
CSC 2541: Bayesian Methods for Machine Learning

Radford M. Neal, University of Toronto, 2011

Lecture 8

Gaussian Process Models for Classification

A Gaussian process regression model for data (x1, y1), . . . , (xn, yn) can be

expressed as
σ ∼ . . .

θ ∼ . . .

f ∼ GP (θ)

yi |xi, f ∼ N(f(xi), σ
2)

where θ represent all the parameters of the Gaussian process’s covariance

function. The Gaussian error combines with the Gaussian process for f to allow

computations (for given σ and θ) to be done by matrix operations, integrating

over f .

When the yi are binary, we can use the following model:

θ ∼ . . .

f ∼ GP (θ)

yi |xi, f ∼ Bernoulli (1 / (1 + exp(−f(xi))))

However, with this model, we cannot use simple matrix operations to evaluate

P (y|x, θ), or to predict a new y∗ by P (y∗|x∗, y, x, θ).

The Latent Gaussian Process

To do computations for Gaussian process classification, we need to explicitly

represent the “latent variables” zi = f(xi). For numerical reasons, we’ll actually

let zi be f(xi) plus a small amount of “jitter”, with variance j2.

The model with latent variables can be expressed as

θ ∼ . . .

f ∼ GP (θ)

zi |xi, f ∼ N(f(xi), j
2)

yi | zi ∼ Bernoulli (1 / (1 + exp(−zi)))

Using matrix operations, we can compute the joint density of the latent variables

and observed responses (for given θ):

P (z1, . . . , zn, y1, . . . , yn |x1, . . . , xn, θ)

= P (z1, . . . , zn |x1, . . . , xn, θ) P (y1, . . . , yn | z1, . . . , zn)

The first factor above (the prior for latent variables) is Gaussian; the second (the

likelihood for these latent variables) is a simple product of Bernoulli probabilities.

Handling the Latent Variables

Two methods are commonly used for handling the latent variables:

Approximate their posterior distribution by a Gaussian: The prior for

z1, . . . , zn given θ is Gaussian. The likelihood, P (y1, . . . , yn | z1, . . . , zn), is not,

but as n → ∞ it will approach a Gaussian form. Maybe a Gaussian posterior for

z1, . . . , zn will be adequate for finite n.

Sample for the latent variables using MCMC: Conditional on θ, we do

some Markov chain update of z1, . . . , zn, that leaves the posterior distribution

invariant. We also do updates for θ, and base predictions on averaging over the

samples we obtain for z and θ.

Gibbs sampling for z1, . . . , zn is possible (using “Adaptive Rejection Sampling”).

However, often there will be zi and zi′ that are highly dependent, so one Gibbs

sampling scan will make only very small changes. We’d like a better way. . .

A Metropolis-Hastings Update for the Latent Variables

We can propose a change to all the latent variables at once that respects their

correlation structure, as follows:

z∗ = (1 − ε2)1/2z + εLn

where n is a vector of independent N(0, 1) variates and L is the Cholesky

decomposition of the prior covariance matrix, C, of the latent variables

(ie, C = LLT).

We use the usual Metropolis-Hastings acceptance probability for this,

min
[

1,
`(z∗)π(z∗)S(z∗, z)

`(z)π(z)S(z, z∗)

]

where π is the prior, ` is the likelihood, and S is the proposal density.

One can show that for the proposal above, π(z)S(z, z∗) = π(z∗)S(z∗, z), so the

acceptance probability simplifies to min(1, `(z∗)/`(z)).

We need to choose a suitable value for ε in (−1, 1). This can be avoided using

“Elliptical Slice Sampling” (Murray, Adams, and MacKay, 2010).

Hierarchical Bayesian Models

Complex Bayesian models are often specified using a hierarchy, of observable

variables, latent variables, parameters, and hyperparameters at higher levels.

Latent variables / random effects: To model time to recovery from a

certain kind of surgery, we introduce a mean time for each surgeon, a mean of

these mean times for surgeons in each hospital, a mean of these means of means

for each city, etc.

Structured prior distributions: In a model for classifying genes by function,

we introduce hyperparameters representing the importance of different sources of

data (eg, gene expression data versus gene sequence data), which control the

priors of parameters relating to variables from each source.

The distinction between latent variables and parameters is vague, and is not

crucial from a Bayesian perspective. But for frequentists, it can be a big issue

whether or not something should be regarded as a “random effect”, since these,

but not parameters (eg, “fixed effects”), are modeled probabilistically.

