
Software Clustering based on Information Loss Minimization

Periklis Andritsos
University of Toronto

periklis@cs.toronto.edu

Vassilios Tzerpos
York University
bil@cs.yorku.ca

The majority of the algorithms in the software cluster-
ing literature utilize structural information in order to decom-
pose large software systems. Other approaches, such as using
£le names or ownership information, have also demonstrated
merit. However, there is no intuitive way to combine informa-
tion obtained from these two different types of techniques.

In this paper, we present an approach that combines struc-
tural and non-structural information in an integrated fashion.
LIMBO is a scalable hierarchical clustering algorithm based
on the minimization of information loss when clustering a
software system.

We apply LIMBO to two large software systems in a num-
ber of experiments. The results indicate that this approach
produces valid and useful clusterings of large software sys-
tems. LIMBO can also be used to evaluate the usefulness
of various types of non-structural information to the software
clustering process.

1 Introduction

It is widely believed that an effective decomposition of a
large software system into smaller, more manageable subsys-
tems can be of signi£cant help to the process of understanding,
redocumenting, or reverse engineering the system in question.
As a result, the software clustering problem has attracted the
attention of many researchers in the last two decades.

The majority of the software clustering approaches pre-
sented in the literature attempt to discover clusters by ana-
lyzing the dependencies between software artifacts, such as
functions or source £les [15, 12, 14, 21, 20, 8, 18, 11, 26].
Software engineering principles such as information hiding or
high-cohesion, low-coupling are commonly employed to help
determine the boundaries between clusters.

Other approaches have also demonstrated merit. Using
naming information, such as £le names or words extracted
from comments in the source code [3, 16] may be the best
way to cluster a given system. The ownership architecture of a
software system, i.e. the mapping that shows which developer
is responsible for what part of the system, can also provide
valuable hints [5]. Some researchers have also attempted to
combine structural information (based on dependencies) with
non-structural one (based on naming) in their techniques [4].
Others have proposed ways of bringing clustering into a more
general data management framework [1].

Even though the aforementioned approaches have shown
that they can be quite effective when applied to large software
systems, there are still several issues that can be identi£ed:

1. There is no guarantee that the developers of a legacy soft-
ware system have followed software engineering prin-
ciples such as high-cohesion, low-coupling. As a re-
sult, the validity of the clusters discovered following such
principles, as well as the overall contribution of the ob-
tained decomposition to the reverse engineering process,
can be challenged.

2. Software clustering approaches based on high-cohesion,
low-coupling fail to discover utility subsystems, i.e. col-
lections of utilities that do not necessarily depend on each
other, but are used in many parts of the software system
(they may or may not be omnipresent nodes [18]). Such
subsystems do not exhibit high-cohesion, low-coupling,
but they are frequently found in manually-created de-
compositions of large software systems.

3. It is not clear what types of non-structural information
are appropriate for inclusion in a software clustering ap-
proach. Clustering based on the lines of code of each
source £le is probably inappropriate, but what about us-
ing timestamps? Ownership information has been man-
ually shown to be valuable [6], but its effect in an auto-
matic approach has not been evaluated.

In this paper, we present an approach that addresses these
issues. Our approach is based on minimizing information loss
during the software clustering process.

The objective of software clustering is to reduce the com-
plexity of a large software system by replacing a set of objects
with a cluster. Thus, the obtained decomposition is easier to
understand. However, this process also reduces the amount of
information conveyed by the clustered representation of the
software system. Our approach attempts to create decomposi-
tions that convey as much information as possible by choosing
clusters that represent their contents as accurately as possi-
ble. In other words, one can predict with high probability the
features of a given object just by knowing the cluster that it
belongs to.

Our approach clearly addresses the £rst issue raised above.
It makes no assumptions about software engineering princi-



ples followed by the developers of the software system. It
also creates decompositions that convey as much information
about the software system as possible, a feature that should be
helpful to the reverse engineer. Furthermore, as will be shown
in Section 2, our approach can discover utility subsystems as
well as ones based on high-cohesion, low-coupling. Finally,
any type of non-structural information may be included in our
approach. As a result, our approach can be used in order to
evaluate the usefulness of various types of information such
as timestamps or ownership. In fact, we present such a study
in Section 5.

The structure of the rest of this paper is as follows: Sec-
tion 2 presents some background from Information Theory, as
well as the way our approach quanti£es information loss for
software systems. Section 3 presents LIMBO, a scalable hier-
archical clustering algorithm based on the Information Bottle-
neck method [24]. In Section 4, we compare LIMBO to sev-
eral other software clustering algorithms that have been pre-
sented in the literature. In Section 5, we use LIMBO in order
to assess the usefulness of several types of non-structural in-
formation to the software clustering process. Finally, Section
6 concludes our paper.

2 Background

This section introduces the main concepts from Informa-
tion Theory that will be used throughout the paper. We also
give the formulation of the Information Bottleneck method
and its use in software clustering.

2.1 Basics from Information Theory

In the following paragraphs we give some basic de£nitions
of Information Theory and their intuition. These de£nitions
can also be found in any information theory textbook, e.g. [9].

Throughout this section we will assume the dependency
graph of an imaginary software system given in Figure 1. This

u2

f1 f2 f3

u1

Figure 1. Example dependency graph

graph contains three program £les f1, f2 and f3 and two utility
£les u1 and u2. This software system is clearly too trivial to
require clustering. However, it will serve as an example of
how our approach discovers various types of subsystems.

