
Computer Science 2426F Fall, 2020
St. George Campus University of Toronto

Notes #1

Pseudo-Random Number Generators

We will begin the course proper by discussing “pseudo-random number generators”. Recall the
motivation from one-time pads. We have a n-bit random key K but we wish we had a long random
key. So we “stretch” K to K ′ = G(K) using a pseudo-random number generator G to obtain K ′ of
length l(n) > n. To an efficient adversary, it should “look” as if K ′ were randomly chosen.

Informally, a pseudo-random number generator is an efficiently computable function that on
an n-bit input, outputs a longer string, and such that the probability distribution induced on the
longer strings is indistinguishable from the truly random distribution, from the point of view of any
efficient algorithm. That is, the induced distribution passes every (efficient) statistical test.

Definitions:
A number generator is a polynomial time computable function G : {0, 1}∗ → {0, 1}∗, such that
|G(s)| = l(|s|) > |s| for some function l and every string s. For convenience we also insist that |s|
is determined by l(|s|). (That is, l is one-one. Of course, G need not be one-one.) We also assume
for convenience that l is monotone: n < m⇒ l(n) < l(m).

The number generator G is pseudo-random if the following holds for every D:
Let D (for distinguisher) be a probabilistic, polynomial time algorithm with inputs of the form

α ∈ {0, 1}∗; D has a 1-bit output indicating whether or not the input is accepted (say output 1
means “yes” and output 0 means “no”).
For each n ∈ N, define
pD(n) = the probability that if s is randomly chosen from {0, 1}n and D is run on G(s), then D
accepts;
rD(n) = the probability that if α is randomly chosen from {0, 1}l(n), and D is run on α, then D
accepts.
THEN for every c and sufficiently large n, |pD(n)− rD(n)| ≤ 1

nc .
(We may omit the subscript D if it is understood.)

Note that D, given α of length l(n), is able (if he wants) to determine n. Since l is one-one, all
he has to do is compute G on strings length 0, 1, 2, . . . until he computes a string whose length is
the same as that of α.

The above definition of pseudo-random is actually what we call “pseudo-random against uniform
adversaries”. An alternative definition would be as above, except that D is a polynomial-size
family {D1, D2, . . .} of (deterministic) circuits, Dn having l(n) input bits and one output bit; we
call this definition “pseudo-random against nonuniform adversaries”. It is easy to see that this
latter definition would not change if we permitted the circuits to be probabilistic. This is because
for each such circuit there would be a way to fix its random input to an optimum value. Such
a value might be hard to find, but it would exist (Exercise: Prove this). It is therefore easy to
see that “pseudo-random against nonuniform adversaries” implies “pseudo-random against uniform

1

adversaries” (Exercise: Why is this?), but the converse is believed not to be true. Every definition
of security in this course will have a “uniform adversary” version and a “nonuniform adversary”
version; even if we state just one version, the other version will be self-evident. All the theorems
we will state in this course of the form “if this thingy is secure then that thingy is secure” will be
true, assuming we consistently use one of the two versions. In practice, it is usually easier to define
security and to prove theorems in the nonuniform adversary setting.

The intuition is that a generator being pseudo-random means that an efficient algorithm cannot
tell the difference between a randomly generated string and a pseudo generated string. Here is
another way of expressing this concept (in the nonuniform adversary setting).

Definition: We say G is alternatively-pseudo-random if the following holds for every C:

Let C = {Cn} be a polynomial size family of circuits where Cn has l(n) input bits and one output
bit. Consider the following experiment:
A random bit b ∈ {0, 1} is chosen;
if b = 0, then Cn is run on a randomly chosen string α ∈ {0, 1}l(n);
if b = 1, then a random string s ∈ {0, 1}n is chosen and Cn is run on G(s);
let qC(n) be the probability that Cn outputs b.

THEN qC(n) ≤ 1
2

+ 1
ne for each e and sufficiently large n.

Exercise: Prove that G is pseudo-random ⇐⇒ G is alternatively-pseudo-random.

