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Notes #8

We have already seen how two parties A and B can have a secure session over a totally insecure
channel, given that they initially share a random key. One way they might share that key is by
physically getting together, or through a trusted courier. But a more interesting and more efficient
way is through some pre-existing infrastructure. One possibility is that they, or a larger group of
friends, share a master key; whenever two people – or processes spawned by those people – want to
have a session, they use that master key in a session key exchange protocol to share a session key.

An alternative infrastructure is a public-key infrastructure (PKI), where each party has a public
key that everyone knows, and a private key that only he knows; these master keys are then used
to do a session key exchange protocol. Usually (parts of) these master keys will be used in the
protocol to do signatures; often they will also be used to invoke a public-key encryption primitive.
(Key exchange is the main use of public-key encryption primitives.) All of this (and more) is
included under the subject of public-key cryptography.

We will now discuss how to use number-theoretic conjectures to do public-key encryption. (It
is interesting to note that one-way functions – that is, in effect, pseudo-random generators – do
not appear to be sufficient for this tasks.) The two main types of conjectures typically used are
the difficulty of integer factorization and the difficulty of (some version of) discrete-log. More
recently, lattice-based algorithms have been studied, and these are becoming more practical. Integer
factorization conjectures are used mainly by RSA related cryptosystems, and will not be discussed
further here. There are many settings in which discrete-log has been studied, and more recently
a lot of attention has been paid to the “elliptic curve” setting, but we will only discuss here the
setting of discrete-log with respect to multiplication mod a prime.

Before doing this, we have to discuss how to do efficient modular exponentiation.
Say that x, y, z are (at most) n bit non-negative integers, z is positive, and we want to compute
xy mod z in time polynomial in n. The standard algorithm uses “repeated squaring”. We begin by
computing x0, x1, · · · , xn−1 where x0 ← x mod z, and xi+1 ← (xi)

2 mod z. Note that for each i,
xi = x2

i
mod z. Now say that y = 2e1 + 2e2 + · · · + 2ek where 0 ≤ e1 < e2 < · · · < ek < n. So it

merely remains to compute xy mod z = (xe1 · xe2 · . . . · xek) mod z.

We will now begin to discuss the discrete log problem (mod a prime). Let p be a prime number,
and let n be the number of bits in p, that is, 2n−1 < p < 2n. We define the set Z∗p = {1, 2, · · · , p−1}.
This set forms a cyclic group under the operation of multiplication mod p. If you are not familiar
with this terminology, all that’s important is the following:

� Z∗p is closed under the operation of multiplication mod p.

� There are numbers g ∈ Z∗p called generators, with the property that
{g0 mod p, g1 mod p, · · · , gp−2 mod p} = Z∗p .
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If g is a generator of Z∗p, the value of gx mod p only depends on the value of x mod p − 1. The
discrete log problem with respect to a prime p and generator g is to determine the value of x, when
one is given gx mod p for a random x ∈ {0, 1, · · · , p − 2}. This problem can be done (even in the
worst case) in polynomial time, for the special case where the values of all the prime factors of p−1
are small, that is, have values (not length) polynomial in n. More generally, if qe is a prime-power
factor of p − 1, then it is easy to find the value of x mod qe (given gx mod p) in time

√
q times a

polynomial in n; by “Chinese Remaindering”, this allows us to find the value of x in time
√
q times

a polynomial in n where q is the largest prime factor of p − 1. For this reason, in order for the
discrete-log problem mod p to be hard, it better be the case that p− 1 has at least one large prime
factor. Often one chooses p such that p− 1 = 2q where q is a prime.

For general p (that is, where p − 1 has a large prime factor), the best discrete-log algorithm
known has the following characteristics: is it probabilistic, and it appears (although we can’t prove

it) to work in time 2c
3
√

n log2 n.
(In the elliptic curve setting, the best discrete-log algorithm known runs in time

√
q times a

polynomial in n, where n is the size (in bits) of the problem and q is the largest prime factor of
the number of elements in the relevant group. This is the reason why many people like to use the
elliptic curve setting, in practice. It allows for more efficient algorithms, and for shorter keys when
doing public key cryptography and shorter signatures when doing signature schemes.)