Our approach starts by translating the dependencies shown
in Figure 1 into the matrix shown in Table 1. The rows of this
matrix represent the artifacts to be clustered while the columns
represent the features that describe these artifacts. Since our
example contains only structural information (non-structural
information will be added in Section 2.4), the features of a
software artifact are other artifacts. To avoid confusion, we
will represent the software artifacts to be clustered with italic
letters, e.g., f1, u1, and the corresponding features with bold
letters, e.g., f1,u1.

In the matrix of Table 1, we indicate with 1, the presence
of features and with 0 their absence. Note that, for a given
artifact a, feature f is present if a depends on f , or f depends
on a.

f1 f2 f3 u1 u2

f1 0 1 1 1 1
f2 1 0 1 1 1
f3 1 1 0 1 1
u1 1 1 1 0 0
u2 1 1 1 0 0

Table 1. Example matrix from dependencies in
Figure 1

Let A denote a discrete random variable taking its values
from a set A. In our example, A is the set {f1, f2, f3, u1, u2}.
If p(a) is the probability mass function of the values of A, the
entropy H(A) of variable A is de£ned by

H(A) = −
∑

a∈A

p(a) log p(a)

Intuitively, entropy is a measure of disorder; the higher the
entropy, the lower the certainty with which we can predict
the value of A. We usually consider the logarithm with base
two and thus entropy becomes the minimum number of bits
required to describe variable A [9].

Now, letB be a second random variable taking values from
the set B of all the features in the software system. In our
example, B is the set {f1, f2, f3,u1,u2}. Then, p(b|a) is the
conditional probability of a value b of B given a value a of A.
The conditional entropy H(B|A) is de£ned as

H(B|A) =
∑

a∈A

p(a)H(B|A = a)

= −
∑

a∈A

p(a)
∑

b∈B

p(b|a) log p(b|a)

H(B|A) gives the uncertainty with which we can predict the
value of B given that a value of A appears.

An important question that arises is: “to what extent can
the value of one variable be predicted from knowledge of the
value of the other variable?”. This question has a quantitative



answer through the notion of mutual information, I(A;B),
which measures the amount of information that the variables
hold about each other. The mutual information between two
variables is the amount of uncertainty (entropy) in one vari-
able that is removed by knowledge of the value of the other
one. More precisely, we have

I(A;B) = H(A)−H(A|B) = H(B)−H(B|A)

Mutual information is symmetric, non-negative and equals
zero if and only if A and B are independent.

Generally speaking, given a set of n values of A and a set
of q values of B, we can conceptualize all features as an n× q
matrix M , such as the one in Table 1, where each row holds
the feature vector of an object. We normalize matrixM so that
the entries of each row sum up to one. Hence, for an object a,
the corresponding vector of the normalized matrix holds the
conditional probability p(B|A = a). The normalized matrix
of Table 1 is depicted in Table 2.

A\B f1 f2 f3 u1 u2

f1 0 1/4 1/4 1/4 1/4
f2 1/4 0 1/4 1/4 1/4
f3 1/4 1/4 0 1/4 1/4
u1 1/3 1/3 1/3 0 0
u2 1/3 1/3 1/3 0 0

Table 2. Normalized matrix of system features

Let us consider a particular clustering Ck of the elements
of A, so that every object a ∈ A is mapped to a cluster c(a).
Each of the clusters in Ck can be expressed as a vector over
the features in B, as explained in detail in Section 2.2.

We introduce a third random variable C taking values from
set C = {c1, c2, ..., ck}, where c1, c2, ..., ck are the k clusters
of Ck. The mutual information I(B;C) quanti£es the infor-
mation about the values of B (the features of the software sys-
tem) provided by the identity of a cluster (a given value of C).
The higher this quantity is the more informative the cluster
identity is about the features of its constituents. Therefore,
our goal is to choose Ck in such a way that it maximizes the
value of I(B;C).

The maximum value for I(B;C) occurs when |C| = |A|,
i.e. each cluster contains only one object. The minimum value
for I(B;C) occurs when |C| = 1, i.e. when all objects are
clustered together. Interesting are the cases in-between, where
we seek a k-clustering Ck, that contains a suf£ciently small
number of clusters (compared to the number of objects), while
retaining a high value for I(B;C).

Tishby et al., [24], proposed a solution to this optimiza-
tion problem in what is termed the Information Bottleneck
Method. Finding the optimal clustering is an NP-complete
problem [10]. The next section presents a heuristic solution to
maximizing I(B;C).

2.2 Agglomerative Information Bottleneck

Slonim and Tishby [22] propose a greedy agglomerative
approach, the Agglomerative Information Bottleneck (AIB) al-
gorithm, for £nding an informative clustering. This tech-
nique has also been used in document clustering [23] and the
classi£cation of galaxy spectra [19]. Similar to all agglom-
erative (or bottom-up) techniques, the algorithm starts with
the clustering Cn, in which each object a ∈ A is a clus-
ter by itself. As stated before, I(A;B) = I(Cn;B). At
step n − ` + 1 of the AIB algorithm, two clusters ci, cj
in `-clustering C` are merged into a single component c∗ to
produce a new (` − 1)-clustering C`−1. As the algorithm
forms clusterings of smaller size, the information that the
clustering contains about the features in B decreases; that is,
I(B;C`−1) ≤ I(B;C`). The clusters ci and cj to be merged
are chosen to minimize the information loss in moving from
clustering C` to clustering C`−1. This information loss is
given by δI(ci, cj) = I(B;C`) − I(B;C`−1). We can also
view the information loss as the increase in the uncertainty
of predicting the features in the clusters before and after the
merge.