Proof of =⇒:
Let G be a number generator with length function l. This proof, as well as all that follow, will
actually prove the contrapositive, because this is the constructive thing to do. We will show that if
G is not alternatively pseudo-random, then G is not pseudo-random. More constructively, we will
show how to transform a method for breaking the alternative pseudo-randomness of G into one for
breaking the pseudo-randomness of G. We will prove this with respect to uniform adversaries.

So let C be an adversary that breaks the alternative pseudo-randomness of G. C is a probabilis-
tic, polynomial-time Turing machine; for some e and infinitely many n, qC(n) > 1

2
+ 1

ne . Although
C outputs 0 or 1, we can also think of it as rejecting or accepting, so it make sense to think of
C as an adversary against the pseudo-randomness of G, so we might hope that C also breaks the
pseudo-randomness of G; this turns out to be the case.

So fix e and let n be such that qC(n) > 1
2

+ 1
ne . By definition we have

1/2 + 1/ne < qC(n) = prob(b = 0 and C outputs 0) + prob(b = 1 and C outputs 1) =

prob(C outputs 0 | b = 0) · prob(b = 0) + prob(C outputs 1 | b = 1) · prob(b = 1) =

(1− rC(n)) · 1/2 + pC(n) · 1/2 =

1/2 + 1/2(pC(n)− rC(n))

So (pC(n)− rC(n)) > 2/ne, so C breaks the pseudo-randomness of G.

Pseudo-Random Against Multiple Sampling

Essentially, a generator being pseudo-random means that an efficient algorithm cannot tell the
difference between a single randomly generated string and a single pseudo generated string. But
what if the distinguisher was given two sample strings, or even a polynomial number of sample

2

strings; could he then distinguish between the two distributions? The answer turns out to be no!
For convenience, we will state and prove this theorem for exactly n samples, but the same proof
works for any (fixed) polynomial number of samples.

Definition: (uniform adversary setting)
Let G be a number generator. We say G is pseudo-random against multiple sampling if the following
holds for every D:

Let D be a probabilistic, polynomial time, algorithm with inputs of the form α ∈ {0, 1}n·l(n) for
some n; D has a 1-bit output indicating whether or not the input is accepted.
For each n, define
pD(n) = the probability that if s1, s2, · · · , sn are randomly (and independently) chosen from {0, 1}n
and D is run on [G(s1)G(s2) · · ·G(sn)], then D accepts;
rD(n) = the probability that if α is randomly chosen from {0, 1}n·l(n) and D is run on α, then D
accepts.
THEN for every c and sufficiently large n, |pD(n)− rD(n)| ≤ 1

nc .

The definition for the nonuniform adversary setting is as follows.

Definition: Let G be a number generator. We say G is pseudo-random against multiple sampling
if the following holds for every D:

Let D = {Dn} be a polynomial-size family of circuits where Dn has n · l(n) input bits and one
output bit indicating whether or not the input is accepted.
For each n, define
pD(n) = the probability that if s1, s2, · · · , sn are randomly (and independently) chosen from {0, 1}n,
then Dn accepts [G(s1)G(s2) · · ·G(sn)];
rD(n) = the probability that if α is randomly chosen from {0, 1}n·l(n), then Dn accepts α.
THEN for every c and sufficiently large n, |pD(n)− rD(n)| ≤ 1

nc .

The following theorem (as well as the others we shall give) holds as long as one either consistently
uses the uniform adversary setting or the nonuniform adversary setting.

Theorem: Let G be a number generator.
G is pseudo-random ⇐⇒ G is pseudo-random against multiple sampling.

Proof of ⇐=: Exercise.

Proof of =⇒: We will prove this in the “nonuniform adversary” setting. Assume that G is not
pseudo-random against multiple sampling. We will show that G is not pseudo-random.

Let {Dn} be an adversary for distinguishing G using multiple sampling; Dn has n · l(n) input
bits and one output bit. For each n define pD(n) and rD(n) as in the definition of “pseudo-random
against multiple sampling”. Fix n and say (without loss of generality) that pD(n) − rD(n) > 1

nc .
We will describe a circuit D′n for distinguishing G.

