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Introduction

We begin by describing – very informally – what the typical “man in the street” thinks of as the
quintessential application of cryptography: secure sessions (using a shared secret key). Two people
A and B have gotten together and chosen a random n bit key K. They then separate, and can only
communicate over a very insecure internet. We have the following picture:

A now, from time to time, wishes to send stuff – we call it “plain text” – to B. We refer to
the entirety of what A will ever want to send to B as the “message”, although A will only be
sending the message a “piece” at a time. For now, we can think of each piece as being a single bit.
Unfortunately, there is an adversary ADV who has complete control of the internet. ADV not only
listens to everything that A says, but also completely controls what is sent to B. To defend against
ADV , A will be in some sense “encrypting” each piece using the shared key K.

We will always assume that the adversary knows the algorithms that the good guys (A and B
in this case) are using; the only thing the adversary doesn’t know are the randomly chosen keys.
In this case we hope that ADV will not be able to learn anything “significant” about the message
– we will call this privacy – and that ADV will not have a significant chance of making B output
something wrong – we will call this integrity. We will define this all very carefully later in the
course. For now, to be a bit less vague, the first condition roughly means that even if ADV is able
to choose part of the message himself, he should be no good at figuring out any other part of it;
the second condition roughly means that even if ADV is able to choose the whole message himself,
he shouldn’t be able to cause B to output an incorrect piece. Of course, ADV can choose to stop
sending stuff to B causing B to output nothing, and A can send garbage to B causing B to “fail”.

Note that this session may go on for many years, and that our security conditions are with
respect to the entire message, not the individual pieces. It is not sufficient that each piece be
somehow sent securely. We will see later that it easy to come up with a system where each piece is
sent securely but the message (that is, all the pieces) is completely insecure.
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We will see later that if ADV is allowed to use unlimited computing time, then there is no way
to do secure sessions if the message is longer than the key. Therefore, we will insist that ADV be
polynomial-time. There is still a big problem, however. We are unable to prove P 6=NP, and we will
see later that if P=NP, then even with this time constraint on the adversary there is no way to do
secure sessions. We will therefore have to base security on certain complexity theory assumptions,
the goal being to use as plausible and as few assumptions as possible.

We will later prove (at least part of) the following very fundamental theorem of cryptography.

Theorem: The following are all equivalent.

� It is possible to do secure sessions.

� There exist pseudo-random generators

� There exist “one-way functions”. (Informally, a one-way function is a function that is easy to
compute but hard, on the average, to invert.)

� There exist secure digital signature schemes.

There are a number of cryptographic primitives that require stronger assumptions than the
above. A very important one is “public-key cryptography”. One very important application of
public-key cryptography is the following: Say that we have a “public-key infrastructure”, and A
wishes to have a secure conversation with B but they do not have a shared private key. Then A
and B can use public-key encryption and engage in a protocol that will allow them to agree on
a private key for that session. This notion of “session-key exchange” is very complicated, and we
discuss it carefully much later.

The reader may note that the notion of a “session” often is used to mean A and B talking to
each other, whereas we have used it in the more narrow sense of A talking to B. Let’s say we have
a method to do this “uni-directional” session securely. How can we have A and B talk securely to
each other? Simple. A talks securely to B using our assumed method, and B talks to A using the
same method. It is unbelievably important to note that the “method” involves the choice of a random
key. Since we are using this method twice, we must choose an independently random key each time.
More generally it is important to realize that whenever a key is generated in cryptography, it is
intended to be used in one and only one way (although the way may be quite complex and last for
years). Never reuse an old key for a new purpose. This can be deadly, and we will shortly see an
example.

A Simple Setting and One-Time Pads

One of the central topics in this course is “pseudo-random generators”. In order to motivate
this topic, we now consider a simpler version of secure sessions. For one thing, we only permit
ADV to listen in (or eavesdrop), not to change anything on the line. (Keep this in mind when we
define “perfect security” below; our notion of security here relates only to what we will later call
“privacy”, not to integrity.) Also, we place no restriction on the computing time of ADV .