After merging clusters ci and cj , the new component c∗ =
ci ∪ cj has, [22]

p(c∗|a) =

{

1 if a ∈ ci or a ∈ cj
0 otherwise

(1)

p(c∗) = p(ci) + p(cj) (2)

p(b|c∗) =
p(ci)

p(c∗)
p(b|ci) +

p(cj)

p(c∗)
p(b|cj) (3)

Tishby et al. [24] show that

δI(ci, cj) = [p(ci) + p(cj)] ·DJS [p(b|ci), p(b|cj)]

where DJS is the Jensen-Shannon (JS) divergence, de£ned as
follows. Let pi = p(b|ci) and pj = p(b|cj) and let

p̄ =
p(ci)

p(c∗)
pi +

p(cj)

p(c∗)
pj

denote the weighted average distribution of distributions pi

and pj . Then, the DJS distance is:

DJS [pi, pj ] =
p(ci)

p(c∗)
DKL[pi||p̄] +

p(cj)

p(c∗)
DKL[pj ||p̄] .

DKL is the Relative Entropy, or the Kullback-Leibler (KL)
divergence, a standard information-theoretic measure of the
difference between two probability distributions. Given two
distributions p and q over a set A, the relative entropy is

DKL[p‖q] =
∑

a∈A

p(a) log
p(a)

q(a)
.



Intuitively, the relative entropy DKL[p‖q] is a measure of the
redundancy in an encoding that assumes the distribution q,
when the true distribution is p.

Then, DJS distance is the average DKL distance of pi and
pj from p̄. It is non-negative and equals zero if and only if
pi = pj . It is also bounded above by one, and it is symmetric.
Note that the information loss for merging clusters ci and cj ,
δI(ci, cj), depends only on the clusters ci and cj , and not on
other parts of the clusterings C` and C`−1.

Intuitively, at each step, AIB merges two clusters that will
incur the smallest value in δI . The probability of the newly
formed cluster becomes equal to the sum of probabilities of
the two clusters (equation (2)) and the conditional probabil-
ity of the features given the identity of the new cluster is a
weighted average of the conditional probabilities in the clus-
ters before the merge (equation (3)).

Recasting the problem of software clustering within the
context of the Information Bottleneck method, we consider
as input an n× q table similar to the one in Table 2. For each
vector ai, which is expressed over qi non-zero features we de-
£ne

p(ai) = 1/n (4)

p(b|ai) =

{

1/qi if M [ai, b] is non-zero
0 otherwise

(5)

We can now compute the mutual information I(A;B) and
proceed with the Information Bottleneck method to cluster the
vectors of the values in A.

2.3 Structural Example

By applying the equations of the previous section to the ex-
ample software system presented in Section 2.1, we can com-
pute all pairwise values of information loss (δI). These values
are given in Table 3. The value in position (i, j) indicates the
information loss we would incur, if we chose to group the i-th
and the j-th artifact together.

f1 f2 f3 u1 u2

f1 - 0.10 0.10 0.17 0.17
f2 0.10 - 0.10 0.17 0.17
f3 0.10 0.10 - 0.17 0.17
u1 0.17 0.17 0.17 - 0.00
u2 0.17 0.17 0.17 0.00 -

Table 3. Pairwise δI values for vectors of Table 2

Clearly, if utility £les u1 and u2 get merged in the same
cluster, cu, we lose no information about the system, some-
thing that agrees with our intuition just by observation of Fig-
ure 1, which suggests that u1 and u2 have exactly the same
structural features. On the other hand, we lose some infor-
mation if f1 and f2 get merged in the same cluster cf , which

is the same loss of information if any pair among the pro-
gram £les forms a cluster. Table 4 depicts the new matrix
after forming clusters cf and cu. Intuitively, cu represents the
dependencies of its constituents exactly as good as u1 and u2

before the merge, while cf is almost as good. We compute the
probabilities of the two new clusters using equation (2) from
Section 2.2 as p(cf ) = 2/5 and p(cu) = 2/5, while the new
distributions p(B|cf ) and p(B|cu) are calculated using equa-
tion (3) of the same section. The obtained values are shown in
Table 4.

A\B f1 f2 f3 u1 u2

cf 1/8 1/8 1/4 1/4 1/4
f3 1/4 1/4 0 1/4 1/4
cu 1/3 1/3 1/3 0 0

Table 4. Normalized matrix after forming cf and
cu

The new matrix of pairwise distances is given in Table 5,
which suggests that cf will next be merged with f3 as their
δI value is the minimum. This indicates that our approach is
able to discover both utility subsystems (such as cu) as well as
cohesive ones (such as the cluster containing f1, f2, and f3).

cf f3 cu
cf - 0.04 0.26
f3 0.04 - 0.24
cu 0.26 0.24 -

Table 5. Pairwise δI after forming cf and cu

2.4 Non-Structural Example

One of the strengths of our approach is its ability to con-
sider various types of information about the software system.
Our example so far contained only structural data. We will
now expand it to include non-structural data as well, such as
the name of the developer, or the location of an artifact.

All we need to do is extend the universe B to include the
values of non-structural features. Of course, qi will now be
the number of both structural and non-structural features over
which each vector ai is expressed. This way our algorithm is
able to cluster the software system in the presence of meta-
information about software artifacts.

The £les of Figure 1 together with their developer and lo-
cation are given in Table 6.

The normalized matrix when B is extended to
{f1, f2, f3,u1,u2,Alice,Bob,p1,p2,p3} is given in
Table 7.