We first describe a sequence of experiments that are “hybrids” between the experiment that gives
rise to pD(n) and the experiment that gives rise to rD(n). For 0 ≤ i ≤ n let qi be the probability,
IF s1, s2, · · · , si are i randomly chosen strings from {0, 1}n, and ti+1, ti+2, · · · , tn are n− i randomly
chosen strings from {0, 1}l(n), and Dn is given as input [G(s1)G(s2) · · ·G(si)ti+1ti+2 · · · tn], THEN
Dn accepts. Clearly qn = pD(n) and q0 = rD(n). So there exists an i, 0 ≤ i < n, such that
qi+1 − qi > 1

nc+1 ; fix such an i.

3

We now describe a probabilistic circuit D′n for distinguishing G. The input will be an l(n)
bit string α. D′n will choose i strings s1, s2, · · · , si randomly from {0, 1}n and n − (i + 1) strings
ti+2, ti+3, · · · , tn randomly from {0, 1}l(n), and run Dn on [G(s1)G(s2) · · ·G(si)α ti+2ti+3 · · · tn].

Let pD′(n) be the probability D′n accepts α = G(s) for s randomly chosen from {0, 1}n; clearly
pD′(n) = qi+1. Let rD′(n) be the probability D′n accepts a random string α from {0, 1}l(n); clearly
rD′(n) = qi. (Note that these probabilities are over the random choices of D′n, as well as over the
random choices of s or α.) So pD′(n)− rD′(n) > 1

nc+1 . As discussed earlier, by appropriately fixing
the random bits of D′n, we can make a normal, deterministic circuit D′′n that does at least as well
as D′n as an adversary against G. Note that the size of D′′n is polynomial in the size of Dn (and n),
and hence that {D′′n} is a polynomial-size family.

So {D′′n} is an adversary that breaks the pseudo-randomness of G.

How would the proof of the =⇒ part of this theorem go in the “uniform adversary” setting? We
are given a probabilistic polynomial time adversary D for breaking G using multiple sampling, and
we wish to find a probabilistic polynomial time adversary D′ for breaking G (on a single sample).
D′, on input α, will behave as D′n as described in the proof above. (Note that because l is one-one
and monotonic, n is determined – and easy to find – from |α|.) The tricky part is that it is not
clear what value of i to choose. It turns out that things work fine if we merely choose i randomly
in the range 0 ≤ i < n. (Exercise: Why is this?)

There will be other theorems, however, where a careful choice of some parameter must be made,
and just making a random choice will not do. Choices will have to be made by an adversary we
construct that will depend on the values of certain probabilities. Fortunately, however, it will usually
not be necessary to know these probabilities exactly, but only approximately. Usually we will be
able to approximate these probabilities by performing an experiment sufficiently often. For example,
say that we want to approximate the probability qi as defined (with respect to a particular value
of n) in the above proof. It is sufficient to approximate it to within ε = 1

nc+2 . qi is the probability
Dn accepts when run according to a certain experiment. We can run this experiment many times,
and take the fraction q of acceptances to be a good approximation to qi. More exactly, for some
constant d (and it is sufficient to let d = 4), if we repeat the experiment d(1/ε)2m times, then q will
be within ε of qi with probability > 1− 1

2m
; this is a consequence of well known Chernoff bounds.

So say we given the uniform adversary D as above that breaks the pseudo-randomness of G with
multiple sampling where, say, pD(n)−rD(n) > 1

nc for infinitely many n. Define the uniform adversary
D′ for breaking the pseudo-randomness of G as follows, on input α (where pD(n)− rD(n) > 1

nc):
By repeatedly running experiments, D′ computes q′0, q

′
1, . . . , q

′
n such that for each i, the probability

is < 1
2n

that |q′i− qi| > 1
nc+2 . So with probability > 1− n+1

2n
, every q′i is within 1

nc+2 of qi. D
′ chooses

the (first) value of i that maximizes q′i+1− q′i, and then proceeds as in the probabilistic nonuniform
setting. Note that the i chosen by D′ is a random variable.