We say that the key K consists of n bits K = K1K2 . . . Kn; we say that the message M consists
of m bits M = M1M2 . . .Mm. We have an encryption function Enc : {0, 1}m × {0, 1}n → {0, 1}∗,
where we view Enc(M,K) as the encryption of M under key K that A sends over the channel to
B. We also have a decryption function Dec : {0, 1}∗ × {0, 1}n → {0, 1}m, and we insist on the
correctness condition: Dec(Enc(M,K), K) = M , for all M,K.
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If m ≤ n, that is |M | ≤ |K| , then it is possible to do this perfectly securely: we do not need to
make any assumptions about the run time of the adversary, or any assumptions from computational
complexity.1 The most famous way is called the “one-time pad”, presumably named after the pad
(containing the key) that a spy would carry in his pocket. We define Enc(M,K) = E = E1E2 . . . Em

where Ei = Mi⊕Ki for each 1 ≤ i ≤ m; ⊕ means exclusive-or, that is, the sum mod 2. B decrypts
by computing Mi = Ei ⊕Ki; that is, Dec(E,K) = E1 ⊕K1, E2 ⊕K2, . . . , Em ⊕Km. We can prove
that this is perfectly secure, but first we need a definition of perfect security. The following theorem
gives three definitions of perfect security and states that they are all equivalent; this is the notion
of security that is usually used in this setting. The theorem after that states that one-time pad is
perfectly secure. The last theorem states that if |M | > |K| (that is, m > n) then no pair Enc,Dec
is perfectly secure. We leave the proofs of these theorems as an exercise.

Theorem: Let Enc,Dec be correct. Then the following definitions of perfect security for Enc are
equivalent.

1. For M ∈ {0, 1}m, define the distribution DM on strings as follows: to choose a random
member of DM , choose a random K ∈ {0, 1}n and output Enc(M,K). Then Enc,Dec is
perfectly secure if DM is exactly the same for every M . That is, for every α ∈ {0, 1}∗, the
probability of α according to DM is independent of M .

2. For every two messages, no function can tell which one has been encrypted. That is, Enc,Dec
is perfectly secure if for every M0,M1 ∈ {0, 1}m and for every f : {0, 1}∗ → {0, 1}, the following
holds: consider the experiment where b is randomly chosen from {0, 1} and K is randomly
chosen from {0, 1}n; then the probability that f(Enc(Mb, K)) = b is exactly equal to 1/2.

3. Enc,Dec is perfectly secure if for every f : {0, 1}∗ → {0, 1}m, the following holds: consider
the experiment where M is randomly chosen from {0, 1}m and K is randomly chosen from
{0, 1}n; then the probability that f(Enc(M,K)) = M is equal to 1/2m. That is, an Adversary
seeing the encryption of a random M cannot guess the value of M better than he could by
just outputting an arbitrary answer.

Theorem: The one-time pad Enc,Dec is perfectly secure as defined in the previous theorem.

Theorem: If m > n, then no correct Enc,Dec is perfectly secure.

In particular, the last theorem tells us that a “two-time pad” is not secure. In a two-time pad,
m = 2n; both the first half of the message, and the second half of the message, are sent using the
key as a one-time pad. Intuitively this is insecure since anyone who knows (or can guess) part of
the first half of the message can learn part of the second half of the message. This is insecure even
against a computationally limited adversary.

In practice, we will want to have secure sessions with short keys (say a few hundred bits) and
enormously long messages that come in a piece at a time. A crucial tool for doing this will be
pseudo-random generators, our first main topic. To motivate this, let us stay for now with the
setting of an adversary that only eavesdrops. We will now assume that our adversary is restricted
to run in time polynomial in n. A natural idea is to take the key K, and use a pseudo-random
number generator G to extend it to a much longer key K ′, and then use K ′ as a one-time pad. We
will later come back to the question of what “secure sessions” should mean.

1If X is a string, then |X| represents the length of X.
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What “pseudo-random” property should G have? The idea is that a computationally limited
adversary should not be able to significantly distinguish between the situation where he sees a
pseudo-randomly generated string, and the situation where he sees a truly randomly generated
string.
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