Representing Dependencies by a Directed Graphical Model

How the observable variables depend on higher levels in the hierarchy can be

expressed using a directed graphical model.

For example:

θ θθ θ

σ

x x x x x x x x

1 2 3 4

11 12 21 22 31 32 41 42

This says that the joint density of σ, θ1, . . . , x11, . . . can be written as

P (σ)
∏

i

P (θi|σ)
∏

i,j

P (xij |θi)

The absense of an arrow indicates that an earlier variable need not be

conditioned on in this expression — eg, that P (x11|θ1) = P (x11|θ1, σ).

The Same Model as Formulas

The following notation expresses the same dependence relationships, along with

the actual form of the distributions:

σ ∼ exp(1)

θi|σ ∼ N(0, σ2)

xij |θi ∼ N(θi, 1)

In this notation also, there is some ordering of variables, and their distributions

are show conditional on earlier variables, omitting earlier variables that are

conditionally independent given the ones that are shown.

Integrating Away Some Parameters / Hyperparameters

In principle, we can always integrate away any variable that is not observable,

giving a model with fewer variables, but perhaps more complex distributions.

For the model

σ ∼ exp(1)

θi|σ ∼ N(0, σ2)

xij |θi ∼ N(θi, 1)

we can integrate out the θi parameters, giving

σ ∼ exp(1)

xi|σ ∼ N(0, Σ)

where xi = [xi1, xi2] and

Σ =





1 + σ2 σ2

σ2 1 + σ2





But trying to integrate away σ too doesn’t produce a tractable result.

Why Introduce Hyperparameters?

We see that hyperparameters are in theory unnecessary — we can always define

the prior distribution for the lower-level parameters directly.

But hyperparameters are a convenient way of introducing dependence among

parameters, with these parameters being independent given the value of the

hyperparameters.

From this viewpoint,

• There’s not much point in introducing a hyperparameter that controls just

one parameter.

• Whenever you have more than one similar parameter, you should probably

introduce a hyperparameter to allow for them being dependent.

For complex models, hyperparameters can also allow learning of high-level

properties of the data — eg, the degree of smoothness of a function, and whether

or not it has an additive form.

Learning Covariance Functions for Gaussian Process Models

Gausian processes allow for a rich variety of priors over functions, as determined

by the covariance function. Since we usually don’t know which covariance

function is appropriate, we define a class of covariance functions with unknown

parameters, give prior distributions to these parameters, and learn them from the

data. These parameters include the noise variance as well, for regression models.

Parameters of the covariance function may also be called “hyperparameters”,

since they would control lower-level parameters if we expressed the model using

explicit basis functions. There may be higher level hyperparameters controlling

these parameters/hyperparameters.

We can visualize the properties of different classes of covariance functions by

looking at functions randomly drawn from a Gausian process with such a

covariance function.

Randomly Generating a Function from a Gaussian Process

Plotting a 1D or 2D function randomly drawn from a Gaussian process is easy.

We first produce a grid of x values at which we need function values in order to

produce our plot — say x1, . . . , xn.

We then find the covariance matrix for the associated function values, y1, . . . , yn,

call it C. To avoid numerical difficulties, we may have to add a small amount to

the diagonal of C, corresponding to the yi being the function value at xi plus a

small amount of Gaussian noise.

We then find the Cholesky decomposition of C — the lower-triangular matrix, L,

such that C = LLT .

Finally, we generate a random vector, n, of independent Gaussian variates with

mean 0 and variance 1, and compute y = [y1, . . . , yn]T as y = Ln.

This y will be Gaussian, with mean 0, and covariance of

E[yyT] = E[(Ln)(Ln)T] = E[LnnT LT] = LE[nnT]LT = LLT = C

Learning the Scale of Variation

Consider a covariance function for a single input, x, of the form

K(x, x′) = γ2 exp(−ρ2(x − x′)2)

The γ parameter controls the vertical scale of functions drawn according to the

covariance function, while the ρ parameter controls the horizontal scale.

Different γ and ρ, three random functions for each:

γ = 1, ρ = 1 γ = 0.2, ρ = 1 γ = 1, ρ = 6

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

We usually don’t know the appropriate scales, so we let γ and ρ be unkown, with

some priors. Overly broad priors should be avoided, but priors spanning several

factors of ten are OK, if we don’t have more specific information.

