
Computer Science 2426F Fall, 2020
St. George Campus University of Toronto

Notes #10

In previous notes we have defined secure session key exchange in a PKI, and we have defined one
notion of what it means to have a secure session between two parties that share a random session
key. Now we really should define what it means for two parties to have a secure session in a PKI,
and then prove that composing two protocols secure in the former senses yields one secure in the
latter sense.

This is complicated, and we will not define here what it means to have secure sessions in a PKI.
Keep in mind that we want to assume the “multi-session” setting, where each person can spawn
many identical processes, and the adversary is allowed to create many identities for himself.

We will now define the notion of “public-key encryption primitive”. Such a primitive has many
cryptographic applications, a common one being session key exchange in a PKI. The reader should
note that such a primitive is rarely used to directly encrypt the information in a session: this would
be very inefficient, and hard to do securely.

A “public-key encryption primitive” works as follows: on security parameter 1n, a procedure
GEN is used to probabilistically generate a pair of keys pub and pri; an encryption algorithm ENC
uses pub to probabilistically encrypt strings of fixed length – usually we will let this length be n; a
decryption algorithm DEC uses pri to decrypt. The formal definition is given below.

Definition: A public-key encryption primitive E consists of the following.

� A key generating procedure GEN. GEN has as input a string 1n together with random bits,
and should be computable in time polynomial in n. The output of GEN is a pair of strings
pub (a public key) and pri (a private key). We assume that the lengths of pub and pri depend
only on n, and that n is determined by either of these lengths; for convenience, let us denote
the length of both pub and pri by `(n).

� A probabilistic encrypting procedure ENC that has as input a “key” pub of length `(n), a
string m ∈ {0, 1}n, and random bits. ENC should be computable in time polynomial in
n. (We will assume that the length of the output of ENC depends only on n.) We denote
by ENC pub(m, ∗) the probabilistic function of m computed by ENC on key pub (where *
represents the random bits).

� A decrypting procedure DEC that has as input a “key” pri, of length `(n) and a supposed
encryption α (of the proper length), and outputs either a bit string of length n, or the symbol
fail (indicating that α is not a legitimate encryption). DEC should be computable in time
polynomial in n. We use DECpri(α) to denote DEC(pri, α).

It should be the case that for every n, and for every pair (pub, pri) that can be output by
GEN on 1n, and for every string m ∈ {0, 1}n, if α is a possible output of ENC pub(m, ∗), then
DEC pri(α) = m.

A few things should be noted about this definition. Note that the m that is encrypted is n bits
long – it is not an arbitrary length string and it is not a single bit. Our definition of strong security

1



will be so special that it is not obvious how to go from a secure primitive for encrypting a single
bit to a secure primitive for encrypting an n-bit string. Also, in applications, all we have to do is
use the primitive to encrypt a fixed length (that depends on the security parameter) string, rather
than a string whose length depends on the actual amount of data to be transmitted – for example,
the primitive might only be used for session key exchange. One should also note that encryption is
probabilistic; this is important for our definition of security.

Strong Security
We now want to define security for a public-key encryption primitive. Our main definition we will
call “strong security”. In this definition, the adversary sees an encryption α of one of two strings,
and he has to guess which one was encrypted. To help him, he sees not only the public key, but
he also has access to the decryption function; that is, he can see the decryption of anything he
likes, except for α. This is sometimes called “security against chosen-cipher-text attack” security,
or CCA (or CCA2) security. After defining this, we will define two weaker notions of security.

Definition: Strong Security For a Public-Key Encryption Primitive
(nonuniform adversary setting).
Let E be a public-key encryption primitive. Without loss of generality, say that l(n) is the length of
all keys and encryptions for security parameter n. We say that E is strongly secure if the following
holds for every adversary D.

Let D = {Dn} be a polynomial size family of circuits. Consider the following experiment: GEN
is evaluated on 1n and random bits, to create pub and pri. Dn is given the string pub as well access
to an oracle for the function DEC pri. After querying the function for a while, Dn chooses two n
bit strings M0 and M1. Then b is chosen randomly from {0, 1}, and a random encryption α of M b

is created (not by Dn) using pub (and random bits). Then α is given to Dn, and Dn continues to
query the function DEC pri, but is not allowed to query the function on α.
Let q(n) be the probability that Dn outputs b.