Say that the calculation of q′0, q
′
1, . . . , q

′
n comes from choosing a random string U of bits and let

the event E be the set of such strings that cause every q′j to be within 1
nc+2 of qj;

this event occurs with probability > 1− n+1
2n

.
For each u ∈ E we let iu be the (first) value of i that maximizes q′i+1 − q′i, and so q′iu+1 − q′iu >
(1/n)(1/nc−2/nc+2) > 1/nc+1−1/nc+2, and so qiu+1−qiu > 1/nc+1−3/nc+2. Given that U = u ∈ E,
the probability that D′ accepts a pseudo generated α is qiu+1, and the probability that D′ accepts
a randomly generated α is qiu . The probability that D′ accepts a pseudo generated α given that E
occurs is the average over u ∈ E of qiu+1, and the probability that D′ accepts a randomly generated
α given that E occurs is the average over u ∈ E of qiu . so given that E occurs, the difference between

4

these two probabilities is> 1/nc+1−3/nc+2. So (exercise!) pD′−rD′ > 1/nc+1−3/nc+2−2(n+1)/2n >
1/nc+2.

Unpredictability

Another notion of pseudo-randomness that often appears in the informal literature is that of
“unpredictability”. Informally, we say that G is unpredictable (from the left) if given a proper prefix
of G(s), one cannot guess the next bit with probability significantly above 1/2. It turns out that this
condition is equivalent to pseudo-randomness. We will define “unpredictability” in the nonuniform
adversary setting, since it is a little awkward to define in the uniform adversary setting.

Definition:
Let G be a number generator. We say G is unpredictable (sometimes called unpredictable from the
left) if the following holds for every A:

Let A = {(An, in)} where 1 ≤ in ≤ l(n) and {An} is a polynomial-size family of circuits, where
An has in − 1 input bits and one output bit.
For each n: define, letting i = in (for notational convenience),
predA(n) = the probability that if s is randomly chosen from {0, 1}n and G(s) = [b1, b2, · · · , bl(n)]
and An is given [b1, b2, · · · , bi−1], then An outputs bi.
THEN for every c and sufficiently large n, predA(n) ≤ 1

2
+ 1

nc .

Theorem:
Let G be a number generator.
G is pseudo-random ⇐⇒ G is unpredictable.

Proof of =⇒: The idea is that if G is not unpredictable, then G is predictable, which gives us a
statistical test that breaks the pseudo-randomness of G.

Let {(An, in)} be an adversary that breaks the unpredictability of G, and let predA(n) be defined
as above, so that for infinitely many n, predA(n) > 1

2
+ 1

nc . Fix n, and say predA(n) = 1
2

+ ε(n).
For notational convenience, we will use i below instead of in.

Now define a distinguishing circuit Dn for G as follows: On input a1, a2, · · · , al(n), Dn computes
An(a1, a2, · · · , ai−1), and accepts if this equals ai.
Then pD(n) = the probability that Dn accepts G(s) for random s = predA(n),
and rD(n) = the probability that Dn accepts a random string = 1/2.
So pD(n)− rD(n) = ε(n).

The size of Dn is polynomial in the size of An (and n), so {Dn} is a polynomial-size family; also,
since ε(n) > 1

nc for infinitely many n, then |p(n)− r(n)| > 1
nc for infinitely many n. So {Dn} is an

adversary that breaks the pseudo-randomness of G.

Proof of ⇐=: Let {Dn} be an adversary for distinguishing G; Dn has l(n) input bits and one
output bit. For each n define pD(n) and rD(n) as in the definition of pseudo-random, and let
|pD(n) − rD(n)| = ε(n); assume that ε(n) > 1

nc for some c and infinitely many n. Fix n and say
(without loss of generality) that pD(n)− rD(n) = ε(n) > 0. We will describe an adversary instance
(An, in) for predicting G.

We first describe a sequence of experiments that are “hybrids” between the experiment that gives
rise to pD(n) and the experiment that gives rise to rD(n). For 0 ≤ i ≤ l(n) let pi be the probability,
IF s is randomly chosen from {0, 1}n and G(s) = [b1, b2, · · · , bl(n)], and ai+1, ai+2, · · · , al(n) are
l(n) − i randomly chosen bits, and Dn is given as input [b1, b2, · · · , bi, ai+1, ai+2, · · · , al(n)], THEN

5

Dn accepts. Clearly pl(n) = pD(n) and p0 = rD(n). So pl(n) − p0 = ε(n). So there exists an i,
0 < i ≤ l(n), such that pi − pi−1 ≥ ε(n)/l(n); let in be such an i. For notational convenience, we
will use i below instead of in.