After that, I(A;B) is de£ned and clustering can be per-
formed as in the case of structural data, without necessarily



f1 f2 f3 u1 u2 Alice Bob p1 p2 p3

f1 0 1/6 1/6 1/6 1/6 1/6 0 1/6 0 0
f2 1/6 0 1/6 1/6 1/6 0 1/6 0 1/6 0
f3 1/6 1/6 0 1/6 1/6 0 1/6 0 1/6 0
u1 1/5 1/5 1/5 0 0 1/5 0 0 0 1/5
u2 1/5 1/5 1/5 0 0 1/5 0 0 0 1/5

Table 7. Normalized matrix of system dependencies with structural and non-structural features

Developer Location
f1 Alice p1

f2 Bob p2

f3 Bob p2

u1 Alice p3

u2 Alice p3

Table 6. Non-structural features for the £les in
Figure 1

giving the same results. More on this issue will be presented
in the experimental evaluation section of this paper.

3 Clustering using LIMBO

Given a large number of vectors n, the Agglomerative In-
formation Bottleneck algorithm suffers from high computa-
tional complexity, namely O(n2 log n), which is prohibitive
for large data sets. In this section we introduce the scaLable
InforMation BOttleneck (LIMBO) algorithm that uses distri-
butional summaries in order to deal with large data sets. We
employ an approach similar to the one used in the BIRCH
clustering algorithm for clustering numerical data [28]. How-
ever our distance measure is based on the IB method and we
consider a different de£nition of summaries.

3.1 Distributional Cluster Features

We now introduce the notion of Distributional Cluster Fea-
ture (DCF). Each cluster of vectors that LIMBO creates has a
corresponding DCF . The DCF provides a summary of the
cluster which is suf£cient for computing the distance between
two clusters or between a cluster and a single vector.

Let A, B, C, be random variables, and A, B, C, be sets
as de£ned in Section 2. The Distributional Cluster Feature
(DCF) of a cluster c ∈ C is de£ned by the pair

DCF (c) =
(

n(c), p(B|c)
)

where n(c) is the number of vectors merged in c and p(B|c) is
the conditional probability distribution of the features in clus-
ter c. In the case that c consists of a single vector ai, n(c) = 1
and the values of p(B|c) can be computed using equation 5.

For larger clusters, the DCF is computed recursively as
follows. Let c∗ denote the cluster we obtain by merging two
clusters c1 and c2. The DCF of the cluster c∗ is

DCF (c∗) =
(

n(c1) + n(c2), p(B|c
∗)
)

(6)

where

p(B|c∗) =
n(c1)

n(c1) + n(c2)
p(B|c1) +

n(c2)

n(c1) + n(c2)
p(B|c2)

as suggested by the expressions of the IB method.
The distance between two clusters c1 and c2 (denoted by

d(c1, c2)) is the information loss incurred by their merge and
is given by the expression δI(c1, c2) = I(A;Cb)− I(A;Ca),
where Cb and Ca denote the clusterings before and after the
merge, respectively. Note that the information loss depends
only on the clusters c1 and c2, and not on other parts of the
clustering Cb. From the expressions in Section 2.2, we have
that

d(c1, c2) =

(

n(c1)

n
+

n(c2)

n

)

DJS [p(B|c1), p(B|c2)]

where n is the total number of vectors in the data set.
The DCF s can be stored and updated incrementally. The

probability vectors are stored as sparse vectors, reducing the
amount of space considerably.

3.2 The LIMBO clustering algorithm

We now present the LIMBO algorithm. In what follows,
n is the number of input vectors, q is the number of features,
and k is the chosen number of clusters. The LIMBO algo-
rithm proceeds in four phases. In the £rst phase, we construct
a DCF tree that summarizes the data. In the second phase,
the DCF s of the tree are merged to produce a chosen number
of clusters. In the third phase, we label the data, i.e. we asso-
ciate each vector with the DCF to which the vector is closest.
Finally, phase 4 determines an appropriate number of clusters
for the proposed decomposition.

Phase 1: Creation of the DCF tree. As the name implies, the
DCF tree is a tree whose nodes contain DCF s. The number
of DCFs in each node is a parameter called branching factor
(we will denote it by E). Figure 2 presents a DCF tree with
a branching factor of 6.



child1 child3child2 child6child1 child3child2 child6

child1 child3child2 child5

prev next prev next

Root Node

Non-leaf node

Leaf node Leaf node

DCF6DCF2DCF1 DCF4DCF2DCF1

DCF5DCF2DCF1 DCF3

DCF6DCF2DCF1 DCF3

{ Data }

Figure 2. A DCF Tree with branching factor 6.

In order to create the DCF tree, we start with an empty
root node. Vectors are processed one by one. A vector a is
converted into DCF (a), as described in Section 3.1. Then,
starting at the root, we trace a path downward in the DCF
tree as follows:

When at a non-leaf node, we compute the distance between
DCF (a) and each DCF entry of the node (a maximum of
E entries), £nding the closest DCF entry to DCF (a). We
follow the child pointer of this entry to the next level of the
tree.

When at a leaf node, let DCF (c) denote the DCF entry
in the leaf node that is closest to DCF (a). DCF (c) is the
summary of some cluster c. At this point we need to decide
whether the vector DCF (a) will be absorbed in DCF (c) or
not. If the distance d(c, a), that is, the information loss in-
curred by merging DCF (a) into DCF (c) is less than a cho-
sen threshold (discussed in detail in Section 3.3), then we pro-
ceed with the merge. Otherwise, a forms a cluster of its own.
In this case, if there is space for another entry in the leaf node,
DCF (a) is inserted and all DCF s in the path toward the root
are updated using Equation (6). If there is no space, the leaf
node has to be split into two leaves. This is done in a manner
similar to that in BIRCH [28]. We £nd the two DCF s in the
node that are farthest apart and we use them as seeds for the
new leaves. The remaining DCF s and DCF (a) are placed in
the leaf that contains the seed DCF to which they are closest.