Then q(n) ≤ 1
2

+ 1
nc for all c and sufficiently large n.

Semantic Security and Some Background Remarks
If we weaken this definition so that Dn is not allowed to query DEC pri after seeing α, then this is
sometimes called CCA1 security. If we weaken it still further so that Dn is not allowed to query
DEC pri at all, it is called semantic security.

In practice, CCA1 security is not much more useful than semantic security. Semantically secure
public key encryption primitives can be obtained from a Diffie-Hellman discrete log assumption,
or (in the RSA setting) from a strong assumption about the difficulty of integer factorization. For
example, given the Assumption from Notes #9, we can prove that the “naive” example of a
public key encryption primitive from Notes #8 satisfies semantic security. (In fact, the normal
(rather than decisional) Diffie-Hellman assumption suffices to construct semantically secure public
key encryption primitives.)

It is much harder, however, to construct strongly secure public key encryption primitives. In
practice, the main reason a public key encryption primitive will not be strongly secure is that it
will be malleable. Malleability means that an adversary, seeing an encryption α of a string m, can
modify it to a different encryption α′ that decrypts to a string m′ related to m. This clearly makes
the primitive insecure. For this reason, all the proposed constructions for strongly secure public key
encryption primitives more or less (but not exactly) have the following property: if an adversary
queries DEC pri, then he already “knows” the answer – either he has constructed the query by

2



legitimately encrypting some m and so he knows that m will be the answer, or he has chosen the
query some other way and the answer will be fail. This clearly rules out malleability.

Cramer and Shoup have shown a very elegant construction of a public key encryption primitive
that can be proven to be strongly secure assuming only the Decisional Diffie-Hellman Assumption.
Much more theoretically and less usefully, we can show that “trapdoor permutations” can be used (in
a very inefficient manner) to construct strongly secure public key encryption primitives. This result
shows that, at least theoretically, a strong assumption about the difficulty of integer factorization
can be used to construct strongly secure public key encryption primitives.

It is possible to use a “random oracle”, together with a rather weak trapdoor complexity as-
sumption, to construct a strongly secure public key encryption primitive. Such an oracle does not
exist, but one can – quite arbitrarily and without any theoretical justification whatsoever – replace
it with a simple, known function such as SHA. In practice, one RSA standard does something like
this.

A New Protocol
An arbitrary semantically secure public key encryption primitive can be used (with some care) in
place of DDH to create a secure session key exchange protocol similar to Protocol 2. We will now
discuss a different way using a public key encryption primitive to construct a secure session key
exchange protocol. In this way, the keys of the primitive will form part of the PKI, and we will
require strong (CCA) security.

On input 1n, Gen will randomly generate a key pair (spub, spri) for a secure signature scheme,
and a pair (epub, epri) for a strongly secure public key encryption primitive.
The public key for the protocol will be (spub, epub), and the private key will be (spri , epri).
We assume signatures are of length n. We write SIGN B(m) to mean the signature of m using key
spriB .
We assume the encryption primitive encrypts strings of length 2n, and that encryptions are of
length `′(n). We write ENCA(m) to mean a probabilistic encryption of m using epubA.

Protocol 3: We present the role-0 algorithm and the role-1 algorithm separately.
The security parameter is 1n.

Process 〈A,B, 0〉 works as follows:

� Choose a random n-bit string r and send it on the output channel.

� (To understand this part, see the second part of the role-1 process protocol below.)
Receive string α of length `′(n) followed by string σ of length n, on the read channel.
Use spubB to check that σ is a signature by B of [α r A], and if not, abort with output fail.
Use epriA to decrypt α; if this is fail then abort with output fail;
if the second half of the decryption is not B then abort with output fail,
else let K be the first half of the decryption.

� Use K as the session key.

Process 〈B,A, 1〉 works as follows:

� Receive an n-bit string r on the input channel.

3



� Choose a random n-bit string K.
Use epubA and random bits * to compute α← ENCA(K B, ∗).
Use spriB to compute σ ← SIGNB(α r A).
Send string α followed by string σ on the write channel.

