
Computer Science 2426F Fall, 2020
St. George Campus University of Toronto

Notes #5

We will now continue discussing security of shared-private-key cryptosystems, or session protocols.
Last time we defined integrity, or “unchangeability security”. In practice, for most people most of
the time, this is much more important than privacy. You may not be happy if an adversary were to
learn the balance of your bank account, but you would be much less happy if he were to transfer its
contents to his own account. You may wish to keep your medical records secret, but it is much more
important that an adversary should not be able to change the medication that has been prescribed
for you.

We will now define privacy, or “indistinguishability security”. We will later define “total secu-
rity” as unchangeability security plus indistinguishability security (integrity plus privacy).

We consider an adversary ADV – either probabilistic polynomial time, or polynomial size, in the
security parameter n, the length of the key. For each n, the adversary will compute, or have built
in, a number i indicating that ADV is trying to learn something about piece i. ADV will choose
all the other pieces. That is, ADV will be interacting with A and B working on a randomly chosen
key.

Definition of privacy or indistinguishability security
Let (ENC,DEC) be a shared-private-key cryptosystem (that is, session protocol). We will define
privacy, or indistinguishability security in the “nonuniform adversary” setting. The adversary D
will be a polynomial size family of circuits {D1, D2, . . .}, where Dn is the adversary for security
parameter n (that is, usually, key size n). The adversary will choose all of the pieces to be encrypted
except for, say, the i-th piece. He will choose each such piece after seeing the encryption of the
preceding pieces, until he gets to the i-th piece. His goal is to “learn something” about the i-th
piece. We will model this by allowing the adversary to choose two possible pieces, and then give
him an encryption (at random) of one of them; he will try to guess which one has been encrypted.
Before making this guess, he will continue, for a polynomial amount of time, to choose pieces and
see encryptions of them. When he is done doing this, he is allowed to get some information from
B. That is, he is allowed to now create a string and send it to B. The adversary then sees if, and
when, B outputs fail. Then the adversary has to guess which of the two pieces were encrypted
as piece i. (The reader may ask why we don’t allow the adversary to see more information about
what B outputs. The reason is that the adversary may as well assume that as long as B does not
output fail, he outputs (in order) the correct pieces that A encrypted; if this is not the case, then
the more important property of unchangeability security has already been broken. Whether or not
the reader approves of this definition, at least there should be no problem with our definition of
“total security”.)

We will define the syntax of Dn, and the experiment involving Dn, and the associated probability
qD(n), all at once and somewhat more intuitively than in our definition of an adversary in the last
lecture.

Firstly, Dn chooses, or has associated with it, an integer i; Dn will be trying to learn what the i-th
piece of the message is. (We probably should use the more rigorous notation in.)
A random n-bit k is chosen, but Dn doesn’t see it.

1

Dn chooses piece m0 (of length z(n)) and sees e0, a (possibly randomized) encryption of m0 by ENC
using key k;
then Dn chooses piece m1 and sees an encryption e1;
this continues through piece mi−1.

Then Dn chooses two pieces m0 and m1.
A random bit b is chosen but Dn doesn’t see it, and then Dn sees an encryption ei of mb.

Then Dn chooses piece mi+1 and sees an encryption ei+1;
then Dn chooses piece mi+2 and sees an encryption ei+2;
this continues for a polynomial amount of time.
Then Dn computes a polynomial length string α.
Dn then learns something about the result of applying DEC to α using key k, that is, Dn learns if,
and for which piece, B would output fail.

Then Dn outputs b′, a guess at b.
(Of course, each time Dn makes a choice, he may base his decision on everything he has seen so
far.)

Define qD(n) = probability(b′ = b). Note that the randomness in this experiment includes the
choice of k and b, as well as all the randomness, if any, used by ENC (and by the adversary if it is
a probabilistic algorithm).