When a leaf node is split, resulting in the creation of a new
leaf node, its parent is updated, and a new entry is created
at the parent node that describes the newly created leaf. If
there is space in the parent node, we add a new DCF entry,
otherwise the parent node must also be split. This process
continues upward in the tree until the root is either updated or
split itself. In the latter case, the height of the tree is increased
by one.

The computational complexity of this phase is
O(qEn logE n) since we need to visit E entries of each

node and traverse a tree of height n logE n. Each computation
of a distance requires the traversal of q entries in the worst
case. The I/O cost of the algorithm is O(n) since only one
scan of the data is required.

Phase 2: Clustering. After the construction of theDCF tree,
the leaf nodes hold the DCF s of a clustering of the vectors in
A. In this phase, our algorithm employs the Agglomerative In-
formation Bottleneck (AIB) algorithm to cluster the DCF s in
the leaves and produce a clusteringC of theDCF s. The input
to the AIB algorithm is the set of the conditional probability
distributions p(B|c∗) stored in the leaf DCF s. The time for
this phase depends upon the number of leaf DCF s (denoted
by L).

In the worst case, the computational complexity of this
phase isO(L2), since all pairwise distances of the leaf entries
need to be known in advance. There is no I/O cost involved in
this phase since all computations are done in main memory.

Phase 3: Associating objects with clusters. Given a number
of clusters k, Phase 2 produces k DCF s that serve as repre-
sentatives of k clusters. In the third phase, we perform a scan
over the data set and assign each vector to the cluster whose
representative is closest with respect to the DKL distance.

The I/O cost of this phase is the reading of the data set
from the disk again. The CPU complexity is O(kqn), since
each vector is compared against the k DCF s that represent
the clusters.

Phase 4: Determining the number of clusters.
At this point, LIMBO is ready to produce a decomposi-

tion that exhibits small information loss for any k. In order to
choose an appropriate number of clusters, we start by creat-
ing decompositions for all values of k between 2 and a large
value. For the experiments performed for this paper, the cho-
sen value was 100. We felt that clusterings of higher cardi-
nality would not be useful from a reverse engineering point
of view. Moreover, this value was always suf£cient for the
purposes of choosing an appropriate k.

Let Ck be a clustering of k clusters and Ck+1 a clustering
of k+1 clusters. If the cluster representatives created in Phase
2 re¤ect inherent groupings in the data, then these neighbour-
ing clusterings must differ in only one cluster. More precisely,
if two of the clusters in Ck+1 get merged, this should result in
Ck. Using MoJo [27], we can detect these clusterings by com-
puting the distance between Ck+1 and Ck, i.e. the value of
MoJo(Ck+1, Ck). If this value is equal to one, the difference
between the two clusterings is a single join of two clusters of
Ck+1, to produce the k clusters of Ck. As a result, k is chosen
as the smallest value, for which MoJo(Ck+1, Ck) = 1.

3.3 Threshold value

LIMBO uses a threshold value to control the decision to
merge a new vector into an existing cluster, or place it in a



cluster by itself. This threshold limits the amount of informa-
tion loss in our summary of the data set. It also affects the size
of the DCF tree which in turn determines the computational
cost of the AIB algorithm in Phase 2.

The threshold value τ(φ), which is a function of a user-
speci£ed parameter φ, controls the decision between merging
a new vector into an existing cluster, or placing it in a cluster
by itself. Therefore, φ (and τ(φ) in turn) affect the size of the
DCF tree, as well as the granularity of the resulting represen-
tation. The value of τ(φ) also controls the duration of Phase
2 of LIMBO’s execution. A good choice for φ is necessary to
produce a concise and useful summarization of the data set.

In LIMBO, we adopt a heuristic for setting the value τ(φ)
that is based on the mutual information between variables A
and B. Before running LIMBO, the value of I(A;B) is calcu-
lated by doing a full scan of the data set. Since there are n vec-
tors in A, “on average” every vector contributes I(A;B)/n to
the mutual information I(A;B). We de£ne the threshold τ(φ)
as follows:

τ(φ) = φ
I(A;B)

n
(7)

where 0 ≤ φ ≤ n, denotes the multiple of the “average”
mutual information that we wish to preserve when merging
a vector into a cluster. If the merge would incur information
loss more than φ times the “average” mutual information, then
the new vector is placed in a cluster by itself.

In the next section we present our experiments in the soft-
ware domain for φ = 0.0. Given the relatively small size
of the input it was not deemed necessary to consider higher
values of φ. We also set E = 4, so that the Phase 1 inser-
tion time is manageable (smaller values of E lead to higher
insertion cost due to the increased height of the DCF tree).
Experiments in different domains can be found in [2].

4 Experiments with Structural Input

In order to evaluate the applicability of LIMBO to the soft-
ware clustering problem, we applied it to two large software
systems of known authoritative decomposition, and compared
its output to that of other well-established software clustering
algorithms.

The two large software systems we used for our experi-
ments were of comparable size, but of different development
philosophy:

1. TOBEY. This is a proprietary industrial system that is
under continuous development. It serves as the opti-
mizing back end for a number of IBM compiler prod-
ucts. The version we worked with was comprised of
939 source £les and approximately 250,000 lines of
code. The authoritative decomposition of TOBEY was
obtained over a series of interviews with its developers.

2. Linux. We experimented with version 2.0.27a of this
free operating system that is probably the most famous

open-source system. This version had 955 source £les
and approximately 750,000 lines of code. The authorita-
tive decomposition of Linux was presented in [7].