It is important to realize that for the discrete log problem, there is not much difference between
doing well for many x ∈ {0, 1, · · · , p − 2}, and doing well for all x. The reason is as follows. Say
that we had an algorithm or circuit ALG that solved the discrete log problem (with respect to p
and g) for a fraction ≥ 1

nc of the x ∈ {0, 1, · · · , p − 2}. We can then solve for any x as follows:
Given gx mod p, for a large but polynomial number of random r ∈ {0, 1, · · · , p − 2}, run ALG on
(gx · gr) mod p (note that if r is random, this is a random input to ALG); with high probability at
least one of these runs will succeed in finding the discrete log of its input (and we can always know
when we are successful by computing modular exponentiation); when for a particular r we succeed
at finding the discrete log y, we need only compute x = (y − r) mod (p− 1).

In practice, we can find n bit primes p and generators g such that it is reasonable to conjecture
that the discrete log problem is hard. One way of doing this is as follows. We will use the fact that
we have an efficient algorithm for testing primality. (Until recently, only probabilistic algorithms
were known, but in fact we now have deterministic, polynomial time algorithms.) We begin by
choosing random n − 1 bit numbers q until we find a prime; we then test if 2q + 1 is prime; we
continue in this way until we find a prime q such that 2q + 1 is also prime, and we let p = 2q + 1.
Note that this guarantees that p − 1 has a large prime factor. Although there is no theorem of
number theory that guarantees that this process is likely to halt quickly, it is conjectured that this
is the case. (We DO know that there are many n-bit primes q, but we are unable to prove that for
many of these, 2q + 1 is prime.)

Also, since we know the prime factorization of p−1, we can find a generator of Z∗p as follows. We
first observe that we can test if g is a generator, by checking that g2 mod p 6= 1 and gq mod p 6= 1.
We can then find a generator by choosing random g ∈ Z∗p until we find one that is a generator; there
is a simple proof that this process works, and is likely to halt quickly. Note that it doesn’t matter
what generator g we choose: if we can find a discrete log with respect to a particular generator g,
then we can find the discrete log with respect to any other generator g′ by multiplying (mod p-1)
by the discrete log of g with respect to g′ (which we can assume, nonuniformly, exists).

If you do not believe that AES type constructions or subset-sum type constructions yield pseudo-
random generators and one-way functions, but you do believe the assumption that discrete log is
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hard for the primes generated above, then this assumption can be used to construct pseudo-random
generators and one-way functions. (The constructions are much less efficient than those of AES or
subset-sum.) In fact, we can define a function f that is one-way if this assumption is true. The
input to f will be strings r and s; r is treated as random bits used to generate an n bit prime p and
generator g, as described above; s will be used to generate a (nearly) random x ∈ {0, 1, . . . , p− 2};
we define f(rs) = [r , gx mod p].

It is extremely awkward to view in this way the input to f as containing random bits used to
find a prime, and in practice we would just view the primes and their generators as pre-existing, to
be used by both good guys and adversaries. For this reason, we introduce the following setting.

Setting for Discrete Log Conjectures: Assume we have, for every n, a pair (pn, gn) where pn is
an n bit prime and gn is a generator of Z∗pn ; we also assume 2n−1 < pn < 2n and pn − 1 = 2q where
q is prime.

We will eventually state a sequence of three, progressively stronger, discrete-log assumptions. The
simplest and weakest is the following. For convenience, we will use the nonuniform adversary setting.

(basic) Discrete Log Assumption (with respect to the Setting):
Let {Dn} be a polynomial size family of circuits where Dn has n input bits and n output bits.
Let probD(n) be the probability that if x is randomly chosen from {0, 1, . . . , pn − 2} and
Dn is given gxn mod pn, then Dn outputs x.
Then probD(n) ≤ 1

nc for each c and sufficiently large n.

The (basic) discrete log assumption appears not to be strong enough to allow us to do secure
public key cryptography, but it is strong enough to give us one-way functions and pseudo-random
generators. In fact, it directly gives us one-way permutations.

To see this, define the function fn : {1, 2, . . . , pn−1} → {1, 2, . . . , pn−1} by fn(x) = gxn mod pn.
Note that instead of viewing the exponent as ranging over {0, 1, . . . , pn − 2}, we are (equivalently)
viewing it as ranging over {1, 2, . . . , pn−1}. fn is clearly one-one, onto. The discrete log assumption
tells us that fn is hard, on the average to invert. We can use ideas as in Notes #6 to create hard-core
predicates and then pseudo-random number generators. However, it turns out that the assumption
allows us to prove a particular bit is hard-core.