� Use K as the session key.

Before arguing that Protocol 3 is secure, let us see why the protocol would be insecure if we
attempted to simplify it in certain ways.

For example, let’s say that in the second step ofB’s role-1 protocol, instead of α← ENCA(K B, ∗),
we had α ← ENCA(K, ∗). (Assume that we modify the checking in the second step of A’s role-0
protocol appropriately.) ADV could then do the following.

� ADV creates good guys A and B and bad guy U , and generates keys for U in the correct way
using GEN.

� ADV creates processes 〈A,U, 0〉 and 〈B,A, 1〉.

� ADV reads n-bit r from 〈A,U, 0〉, and sends it to 〈B,A, 1〉.

� ADV reads `′(n)-bit α followed by n-bit σ from 〈B,A, 1〉.

� ADV sends [α, SIGNU (α, r ,A)] to 〈A,U, 0〉.

� ADV challenges 〈B,A, 1〉, receiving challenge CH.

� ADV opens the key K output by 〈A,U, 0〉.

� ADV outputs 0 if CH = K , and 1 otherwise.

〈B,A, 1〉 and 〈A,U, 0〉 are non-matching processes who will output identical keys. So ADV will
succeed with probability nearly 1.

In fact, this example shows why strong security is needed in Protocol 3 for our public-key
encryption primitive. If our primitive only satisfied semantic security, for example, then it may
be “malleable”. In fact, it may be possible to convert a value for ENCA(K B, ∗) to a value for
ENCA(K U, ∗), in which case we would have the same insecurity problem as above. To see how a
semantically secure primitive could have this bad feature, imagine that it encrypted a string m by
independently encrypting each of the bits one at a time. It would then be trivial to convert a value
for ENCA(K B, ∗) to a value for ENCA(K U, ∗) without knowing K.

Theorem: Protocol 3 is secure.

We now outline a proof of this theorem.

Consider an adversary ADV that breaks the protocol.
As in Notes #9, we can assume that ADV never successfully forges a message signed by a good-guy
(otherwise we could break the signature scheme).

We now describe ADV′ who will break the given public key encryption primitive.
So assume security parameter 1n, and say that GEN has chosen keys pub ′ and pri ′, we are given
the public key pub ′, as well as access to DECpri′ . (Let’s think of ourselves as ADV′.)

4



As in the proof for Protocol 2, we assume that we correctly guess the process 〈A,C, b〉i that
ADV will challenge; A and C are good-guy names. (Of course, we will actually guess the indices of
the names.)

Because the protocol is not symmetric between role 0 and role 1, we will consider two cases.

Case 0: b = 0. So the challenged process is 〈A,C, 0〉i.
Proof for Case 0:
Process 〈A,C, 0〉i will receive a message signed by C, the last n bits of which are A. Since ADV is
not forging messages, this must have been signed by a C process; looking at the protocol, we see it
must have been signed by a process of type 〈C,A, 1〉. As above, say that we successfully guess the
process 〈C,A, 1〉j that will sign this message.

So we are assuming that ADV will challenge process 〈A,C, 0〉i, sending it the message signed
by 〈C,A, 1〉j.

ADV′ simulates ADV choosing the good-guy names as follows. (We have looked ahead a bit
because we want to treat the name A specially when setting up its keys.)
ADV′ will choose the spub and spri keys for all of the good-guys, correctly according to the signature
scheme.
ADV′ will choose the epub and epri keys for all the good-guys – except A – correctly according to
the encryption primitive.
For A, ADV′ will choose epubA to be pub ′, the public key for the instance of the encryption primitive
ADV′ is trying to break. ADV′ will think of epriA as being pri ′.
ADV′ simulates giving all of these public keys to ADV.
ADV′ simulates ADV choosing the bad-guy names and their public keys in whatever way ADV
wishes to.