The software clustering approaches we compared LIMBO
to, were the following:

1. ACDC. This is a pattern-based software clustering al-
gorithm that attempts to recover subsystems commonly
found in manually-created decompositions of large soft-
ware systems [26].

2. Bunch. This is a suite of algorithms that attempt to £nd
a decomposition that optimizes a quality measure based
on high-cohesion, low-coupling. We experimented with
two versions of a hill-climbing algorithm, we will refer
to as NAHC and SAHC (for nearest- and shortest-ascend
hill-climbing) [15].

3. Cluster Analysis Algorithms. We also compared
LIMBO to several hierarchical agglomerative cluster
analysis algorithms. We used the Jaccard co-ef£cient
that has been shown to work best in a software clus-
tering context [4]. We experimented with four different
algorithms: single linkage (SL), complete linkage (CL),
weighted average linkage (WA), and unweighted average
linkage (UA).

In order to compare the output of the algorithms to the au-
thoritative decomposition, we used the MoJo distance mea-
sure1 [25, 27]. Intuitively, the smaller the distance of a pro-
posed decomposition to the authoritative one, the more effec-
tive the algorithm that produced it. Other comparison tech-
niques, such as the ones introduced by Koschke and Eisen-
barth [13], and Mitchell and Mancoridis [17] could also have
been chosen. Part of our future work will include determin-
ing whether the choice of comparison technique affects the
obtained results in a signi£cant fashion.

For the experiments presented in this section, all algo-
rithms were provided with the same input, the dependencies
between the software artifacts to be clustered. The traditional
cluster analysis algorithms were run with a variety of cut-point
heights. The smallest MoJo distance obtained is reported be-
low. This biases the results in favour of the cluster analy-
sis algorithms, since in a different setting the cut-point height
would have to be estimated without knowledge of the author-
itative decomposition. However, as will be shown shortly,
LIMBO outperforms the cluster analysis algorithms despite
this bias.

Table 8 presents the results of our experiments. As can
be seen, LIMBO created a decomposition that is closer to the
authoritative one for both TOBEY and Linux, although the
nearest-ascend hill-climbing algorithm of Bunch comes very

1A Java implementation of MoJo is available for download at:
http://www.cs.yorku.ca/˜bil/downloads



TOBEY Linux
LIMBO 311 237
ACDC 320 342
NAHC 382 249
SAHC 482 353

SL 688 402
CL 361 304
WA 351 309
UA 354 316

Table 8. MoJo distances between decomposi-
tions proposed by eight different algorithms
and the authoritative decompositions for TO-
BEY and Linux

close in the case of Linux, as is ACDC in the case of TO-
BEY. The cluster analysis algorithms perform respectably, but
as can be expected, cannot be as effective as the specialized
software clustering algorithms.

We believe that the fact that LIMBO performed better than
other algorithms can be attributed mostly to its ability to dis-
cover utility subsystems. An inspection of the authoritative
decompositions for TOBEY and Linux revealed that they both
contain such collections of utilities. Since in our experience
that is a common occurrence, we are optimistic that similar
results can be obtained for other software systems as well.

The results of these experiments indicate that the idea of
using information loss minimization as a basis for software
clustering has de£nite merit. Even though further experimen-
tation is required in order to assess the usefulness of LIMBO
to the reverse engineering process, it is clear that it can create
decompositions that are close to the ones prepared by humans.

We also tested LIMBO’s ef£ciency with both systems. The
time required to cluster a software system depends on the
number of clusters determined in Phase 4. For a given num-
ber of clusters k, LIMBO was able to produce a Ck clustering
within 31 seconds. Figure 3 presents LIMBO’s execution time
for both example systems, and all values of k from 2 to 100.

As can be seen on Figure 3, execution time varies only
slightly as k increases. As a result, obtaining an appropriate
clustering for either example system was a matter of minutes.
The similarity in the ef£ciency of LIMBO for the two systems
does not come as a surprise, since the number of source £les
to be clustered was similar (939 in TOBEY and 955 in Linux).

In the next section, we utilize LIMBO’s ability to combine
structural and non-structural information seamlessly in order
to evaluate the usefulness of certain types of information to
the reverse engineering process.

2 10 20 30 40 50 60 70 80 90 100
20

22

24

26

28

30

32

34

36

38

40

Number of Clusters

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

)

TOBEY
Linux

Figure 3. LIMBO execution time

5 Experiments with Non-Structural Input

We now present results for the application of LIMBO to
Linux when non-structural features are present. We will test
the quality of clustering when the following features are added
to the structural information:

• Developers (dev): This feature gives the ownership in-
formation, i.e., the names of the developers involved in
the implementation of the £le. In case no developer was
known, we used a unique dummy value for each £le.

• Directory Path (dir): In this feature we include the
full directory path for each £le. In order to in-
crease the similarity of the £les residing in simi-
lar directory paths, we include the set of all sub-
paths for each path. For example, the directory in-
formation for £le drivers/char/ftape/ftape-
io.c is the set {drivers, drivers/char,
drivers/char/ftape} of directory paths.

• Lines of Code (loc): This feature includes the number
of lines of code for each of the £les. We discretized the
values using two different schemes.

1. The £rst scheme divides the full range of loc values
into the intervals (0, 100], (100, 200], (200, 300]
etc. Each £le is given a feature such as RANGE1,
RANGE2, RANGE3 etc.

2. The second scheme divides the full range of loc val-
ues so that each interval contains the same number
of values. Files are given features in a similar man-
ner to the previous scheme.