Define Bn : {1, 2, . . . , pn − 1} → {0, 1} by Bn(x) = 1 if x > pn/2, and Bn(x) = 0 if x < pn/2.
That is, Bn(x) is the “high order bit” of x, where we understand “high order bit” in the natural,
balanced sense. From the assumption, it can be proven that Bn is hard-core for fn. This gives us
a way of constructing a pseudo-random number generator.

For s ∈ {1, 2, . . . , pn − 1} consider the function that maps s to [fn(s), B(s)].
If s is chosen randomly, then fn(s) is a random member of {1, 2, . . . , pn − 1}; and if a polynomial
time adversary is given fn(s), Bn(s) will be indistinguishable from a random bit, precisely because
Bn is hard-core for fn. So in a certain technical sense, this function satisfies “unpredictability”;
the only problem is that the first n bits of output look like a random member of {1, 2, . . . , pn − 1}
rather than as a random string.

However, let us do the following.
For s0 ∈ {1, 2, . . . , pn − 1}, define s1, s2, . . . by si+1 = fn(si). Then define
Gn(s0) = Bn(s0), Bn(s1), Bn(s2), . . . .
The ideas we discussed earlier imply that this is a pseudo-random number generator, assuming
the key is chosen randomly from {1, 2, . . . , pn − 1}. This is useful for most applications of pseudo-
random number generators, but because the seed is not a random string, it doesn’t quite allow us
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to perform the tree-construction for pseudo-random function generators. However, there are simple
modifications (exercise!) that will allow us to do this tree-construction.

It is interesting to note that we can also prove that the assumption implies the following:
Given fn(x) for random x ∈ {1, 2, . . . , pn − 1}, the string consisting of the log n “high-order bits”
of x is indistinguishable from a random string (when we define “high-order bits” in a natural,
balanced sense). This fact can be used to construct more efficient pseudo-random generators than
that described above.

As we stated above, the (basic) discrete log assumption doesn’t appear to be strong enough to
allow us to do public key cryptography. We therefore introduce two stronger assumptions.

The Diffie-Hellman assumption says that from the values of gxn and gyn mod pn, it is hard to
compute gxyn mod pn. Clearly this implies the basic assumption, since if we could find x and y, we
could compute xy. We can use the Diffie-Hellman assumption to do secure key exchange, but we
prefer to use the following stronger assumption.

The Decisional Diffie-Hellman assumption says that from the values of gxn and gyn mod pn, not
only is it hard to compute gxyn mod pn, it is even hard to distinguish between gxyn mod pn and a
random member u of {1, 2, . . . , p− 1}. Actually, this is not exactly true. Recall that since 2 divides
pn− 1, it is easy to compute the values of x and y mod 2, and hence the value of xy mod 2. 2 is the
only small divisor of pn − 1, and the assumption states that this is the only way that gxyn mod pn
can be distinguished from u.

The Decisional Diffie-Hellman assumption can be used to do secure key-exchange in a more
efficient way. Also, it can be used to construct a reasonably efficient, strongly secure public key
encryption primitive (a fascinating theorem of Cramer and Shoup). We will define these notions of
security later.

Diffie-Hellman Discrete Log Assumption (with respect to the Setting):
Let {Dn} be a polynomial size family of circuits where Dn has 2n input bits and n output bits.
Let probD(n) be the probability that if x and y are randomly chosen from {0, 1, . . . , p− 2} and
Dn is given gxn mod pn, and gyn mod pn, then Dn outputs gxyn mod pn.
Then probD(n) ≤ 1

nc for each c and sufficiently large n.

Decisional Diffie-Hellman Discrete Log Assumption (with respect to the Setting):
(Recall that 2 is the only small factor of p− 1.)
Let {Dn} be a polynomial size family of circuits where Dn has 3n input bits and 1 output bit.
Let probD(n) be the probability that if x and y are randomly chosen from {0, 1, . . . , p− 2}, and
z is randomly from {0, 1, . . . , p− 2} such that z mod 2 = (xy) mod 2, and
u0 is assigned gxyn mod pn, and u1 is assigned gzn mod pn, and b is randomly chosen from {0, 1} and
Dn is given gxn mod pn, and gyn mod pn, and ub, then Dn outputs b.
Then probD(n) ≤ 1

2
+ 1

nc for each c and sufficiently large n.