We now describe a probabilistic circuit An for predicting bit i of the output of G. The input
to An will be an i − 1 bit string α. An will choose a random bit a and l(n) − i random bits
ai+1, ai+2, . . . , al(n) and run Dn on [α, a, ai+1, ai+2, . . . , al(n)]; if Dn accepts then An outputs bit a,
otherwise An outputs bit a = 1− a.

The experiment we are concerned with is as follows.
s← a random string from {0, 1}n; say that G(s) = [b1, b2, . . . , bl(n)];
a← a random bit;
ai+1, ai+2, · · · , al(n) ← random bits;
Dn is run on [b1, b2, . . . , bi−1, a, ai+1, ai+2, . . . , al(n)].

We wish to compute pred(n) = predA(n) = the probability An outputs bi, the i-th bit of G(s).
This is the probability that either a = bi and Dn accepts, or a = bi and Dn rejects. Since a is
equally likely to be bi as bi, we have

pred(n) =

prob(a = bi and Dn accepts) + prob(a = bi and Dn rejects) =

prob(a = bi) · prob(Dn accepts | a = bi) + prob(a = bi) · prob(Dn rejects | a = bi) =

1

2
· prob(Dn accepts | a = bi) +

1

2
· prob(Dn rejects | a = bi)

6

Clearly
prob(Dn accepts | a = bi) = pi

and
prob(Dn rejects | a = bi) = 1− pi

and
prob(Dn accepts) = pi−1

Since,

1

2
prob(Dn rejects | a = bi) +

1

2
prob(Dn rejects | a = bi) = prob(Dn rejects) = 1− pi−1

we have
1

2
prob(Dn rejects | a = bi) = [(1− pi−1)−

1

2
(1− pi)]

So

pred(n) =
1

2
pi + [(1− pi−1)−

1

2
(1− pi)] =

1

2
+ (pi − pi−1) ≥

1

2
+
ε(n)

l(n)

Note that the size of An is polynomial in the size of Dn (and n), and An can be made deterministic,
as described above. We have therefore broken the unpredictability of G.

We can also define a notion of G being “unpredictable from the right”, meaning that from seeing
a proper suffix of G(s), one cannot predict the previous bit. Because our notion of pseudo-random is
symmetric with respect to left and right, we easily get the theorem that G is pseudo-random if and
only if G is unpredictable from the right. As a corollary, we therefore get that G is unpredictable
from the left if and only if G is unpredictable from the right.

To define “unpredictable” in the uniform adversary setting, we would let A be a probabilistic
algorithm that, on input 1n, computes in time polynomial in n a number in, 1 ≤ in ≤ l(n); then A
will be given an in − 1 bit string, and after computing for polynomial (in n) time, outputs a bit.
We leave the rest of the details to the reader, as well as a proof of the uniform-adversary version
of the above theorem. (HINT: As before, there are two ways of proving the hard direction of this
theorem. One way is to probabilistically approximate the values of p0, p1, . . . , pl(n) in order to find
an appropriate value for in. Another way is to chose the value of in randomly from {1, 2, . . . , l(n)}.)

The reason we talk about whether or not pseudo-random generators exist is because we think
they do, but we are unable to prove it. We cannot prove it because it is a much stronger assertion
than “P 6= NP”, and we are unable to prove even this.

Theorem: If P = NP, then there is no pseudo-random generator.

Proof: Assume P = NP. Let G be a number generator with length function l(n) > n. Since
P = NP, there is a polynomial time algorithm D which on inputs 1n and α, accepts if and only if
there is an n-bit string s such that G(s) = α. So p(n), the probability D accepts G(s) for random
n-bit s, is 1. Since there are only 2n strings of length n, we have that r(n), the probability D
accepts a random l(n) bit string, is ≤ 2n

2l(n) ≤ 1
2
. So p(n)− r(n) ≥ 1

2
> 1

n
for n > 2.

We now want to show how a pseudo-random number generator that only does a little bit of
expansion, can be used to construct a pseudo-random generator that does a lot of expansion.

7