Multiple Scales of Variation

We can obtain multiple scales of variation by adding terms with different scale

parameters. For example:

K(x, x′) = γ2

A exp(−ρ2

A(x − x′)2) + γ2

B exp(−ρ2

B(x − x′)2)

Functions drawn from such a process with γA = 1, ρA = 4, γB = 0.2, ρB = 50:

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

By letting γA, γB, ρA, and ρB be unknown, we can learn whether such multiple

scales are appropriate, and if so what the parameters should be. Multiple scales

will be elminated if either γA or γB is close to zero (or, less obviously, if either ρA

or ρB is close to zero).

Learning the Relevance of Inputs

Similar classes of covariance functions can be used with p > 1 inputs. We can

choose between using the same scale for all inputs, for example:

K(x, x′) = γ2 exp
(

− ρ2

p
∑

j=1

(x − x′)2
)

or using a different scale for each input, for example:

K(x, x′) = γ2 exp
(

−

p
∑

j=1

ρ2

j (x − x′)2
)

Learning ρj from data is sometimes called “Automatic Relevance Determination”.

Examples with two inputs:

ρ1 = 4, ρ2 = 1 ρ1 = 1, ρ2 = 1 ρ1 = 1, ρ2 = 4

 −1.8

 −1.6

 −1.4

 −1.2

 −1

 −0.8

 −0.6

 −
0.

4

 −0.4

 −0.2

 0

 0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 −0.8 −0.6 −0.4

 −0.2

 0
 0.2

 0.4

 0.6
 0.8

 1
 1.2

 1.4

 1.6

 1.8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 −1

 −0.5

 −0.5

 0

 0

 0

 0.5

 0.5

 1

 1

 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hierarchical Relevance

Automatic Relevance Determination with many inputs requires many relevance

hyperparameters, ρ1, . . . , ρp. We probably don’t know what prior to give them,

so we may introduce a higher-level hyperparameter, ρ0. For example:

log(ρ0) ∼ N(0, 52)

log(ρj) | log(ρ0) ∼ N(log(ρ0), 3
2), for j = 1, . . . , p

This assumes that we have no prior reason to think one input is more likely to be

relevant than another. If we have such knowledge, we can rescale the inputs in a

pre-processing step so that the above prior is still appropriate.

The inputs might come in natural groups — eg, measurements of a subject’s

social status, physical health, and education. We might then use one higher-level

hyperparameter for each group. For example:

log(ρA) ∼ N(0, 52), log(ρB) ∼ N(0, 52), log(ρC) ∼ N(0, 52)

log(ρj) | log(ρA) ∼ N(log(ρA), 32), for j ∈ A

log(ρj) | log(ρB) ∼ N(log(ρB), 32), for j ∈ B

log(ρj) | log(ρC) ∼ N(log(ρC), 32), for j ∈ C

We might introduce a still-higher-level hyperparameter to control ρA, ρB, and ρC .

Covariance Functions for Additive and Interactive Models

With p ≥ 2 inputs, we can define a covariance function that produces an additive

function — a sum of a function of just x1, plus a function of just x2, etc.

We just add together covariance functions for each input. For example:

K(x, x′) =

p
∑

j=1

γ2

j exp(−ρ2

j (xj − x′

j)
2)

Compare with an interactive covariance function:

K(x, x′) = γ2 exp(−

p
∑

j=1

ρ2

j (xj − x′

j)
2)

Examples with two inputs:

Left: additive

Right: interactive

γ = γ1 = γ2 = 1

ρ1 = ρ2 = 3 −2.5
 −2

 −2

 −1.5

 −1.5

 −1

 −1

 −0.5

 0

 0.5

 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 −1

 −1

 −0.5

 −0.5

 −0.5

 0
 0

 0.5

 0.5

 1

 1

 1.5

 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With a covariance function that’s a sum of additive and interactive covariances,

the data can determine which to use (or whether to use a combination).

Hierarchical Priors for Mixture Models

Consider this Gaussian mixture model for vectors of p real variables, with K

components (perhaps with K → ∞):

ρ1, . . . , ρK ∼ Dirichlet (α/K, . . . , α/K)

ci | ρ1, . . . , ρK ∼ Discrete (ρ1, . . . , ρK)

µc ∼ N(µ0, diag(σ2

0))

log(σc) ∼ N(ν, diag(τ 2))

yi | ci, µ, σ ∼ N(µci
, diag(σ2

ci
))

where µc and σc are vectors of means and standard deviations for the variables

in mixture component c.

If we make µ0, σ0, ν, and τ be hyperparameters (with suitable priors), the model

can discover which variables should be modeled differently for each component,

and which should have (almost) the same distribution for all components (by

letting σ0 and τ for that variable be close to zero).

We probably also want α to be determined by the data.