Definition: We say a shared-private-key encryption scheme (or session protocol) satisfies privacy
(or is indistinguishability secure) if for every adversary D = {Dn} as described above, qD(n) ≤ 1

2
+ 1

nc

for each c and sufficiently large n.
End of Definition of privacy or indistinguishability security

This definition is stronger and more robust than it might at first appear. For example, it might
appear that it could help the adversary if we let him choose which piece he is going to decrypt
based on the encryptions he sees, rather than force him to choose i in advance. However it is
possible to show that if a scheme is secure in the sense we defined above, then it is also secure in
this stronger sense (Exercise!). It is also possible to show that it can’t help an adversary to be
able to send (supposedly) encrypted pieces to B early on, before (or while) he is choosing pieces
for A to encrypt, seeing if and when fail occurs (Exercise!). One might ask at this point if was
really necessary in the definition to allow the adversary to send stuff to B at all, observing possible
failure. It turns out that this part of the definition is necessary, and we leave this as an exercise as
well. We also leave it as an exercise to show that it would not weaken the definition if we forced
the adversary to choose m0 and m1 so that they differed only in exactly one bit.

Theorem: Assuming the function generator F is pseudo-random, Cryptosystem I (defined in the
last lecture) satisfies privacy.

Proof Outline: Note that B never outputs fail, so we need only consider an adversary D = {Dn}
that only gets information from seeing the encryptions of pieces. Let {qD(n)} be as defined above,
and assume that for infinitely many n, qD(n) > 1

2
+ 1

nc ; fix such an n. We will construct a
distinguisher for F on key length n. Let in = i be the index of the piece that Dn is trying to guess
the decryption of.

Consider an alternative experiment where instead of using Fk for random k to form the encryp-
tions ej = mj ⊕ Fk(j), we use a randomly chosen function f , so that ej = mj ⊕ f(j). In this case,
the only information the adversary sees about b is mb ⊕ f(i), where none of the other encryptions

2

involve f(i). So in this case the adversary would get no information at all about b, and so his
success at guessing b would be 1/2. 1

We therefore propose the following adversary D′n for breaking F . Given a (black box for a)
function f : {0, 1}n → {0, 1}n, D′n simulates both A and Dn; whenever Dn wants an encryption of
a j-th piece mj, D

′
n creates ej = mj ⊕ f(j). Also, D′n simulates the person choosing the random

bit b. So at the end of the simulation, D′n knows whether or not b′, the bit output by the simulated
Dn, is equal to b; if it is then D′n accepts, otherwise D′n rejects.

The probability D′n accepts when f is chosen to be Fk for a random k is exactly p(n) > 1
2

+ 1
nc .

The probability D′n accepts when f is chosen completely randomly is exactly 1/2. So the difference
between these two probabilities is at least 1

nc .

We now consider some other attempts to create session protocols satisfying privacy. The fol-
lowing system uses probabilistic encryption, but no history need be remembered for encryption or
decryption.

Cryptosystem III. Let F be a (hopefully pseudo-random) function generator.
For an n-bit k and n-bit message pieces m0,m1,m2, . . . , define the 2n-bit encryptions

ei = [ri,mi ⊕ Fk(ri)], where the {ri} are randomly chosen n bit strings.
DEC works in the obvious way.

Theorem: If the function generator used in Cryptosystem III is pseudo-random, then the system
satisfies privacy.

Proof: Exercise.

Cryptosystem IV. Let F be a (hopefully pseudo-random) permutation generator.
For an n-bit k and n-bit message pieces m0,m1,m2, · · · , define the n-bit encryptions

ei = Fk(mi).
DEC works in the obvious way, namely for each i we decrypt ei by computing mi = F−1k (ei).

Theorem: No matter how the permutation generator F is chosen, Cryptosystem IV does not
satisfy privacy.

Proof: The intuition is that an adversary can tell if a message piece repeats, by seeing if the
encryption repeats.

More formally, the adversary chooses i = 1, chooses m0 to be anything, chooses m0 = m0 and
m1 6= m0; if e0 = e1 then he outputs 0, otherwise he outputs 1. It is easy to see that q(n) = 1.

Cryptosystem V. Let F be a (hopefully pseudo-random) permutation generator.
For an n-bit k and n-bit message pieces m0,m1,m2, . . . , define the n-bit encryptions

ei = FFk(i)
(mi).