In our experiments, both schemes gave similar results.
For this reason, we will only present results for the £rst
scheme.



• Time of Last Update (time): This feature is derived from
the time-stamp of each £le on the disk. We include only
the month and year.

In order to investigate the results LIMBO produced with
the aforementioned non-structural features, we consider all
possible combinations of them added to the structural infor-
mation. These combinations are depicted in the lattice of Fig-
ure 4. At the bottom of this lattice we have the structural de-
pendencies, and as we follow a path upwards, different non-
structural features are added. Thus, in the £rst level of the
lattice, we only add individual non-structural features. Each
addition is represented by a different type of arrow at each
level of the lattice. For example, the addition of dir is given
by a solid arrow. As the lattice of Figure 4 suggests, there are
£fteen possible combinations of non-structural features that
can be added to the structural information.

Each combination of non-structural features in Figure 4 is
annotated with the MoJo distance between the decomposition
created by LIMBO and the authoritative one. The results are
also given, in ascending order of the MoJo distance value, in
Table 9. The table also includes the number of clusters that
the proposed decomposition had in each case.

Clusters MoJo
dev+dir 69 178

dev+dir+time 37 189
dir 25 195

dir+loc+time 78 201
dir+time 18 208
dir+loc 74 210

dev+dir+loc 49 212
dev 71 229

structural 56 237
time 66 239

dev+time 73 240
dev+loc 73 242

dev+loc+time 45 248
dev+dir+loc+time 48 248

loc+time 34 265
loc 85 282

Table 9. Number of clusters and MoJo distance
between the proposed and the authoritative de-
composition.

The £rst observation to be made is that certain combina-
tions of non-structural data produce clusterings with a smaller
MoJo distance to the authoritative decomposition than the
clustering produced when using structural input. This indi-
cates that the inclusion of non-structural data has the potential
to increase the quality of the obtained decomposition. How-
ever, in some of the cases the MoJo distance to the authorita-
tive decomposition has increased signi£cantly.

A closer look reveals some interesting trends:

• Following a solid arrow in the lattice always leads to a
smaller MoJo value (with the exception of the topmost
one where the value is actually the same). This indicates
that the inclusion of directory structure information pro-
duces better decompositions, an intuitive result.

• Following a dashed arrow leads to a smaller MoJo value
as well, although the difference is not as dramatic as be-
fore (the topmost dashed arrow is again an exception).
Still, this indicates that ownership information has a pos-
itive effect on the obtained clustering, a result that con-
£rms the £ndings of Holt and Bowman [6].

• Following a dotted arrow consistently decreases the qual-
ity of the obtained decomposition (a marginal exception
exists between dir+time and dir+loc+time). This con-
£rms our expectation that using the lines of code as a
basis for software clustering is not a good idea.

• Finally, following the arrows that indicate addition
of time, leads mostly to worse clusterings but only
marginally. This indicates that time could have merit as
a clustering factor, but maybe in a different setting. It is
quite possible that if we obtain information about which
£les are being developed around the same time by exam-
ining the revision control logs of a system, that we will
get better results.

A further observation is that the few exceptions to the
above trends that we encountered occurred in the top part of
the lattice. This can probably be attributed to the fact that
when a number of factors has already been added to the al-
gorithm’s input, the effect of a new factor will not be as sig-
ni£cant, and in fact it might be eclipsed by the effect of other
factors. As a result, we believe that the lower part of the lattice
yields more accurate results than the top part.

It is interesting to note that when the structural informa-
tion was removed from LIMBO’s input, the results were not
as good. In fact, loc and time produced rather random de-
compositions. The situation was better for dir and dev (MoJo
distances to the authoritative decomposition of 407 and 317
respectively), but still quite far from the results obtained from
the combination of structural and non-structural data. This re-
sult indicates that an effective clustering algorithm needs to
consider both structural and non-structural information in or-
der to produce decompositions that are close to the conceptual
architecture of a software system.

Finally, the execution times observed for these experiments
were almost identical to the ones reported in Section 4.

In summary, the results of our experiments show that direc-
tory structure and ownership information are important factors
for the software clustering process, while lines of code is not.
Temporal information might require more careful setup before



loc+timedir+timedev+timedir+locdev+locdev+dir

dir+loc+timedev+loc+timedev+dir+timedev+dir+loc

addition of loc

addition of time

addition of dir

addition of dev

dev
239282195229

265208240210242178

201248189212

248

237
Structural

dev+dir+loc+time

timelocdir

Figure 4. Lattice of combinations of non-structural features for the Linux system

it can be effective. Further research is, of course, required in
order to determine whether these results hold true for a variety
of software systems, or are particular to the Linux kernel.

6 Conclusions

This paper presented the novel notion that information loss
minimization is a valid basis for a software clustering ap-
proach. We developed an algorithm that follows this approach
and showed that it performs as well, if not better than existing
algorithms.

Our approach has the added bene£t that it can incorporate
in the software clustering process any type of information rel-
evant to the software system. We experimented and assessed
the usefulness of four different such types of information.

Certain avenues for further research present themselves.
Further experimentation with more software systems is one of
our plans. The decompositions created by LIMBO will also
have to be evaluated in an empirical study, where developers
of the clustered systems provide feedback on them. We are
de£nitely excited to investigate other types of information that
are potentially useful to the software clustering process. Such
types include date of creation, revision control logs, as well
as concepts extracted from the source code using various con-

cept analysis techniques. Finally, applying relative weights to
the various types of data used as input, is also a possibility for
future work.