ADV′ simulates ADV creating and interacting with processes, as follows.
For process 〈A,C, 0〉i, ADV′ chooses a random n-bit r and (when ADV asks for it) simulates sending
it to ADV.
We know that 〈A,C, 0〉i will receive a message signed by 〈C,A, 1〉j, and for A to not fail, this
message must be of the form [α r A] for some α. Examining the protocol, we see therefore that
ADV must give 〈C,A, 1〉j the string r as the first thing 〈C,A, 1〉j reads, and 〈C,A, 1〉j sends α
followed by the signature.

Now epriA = pri ′ and epubA = pub ′. We want to choose α in such a way that that ADV′ can
use ADV to break the encryption primitive.

So ADV′ chooses two random n-bit strings k0 and k1 and lets M0 = [k0C] and M1 = [k1C]. A
random bit bit is chosen (but ADV′ doesn’t see it), and ADV′ receives an encryption of M bit as the
challenge CH ′. ADV′ wants to find the value of bit, and is allowed to query the oracle DECpri′ .

So when ADV reads from 〈C,A, 1〉j, ADV′ simulates ADV receiving [CH ′, SIGN C (CH ′ r A)].
Later, ADV will send to 〈A,C, 0〉i the string [CH ′, σ] where σ verifies as a signature by C of
[CH ′ r A].
〈C,A, 1〉j will now generate the same session key as the matching process 〈A,C, 0〉j. This session

key must be kbit .

When ADV challenges the session key of 〈A,C, 0〉i, ADV′ will simulate him receiving CH = k0 .
Observe that if bit = 0, then both ADV and ADV′ want to output 0. If bit = 1, then ADV′ wants to
output 1; but ADV also wants to output 1 since k0 is a random string independent of the challenged
session key k1.

5



It remains to show how we can simulate the rest of ADV perfectly. The main issue is showing
how to simulate ADV getting information from the Oracle and how to simulate ADV opening the
session keys of various processes.

First, consider two matching (good-guy) processes, say 〈D,E, 0〉1 and 〈E,D, 1〉2 that have suc-
cessfully completed; under what conditions will they output the same session key? Since ADV
cannot forge signatures, the 〈D,E, 0〉1 process must have received a signed encryption of a key from
some 〈E,D, 1〉 process; if it was from the 〈E,D, 1〉2 process then the two processes will output the
same session key; if it was from a different 〈E,D, 1〉 process, then (since each role 1 process chooses
a random key) the session keys will almost certainly be different.

We can therefore simulate the Oracle answers that ADV receives. How can we simulate ADV
receiving the session key of a process? This is trivial for every 〈E,M, 1〉 process (other than
〈C,A, 1〉j), since we (in doing the simulation) choose the session key ourselves. It is also trivial for
every 〈D,M, 0〉 process where D is not A, since we know epriD.

Lastly, we have to explain how ADV′ can open the session key (or detect failure) of a role 0 A
process, say 〈A,M, 0〉1, that is not 〈A,C, 0〉i. Assuming the M -signature verifies, we have to be
able to decrypt the encryption α that the 〈A,M, 0〉1 process receives, even though we do not know
epriA = pri′. Recall however, that we are allowed to use DEC pri ′ as long as we don’t invoke it on
CH′. So assume that ADV causes α to be CH′. We know that the second half of the decryption
of CH′ is C, so 〈A,M, 0〉1 will fail unless M = C. So assume that process 〈A,C, 0〉1 receives
encryption CH′. Since 〈A,C, 0〉1 initially sends out a different random string than 〈A,C, 0〉i, the
signature that 〈A,C, 0〉1 receives must come from a different 〈C,A, 1〉 process than 〈C,A, 1〉j, and
therefore the encrypted string must (almost certainly) be different from CH′.

If ADV′ can correctly simulate ADV, ADV′ will be correct with the same probability as ADV
(assuming we have guessed the two processes correctly). (We may be off by nd/2n, the probability
that two of the randomly chosen n bit strings are the same.)

Case 1: b = 1.

Proof for Case 1: This is left as an exercise.

The reader should note that there are many variants of Protocol 3 that are also secure, and
many that are not, and it is hard to have an intuition about this. Also, Protocol 3 clearly does not
satisfy “forward security”, as (vaguely) defined in Notes #9. This is because someone who recorded
the key exchange and later learned epriA, could then learn the session key.

6