DEC works in the obvious way, namely for each i we decrypt ei by computing mi = F−1
Fk(i)

(ei).

Theorem: If the permutation generator used in Cryptosystem V is pseudo-random, then the
system satisfies privacy.

Proof: Exercise.

1Technically, this will be only true if n is sufficiently large that the (polynomial in n) number of encrypted pieces
that Dn sees is less than 2n.

3

The following cryptosystem uses cipher-block chaining. It is often asserted in the informal
literature that it satisfies privacy, but according to our definition it does not.

Cryptosystem VI. Let F be a (hopefully pseudo-random) permutation generator.
For an n-bit k and n-bit message pieces m0,m1,m2, . . . , define the n-bit encryptions e0, e1, e2, . . .

as follows:
e−1 = Fk(0);
ei = Fk(ei−1 ⊕mi) for i ≥ 0.

DEC works in the obvious way.

Theorem: No matter what permutation generator is used, Cryptosystem VI does not satisfy
privacy.

Proof: The adversary chooses i = 2, chooses m0 to be anything, sees e0, chooses m1 = e0, sees
e1 = Fk(0), chooses m0 = e1 and m1 6= m0 and sees e2; if e2 = e1 then he outputs 0, otherwise he
outputs 1. It is easy to see that q(n) = 1.

The reader may complain that the adversary just described doesn’t seem very harmful, since he
is just learning something about uninteresting message pieces. However it is often the case that what
at first appears to be a minor insecurity becomes, with greater inspection, a more major insecurity.
That is the case here. For example, an adversary can choose m100 = e99, causing e100 = Fk(0); later
he can choose m200 = e199, causing e200 = Fk(0) = e100. In this way, he can tell whether or not the
piece sequence m101,m102, . . . ,m199 equals m201,m202, . . . ,m299.

It is interesting to note that if we weakened our adversary model by not allowing our adversary to
see any ej until he has chosen mj+1, then (I think) Cryptosystem VI would become secure. However,
without changing our definitions we can make this cryptosystem secure by slightly modifying it:

Cryptosystem VI′. Let F be a (hopefully pseudo-random) function generator. (It need not be a
permutation generator.)

For an n-bit k and n-bit message pieces m0,m1,m2, . . . , define the n-bit encryptions e0, e1, e2, . . .
as follows:
e−1 = 0;
ei = Fk(ei−1)⊕mi for i ≥ 0.

DEC works in the obvious way.

Theorem: If the function generator used in Cryptosystem VI′ is pseudo-random, then the system
satisfies privacy.

Proof: Slightly difficult exercise.

Total Security

Definition: We say a shared-private-key cryptosystem or session protocol, is totally secure if it
satisfies both unchangeability security (integrity) and indistinguishability security (privacy).

It is not hard to show that if pseudo-random generators exist, then totally secure cryptosystems
exist.

Cryptosystem VII. Let F be a (hopefully strongly pseudo-random) permutation generator where
for an n-bit k, Fk : {0, 1}2n → {0, 1}2n.

For an n-bit k and n-bit message pieces m0,m1,m2, . . . , define the 2n-bit encryptions:
ei = Fk(imi).

4

DEC works in the obvious way. To decrypt e′0, e
′
1, . . . using key k where each |e′i| = 2n, we do

the following for each i:
compute [u, v] = F−1k (e′i) where |u| = |v| = n; if u = i then output v, otherwise output fail and
abort.

Theorem: If the permutation generator used in Cryptosystem VII is strongly pseudo-random, then
the system is totally secure.

Proof: Exercise. (Do you see why it is necessary that that the permutation generator be strongly
pseudo-random?)

Cryptosystem VIII. One general way to create a totally secure shared-private-key cryptosystem
is to encrypt so as to satisfy privacy, and then, with an independent key, encrypt the encrypted
pieces so as to satisfy integrity. For example, we can combine Cryptosystems I and II (from last
week) by using two n-bit keys k1 and k2, and encrypting piece mi as

ei = [mi ⊕ Fk1(i), Fk2(i, mi ⊕ Fk1(i))].
DEC works in the obvious way.
(Note that we are assuming that F is just a function generator and that Fk takes as inputs – and is
pseudo-random with respect to – inputs of length n and 2n.) (Of course, if one only wants to use
a single n-bit key, one can use a pseudo-random number generator to expand it two a 2n-bit key.)