Naive Key Exchange:
Here’s one naive way we can use the Decisional Diffie-Hellman assumption to do key exchange. Say
that A and B want to exchange a session key, where both know security parameter 1n. Let p = pn
and g = gn.

A chooses a random x ∈ {0, 1, 2, . . . , p− 2} and sends gx mod p to B.
B chooses a random y ∈ {0, 1, 2, . . . , p− 2} and sends gy mod p to A.
At this point, both A and B can compute gxy mod p:
A by computing (gy mod p)x mod p and B by computing (gx mod p)y mod p.
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Now A and B can use gxy mod p as their exchanged key, or they can use some string derived from
gxy mod p. For example, they can use h(gxy mod p) where h is some appropriate, publicly known
function mapping n bits to, say, bn/2c bits. If h is chosen randomly from a family satisfying “pair-
wise independence”, then the Decisional Diffie-Hellman assumption will imply that h(gxy mod p)
looks – to someone who only knows gx mod p, gy mod p and h – like a random bn/2c bit string.

However, this is not a very secure key exchange protocol. An important problem is that an
adversary can pretend to B that he is A (or vice versa); he can then share a key with B, at which
point B may use the key to tell the adversary something intended for A. (In fact, this problem is
impossible to avoid if we do not have “setup” such as a public key infrastructure.) We will define
secure key exchange later, but if a key exchange is secure, an adversary should not be able to learn
any session key (or learn anything about any session key) inappropriately.

Here is one naive way we can use the Decisional Diffie-Hellman assumption to construct a public
key encryption primitive. It is similar to the above naive key exchange.

B’s private key is a randomly chosen y ∈ {0, 1, 2, . . . , p− 2}, and his public key is gy mod p.
To encrypt an bn/2c bit message m to B, A chooses a random x ∈ {0, 1, 2, . . . , p− 2}, computes

gx mod p and gxy mod p, and sends to B the pair (gx mod p,m⊕ h(gxy mod p)).
B decrypts in the obvious way.
We will see later that this satisfies a weak kind of security (semantic security) but not the

strong kind of security we usually require when public encryption keys become part of the public
key infrastructure (strong chosen-cipher-text security).

We saw above that it is convenient to assume that our Setting also includes a “hash” function h
such that for all n, hn : {0, 1}n → {0, 1}bn/2c. We assume there are circuits of size polynomial in n
for the hn.

DDHH – Decisional Diffie-Hellman Discrete Log Assumption (with respect to the
Setting with hash function h):
Let {Dn} be a polynomial size family of circuits where Dn has 2n+ bn/2c input bits and 1 output
bit.
Let probD(n) be the probability that if x and y are randomly chosen from {0, 1, . . . , pn − 2}, and
u0 is assigned hn(gxyn mod pn), and u1 is assigned a random string from {0, 1}bn/2c, and b is randomly
chosen from {0, 1} and Dn is given gxn mod pn, and gyn mod pn, and ub, then Dn outputs b.
Then probD(n) ≤ 1

2
+ 1

nc for each c and sufficiently large n.

We now wish to give an improved – although still flawed – key exchange protocol using a Public
Key Infrastructure (PKI).

A person has an entry in the PKI containing:
a unique “name” A (say n bits) and a public key pubA;
he may be remembering an associated private key priA.
The entry presumably also contains a description of the person in question, for example, “this
person is the well-known dry-cleaner Macdonald in Squamish, B.C.”.

For this protocol we will assume a PKI where everyone has keys for a secure signature scheme.
That is, every person has a private key for signing messages and a public key that anyone can use
to verify a message signed by him.

In our model, a person, say A spawns a process for talking to another person, say B. This process
will also have a “role” bit b associated with it; we call this an A-process (because it was spawned
by A) and say that it is a process of type 〈A,B, b〉. The role bit is used to give an asymmetry to
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the two parties participating in a key exchange protocol. One reason this is necessary is because
some exchange protocols require the two parties to behave differently. However, even if both parties
behave the same way in the key exchange protocol, they will want to behave asymmetrically when
they later use the exchanged key, so this role bit is necessary. For example: we can use the exchanged
key K to pseudo-randomly generate two keys K0 and K1, where K0 is to be used as the shared key
for the role-0 person to talk to the role-1 person, and K1 is to be used as the shared key for the
role-1 person to talk to the role-0 person.

