits of accuracy, we can exactly
represent numbers such as

1.45, 0.0000781, 90400, —77.0

We can’t exactly represent numbers such as
12.81, 0.09217, and 79210; we would have to
round them to 12.8, 0.0922, and 79200.

A number in a floating-point representation is
like one in ‘'scientific notation”. The above
numbers can be written as

0.145x10%, 0.781x107%, 0.904x10°, —0.770x107

Here, the fraction part (mantissa) is in (0,1);
the exponent gives the scale of the number.

Overflow and Underflow

Numbers represented in floating-point have
limited accuracy, given by the size of the
mantissa. Usually, they also have a limited
range, because the exponent can be only so
big.

Overflow occurs when a number with too big
an exponent arises. Depending on the machine
and language used, overflow might be an error
— causing the program to crash — or the
result might be a special number, “Infinity’” .

Underflow occurs when a number with too
small an exponent (ie, a large negative
exponent) arises. This is less serious than
overflow. Because such a number is very close
to zero, it may be OK to replace it with zero.

IEEE Standard Floating-Point

Old computers used many different floating-
point representations, but nowadays, most
follow a standard developed by the IEEE. This
standard specifies two binary representations.

In single precision floating-point, the binary
exponent ranges from —126 to +127, giving a
range for numbers of about 10T38. The binary
mantissa has 24 bits (one invisible), giving
accuracy to about 6 decimal digits.

In double precision floating-point, the binary
exponent ranges from —1022 to +1023, for a
range of about 10T398, The mantissa has 53
bits (one invisible), for about 15 decimal digits
of accuracy.

Maple will use the computer’'s built-in
floating-point if you ask (using evalhf), but
usually it uses its own scheme.

Maple Floating-Point

Maple uses decimal floating-point, with
arithmetic implemented in software. This is
much slower than using the built-in hardware
floating-point, but has some advantages.

Maple lets the exponent grow to almost any
size, so overflow and underflow don't occur.

You can specify the accuracy of Maple’'s
floating-point by setting the Digits variable.
For example:

> Digits:=b;
Digits := b
> evalf(Pi);
3.1416
> Digits:=30;
Digits := 30
> evalf (Pi);

3.14159265358979323846264338328

Representable Numbers

Here are pictures of the numbers representable
in fixed-point, with a two-bit fraction, and
floating point, with two bits of accuracy:

3
- 0.10 x 2

100. 00
11. 11 +
11.10
11.01
1100 - + 0.11 x 2°
10. 11
10.10 +
10.01

00+ T o010x2°

AL , Floating Point

10+ + 0.11 x 2

.01 +

00+ T o0.10x2

11+ 0.11 x 2

.10 + 0.10 x 2"

01 +

00

-0.01

.10

[EEN
o

Fixed Point

0

1 1
©O O O 0O O Ok P P P

0
-0.10 x 2

—

Which representation is better depends on the
expected magnitude of the numbers, and the
allowable sorts of errors.

Which Representation of Numbers
Would be Most Appropriate for...

The number of customer complaints a
company receives in some time period.

The heights of various children.

World population at various times in
history.

The concentration of some pollutant that
IS observed or predicted to be present in
the water of Lake Ontario.

The direction (degrees westward from
north) at which migratory birds were
observed to fly away from a given location.

Arithmetic with Inexact Numbers

What happens when we try to do arithmetic
with numbers kept in inexact fixed-point or
floating-point representations?

Often, the true result will not be representable.
At best, we will get the rounded result — the
number closest to the correct answer that can
be represented.

Such round-off error can accumulate in a long
computation, and sometimes make the final
answer be nonsense.

Round-off error can also invalidate the
mathematical properties that hold for exact
computations — eg, associativity of addition.

Round-off Error with
Fixed-Point Arithmetic
Addition and subtraction are exact with

fixed-point arithmetic (as long as there is no
overflow).

With a two-digit fraction, for example:
3.82+1.09 = 4.91, with no round-off error.

Multiplication and division may not be exact.

For example: 1.01 x 2.22 = 2.2422, which is
rounded to 2.24.

Not all the properties you might expect hold.
For example:

0.01 x (0.01 x 2000.00) = 0.20
but (0.01 x 0.01) x 2000.00 = 0.00

0.01 x (0.4 + 0.3) = 0.01
but 0.01 x 0.4 4+ 0.01 x 0.3 = 0.00

Round-off Error with
Floating-Point Arithmetic
Addition and Subtraction may not be exact

with floating-point arithmetic. For example,
with three-digit accuracy:

1.36 4+ 52.1 =53.47 rounds to 53.5
3300 — 259 = 3041 rounds to 3040
380+ 1.2 =381.2 rounds to 381

Multiplication and division may not be exact
either.

For example, with two-digit accuracy:
1.1 x 2200 = 2320 rounds to 2300.

Mathematical Properties of
Floating-Point Arithmetic

Floating-point point arithmetic has some
properties of real arithmetic:

Tty = yto

TXY = yYyXxXzx
ifx<yand c>0,thenz+4+c<y+c

But it doesn’'t have some other properties, as
seen below for two-digit accuracy:

(1040.4)+0.4 =10 but 104+ (0.440.4) = 11
(99 4+ 10) — 10 = 100
(49 x 0.5) x 0.5 =13 but 49 x (0.5 x 0.5) =12
(49/2) x 2 =50
0.1 <0.2and 10> 0, but 0.1 410« 0.2+ 10

Two Ways Round-Off Error
Can Cause Big Problems

Cancellation can occur when two quantities
are subtracted. The result then has many
fewer digits of accuracy that the operands.

For example, with nine digits of accurracy:
12345.6789 — 12345.6721 = 0.0068

If these operands were previously rounded, the
answer will be accurate to only two digits.

Saturation occurs when adding a non-zero
quantity causes no change.

For example, with nine digits of accuracy:
1234567.89 4+ 0.004 = 1234567.89

This is not too bad if it happens once, but
what if we add 0.004 a million times? The
true answer is 123867.89, but the result we
get is 1234567.89, wrong in the fourth digit.

An Example of Disastrous Cancellation

We want to calculate the profit of a company
over the last year, from monthly revenues and
expenses (all amounts in millions of dollars).

We decide to use floating-point arithmetic
with three decimal digits of accuracy...

> Digits := 3:

> revenue := [81.9, 28.1, 13.9, 30.7, 22.1, 79.8,
> 43.2, 31.0, 34.9, 88.1, 52.3, 67.3]:

> expenses:= [82.1, 27.8, 13.9, 30.2, 22.2, 79.5,

> 43.0, 30.7, 35.2, 87.8, 52.1, 67.2]:
> total_revenue := sum(revenuel[i],i=1..12);
total_revenue := 573.

> total_expenses:= sum(expenses[i],i=1..12);
total_expenses := 572.
> total_revenue - total_expenses;
1.
The answer: A total profit of 1 million dollars.
But this is very wrong, as seen below:

> sum(revenue[i]-expenses[i],i=1..12);

1.6

How Can We Avoid Problems?

e Figure out how big round-off error could
get, and make sure this is small enough.

Example: The error resulting from
floating-point addition with d digits of N
numbers in the range (—1,1) must be less
than + N x 10~ (d=%) \where k =1 4 log N.

e Use a scheme called interval arithmetic,
which gets the computer to check how big
the error could possibly be.

e A pragmatic approach:
Be aware of the possible pitfalls.

Be alert to signs that the answer
may be wrong.

Use plenty of precision, unless you're
really concerned with speed.