More generally, this idea works as follows. We use key k1 with an indistinguishability secure
system S1 to encrypt message pieces m0,m1, . . . as e0, e1, . . .; we then treat e0, e1, . . . as the message
pieces in a unchangeability secure system S2 and encrypt them with key k2 to obtain f0, f1,
Let’s call this new system S3. We decrypt in S3 in the obvious way: Say we are given strings
f ′0, f

′
1, . . . of the right size to decrypt; we decrypt each f ′i as follows (assuming we have not already

aborted): we use k2 as in S2 to decrypt f ′i , and if this results in fail then S3 outputs fail and we
abort; if this succeeds and outputs e′i, then we use k1 as in S1 to decrypt e′i as m′i; if this results in
fail then S3 outputs fail and aborts, otherwise S3 outputs m′i.

To see why this is totally secure, first imagine that we can break the indistinguishability security
(privacy) of S3 using adversary D. We will use D to break the indistinguishability security of S1.
We begin by randomly choosing a key k2 for S2. We then simulate D breaking S3, using k2 whenever
necessary to simulate S2. Here are the details.

D chooses a position i, which is the position we will use to break S1. D then chooses m0,
which is the value we use for m0; we are then given a value e0 (an encryption of m0 using the
unknown k1), which we encrypt using k2 to f0, which we give to D; we continue in this way for
m1, e1, f1, . . . ,mi−1, ei−1, fi−1. D now chooses pieces m0,m1, which are the two pieces we choose as
well. We are then given ei, an encryption of mb using k1, which we encrypt using k2 to fi, which
we give to D. We then continue as before for mi+1, ei+1, fi+1, . . . ,m`, e`, f`. We want to guess b.

Now, D computes a sequence f ′0, f
′
1, . . ., and he wants to know if and when this causes fail in

S3. Using k2, we can compute if and when this causes fail in S2, decrypting (up to that point)
in S2 to obtain e′0, e

′
1, . . . , e

′
p; this may or may not be followed by fail, but let us assume the more

interesting case that it is. We then treat e′0, e
′
1, . . . , e

′
p as the string to send to B in attacking S1,

and we are told if and when this causes fail in S1. If fail occurs at some point here, we give that
point to D, otherwise we give p+ 1 to D. D then outputs a guess at b which will also be our guess,
and we will succeed with the same probability that D does.

Now imagine that we can break the unchangeability security (integrity) of S3 using adversary
C. We will use C to break the unchangeability security of S2. We begin by randomly choosing a

5

key k1 for S1. We then simulate C breaking S3, using k1 whenever necessary to simulate S1. This
simulation chooses pieces m0,m1, . . . creates and creates their encryption under S1, e0, e1, . . ., and
we will treat e0, e1, . . . as the input pieces we will use to break S2. C sees encryptions in S2 of these
pieces, and then creates a string f ′0, f

′
1, . . . to send to B to break S3. C succeeds if and only if some

f ′i decrypts in S3 to something besides fail and mi, but (because we have properly simulated S1)
this will happen only if some f ′i decrypts in S2 to something besides fail and ei. So we will use
the same string f ′0, f

′
1, . . . to try to break S2, and we will succeed with the same probability that C

does.

6

There are other ways of creating totally secure systems. For example we could use:
ei = [mi ⊕ Fk1(i), Fk2(i, mi)]

where B decrypts in the obvious way. We leave it as an exercise to prove that this is totally secure
if F is pseudo-random.

One last remark about unchangeability security. Note that the unchangeability secure Cryp-
tosystem II encrypted each piece of size n by a string of length 2n, thereby sending a bit stream
that is twice as long as the actual message. However, more generally, it is easy to see how to encrypt
each piece of size z(n) by a string of length z(n) + n and obtain unchangeability security. We can
therefore reduce the communication overhead, if we are willing to increase the granularity z(n) of
our system.

7