So the 〈A,B, b〉 process hopes it is exchanging a session key with a 〈B,A, 1− b〉 process. What
caused these two processes to be set up in the first place? We assume this was done somehow using
the magic of the internet as a result of an insecure conversation between (supposedly) A and B.

We will now describe Protocol 1, which will be described in more detail in the next notes.
Process 〈A,B, b〉 works as follows on security parameter n. We let p = pn, g = gn, h = hn.

� The process chooses a random x ∈ {0, 1, . . . , p− 2}, computes α = gx mod p and sends
α together with a signature for [α, b], to (hopefully) the B process.

� The process receives a string β = gy mod p together with a what is supposed to be a signature
by B of [β, 1− b].

� If the signature check fails, then the process outputs fail;
otherwise, it outputs h(βx mod p).
(Note that βx mod p = gxy mod p.)

This protocol is insecure for a more subtle reason than the previous one was. To understand
this it helps to have some idea of what the adversary is trying to do. The world consists of “good
guys” and “bad guys” where the bad guys are really just pseudonyms for the adversary. The bad
guys can choose their public keys any way they like (although this feature will not play a role in
the breaking of this protocol).

The adversary is trying to learn something about the key K output by a 〈A,B, b〉 process where
both A and B are good guys. Therefore this key K should look random and unrelated to all the
other keys, except for the (possibly) one key output by a 〈B,A, 1 − b〉 process that is identical to
it. So we say (informally) that the adversary should not be able to learn anything about K, even
when he is allowed to see all the keys that are output except for one from a 〈B,A, 1 − b〉 process
that is identical to K.

Here is how the adversary will break an 〈A,B, 0〉 process, where A and B are good guys. He
will use a pseudonym U for himself; he will choose the public/private key for U properly so that he
can sign anything he wants on behalf of U . “U” will cause to be set up a B process 〈B,U, 1〉.

The adversary will see the string α = gx mod p sent out by the 〈A,B, 0〉 process, ignoring the
signature by A.

He will then send α, together with a signature by U of [α, 0], to the 〈B,U, 1〉 process.
He will then read from the 〈B,U, 1〉 process the string β = gy mod p together with the signature

σ by B of [β, 1− b].
He will then send β and σ to the 〈A,B, 0〉 process.

At this point both processes are happy with the signatures they have seen, and they will both
output the same key K. The adversary is allowed to look at the key output by the 〈B,U, 1〉 process
since it is not supposed to match the key output by the 〈A,B, 0〉 process. Once he does this, he
knows something about (in fact everything about) the key output by the 〈A,B, 0〉 process.
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A bit of philosophy here. Why do we allow the adversary to look at the key output by the
〈B,U, 1〉 process? Because in the real world he may know something about the conversation taking
place using that key, and therefore learn something about the key. Why do we allow the adversary
to look at the key output by a 〈B,A, 0〉 process or a 〈A,B, b〉 process? Because if one of these
keys related to a 〈A,B, 0〉 key, it could cause miscommunication between A and B, and/or it could
make the communication between them insecure. Why do we allow the adversary to look at the key
output by a 〈B,A, 1〉 process if it is not the same as the 〈A,B, 0〉 key he is interested in? Because
if the keys are related but different, it could cause miscommunication between A and B, and/or it
could make the communication between them insecure. Of course, if the key output by a 〈B,A, 1〉
process is exactly the same as the 〈A,B, 0〉 key he is interested in, then the adversary is not allowed
to look at it. We will make this definition precise in the next set of notes.

One more remark. We have said that the adversary wins if he can make certain keys too
predictable given certain others. Should we not say that he also wins if he can make certain keys
that should be identical, to be instead random and unrelated? No! This is a trivial task for an
adversary: all he has to do is take a 〈A,B, 0〉 process that has shared a key with a 〈B,A, 1〉 process,
and another 〈A,B, 0〉 process that has shared a key with another 〈B,A, 1〉 process, and “cross-wire”
them!

One final remark. A and B are not really “people” (whatever that means). A and B are names
(strings really) that appear in a public key infrastructure table. Although, as we will see below, a
bad guy might choose his public key to be the same as some good guy’s public key, we require the
names in the table to be distinct.
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