Acknowledgements

We would like to thank Nicolas Anquetil for providing the
implementation of the cluster analysis algorithms, as well as
Spiros Mancoridis for the Bunch tool. We are also grateful
to Ivan Bowman and R.C. Holt for the developer information
of the Linux kernel. Finally, we thank Panayiotis Tsaparas,
Renée J. Miller and Kenneth C. Sevcik for their contribution
to the development of LIMBO.

This work was supported in part by the National Sciences
and Engineering Research Council of Canada (NSERC).

References

[1] P. Andritsos and R. J. Miller. Reverse Engineering meets
Data Analysis. In Proceedings of the Ninth International
Workshop on Program Comprehension, pages 157–166,
May 2001.

[2] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik.
Limbo: A scalable algorithm to cluster categorical data.



Technical report, UofT, Dept of CS, CSRG-467, 2003.
[3] N. Anquetil and T. Lethbridge. File clustering using

naming conventions for legacy systems. In Proceedings
of CASCON 1997, pages 184–195, Nov. 1997.

[4] N. Anquetil and T. Lethbridge. Experiments with clus-
tering as a software remodularization method. In Pro-
ceedings of the Sixth Working Conference on Reverse
Engineering, pages 235–255, Oct. 1999.

[5] I. T. Bowman and R. C. Holt. Software architecture re-
covery using conway’s law. In Proceedings of CASCON
1998, pages 123–133, Nov. 1998.

[6] I. T. Bowman and R. C. Holt. Reconstructing ownership
architectures to help understand software systems. In
Proceedings of the Seventh International Workshop on
Program Comprehension, May 1999.

[7] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as
a case study: Its extracted software architecture. In Pro-
ceedings of the 21th International Conference on Soft-
ware Engineering, May 1999.

[8] S. C. Choi and W. Scacchi. Extracting and restructuring
the design of large systems. IEEE Software, pages 66–
71, Jan. 1990.

[9] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley & Sons, New York, NY, USA, 1991.

[10] M. R. Garey and D. S. Johnson. Computers and in-
tractability; a guide to the theory of NP-completeness.
W.H. Freeman, 1979.

[11] D. H. Hutchens and V. R. Basili. System structure anal-
ysis: Clustering with data bindings. IEEE Transactions
on Software Engineering, 11(8):749–757, Aug. 1985.

[12] R. Koschke. Atomic architectural component recovery
for program understanding and evolution. Ph.D. Thesis,
Institute for Computer Science, University of Stuttgart,
2000.

[13] R. Koschke and T. Eisenbarth. A framework for experi-
mental evaluation of clustering techniques. In Proceed-
ings of the Eighth International Workshop on Program
Comprehension, pages 201–210, June 2000.

[14] R. Lutz. Recovering high-level structure of software
systems using a minimum description length principle.
In Proceedings of the 13th Irish Conference on Arti£cial
Intelligence and Cognitive Science, Sept. 2002.

[15] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner.
Bunch: A clustering tool for the recovery and mainte-
nance of software system structures. In Proceedings of
the International Conference on Software Maintenance.
IEEE Computer Society Press, 1999.

[16] E. Merlo, I. McAdam, and R. D. Mori. Source code
informal information analysis using connectionist mod-
els. In International Joint Conference on Arti£cial In-
telligence, pages 1339–1344, 1993.

[17] B. S. Mitchell and S. Mancoridis. Comparing the
decompositions produced by software clustering algo-
rithms using similarity measurements. In Proceedings of

the International Conference on Software Maintenance,
pages 744–753, Nov. 2001.

[18] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl.
A reverse engineering approach to subsystem structure
identi£cation. Journal of Software Maintenance: Re-
search and Practice, 5:181–204, Dec. 1993.

[19] N. Slonim and R. Somerville and N. Tishby and O. La-
hav. Objective Classi£cation of Galaxies Spectra using
the Information Bottleneck Method. Monthly Notices
of the Royal Astronomical Society, (MNRAS), 323(270),
2001.

[20] R. W. Schwanke. An intelligent tool for re-engineering
software modularity. In Proceedings of the 13th Interna-
tional Conference on Software Engineering, pages 83–
92, May 1991.

[21] R. W. Schwanke and M. A. Platoff. Cross references are
features. In Second International Workshop on Software
Con£guration Management, pages 86–95. ACM Press,
1989.

[22] N. Slonim and N. Tishby. Agglomerative Information
Bottleneck. In Neural Information Processing Systems,
(NIPS-12), pages 617–623, 1999.

[23] N. Slonim and N. Tishby. Document Clustering Using
Word Clusters via the Information Bottleneck Method.
In Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in In-
formation Retrieval, pages 208–215, 2000.

[24] N. Tishby, F. C. Pereira, and W. Bialek. The Infor-
mation Bottleneck Method. In 37th Annual Allerton
Conference on Communication, Control and Computing,
Urban-Champaign, IL, 1999.

[25] V. Tzerpos and R. C. Holt. MoJo: A distance metric for
software clusterings. In Proceedings of the Sixth Work-
ing Conference on Reverse Engineering, pages 187–193,
Oct. 1999.

[26] V. Tzerpos and R. C. Holt. ACDC: An algorithm for
comprehension-driven clustering. In Proceedings of the
Seventh Working Conference on Reverse Engineering,
pages 258–267, Nov. 2000.

[27] Z. Wen and V. Tzerpos. An optimal algorithm for MoJo
distance. In Proceedings of the Eleventh International
Workshop on Program Comprehension, pages 227–235,
May 2003.

[28] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An ef£cient Data Clustering Method for Very Large
Databases. In Proceedings of the ACM SIGMOD Inter-
national Conference on the Management of Data, pages
103–114, June 1996.


