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ABSTRACT
Comparing and contrasting different solution approaches is
known in math education and cognitive science to increase
student learning – what about CS? In this experiment, we
replicated work from Rittle-Johnson and Star, using a pretest–
intervention–posttest–follow-up design (n=241). Our inter-
vention was an in-class workbook in CS2. A randomized half
of students received questions in a compare-and-contrast
style, seeing different code for different algorithms in paral-
lel. The other half saw the same code questions sequentially,
and evaluated them one at a time. Students in the former
group performed better with regard to procedural knowl-
edge (code reading & writing), and flexibility (generating,
recognizing & evaluating multiple ways to solve a problem).
The two groups performed equally on conceptual knowledge.
Our results agree with those of Rittle-Johnson and Star, in-
dicating that the existing work in this area generalizes to CS
education.

Categories and Subject Descriptors
K.3.2 [Computers and Information Science Educa-
tion]: Pedagogy, education research

General Terms
Experimentation

Keywords
Computer science education, CS2, worked examples

1. INTRODUCTION
Computer science is a field in which problems call for a

great deal of creativity, and problem solvers need to gener-
ate, recognize and evaluate different ways of solving prob-
lems. However, in our experience, typical CS1 courses tend
to show a limited view of the the discipline; due to resource-
constraints and tradition, students are seldom challenge to
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solve problems in different ways, compare approaches, or do
things differently.

For our students, CS2 is where we as educators first truly
begin to show that there are different approaches to solving
problems. We show different ways to sort, and different
data structures to store information. The standard approach
is sequential in presentation: Here’s an algorithm. Here’s
another algorithm. Here’s a data structure. Here’s another.

While we as CS instructors aim to give students an under-
standing of how these algorithms and data structures relate,
comparison is often done as an afterthought. More often, we
compare algorithms and data structures to abstract bench-
marks on performance: “hashtable insertion is O(1)” rather
than “hashtable insertion is faster than heap insertion”.

And to be fair: from a cognitive load theory perspective,
it makes sense to first teach, for example, one partitioning
strategy for quicksort, and then to teach a different strat-
egy, rather than to teach them in parallel. Yet, the evidence
from the math education and cognitive science literature in-
dicates that it is actually more effective to teach different
approaches to solving a problem in parallel, comparing and
contrasting them in the process.1 For example, Loewenstein
et al compared students who saw two novel case studies ei-
ther sequentially, or in parallel, and found students were
better at analyzing the case studies when they were pre-
sented in parallel [3]. They described the effect of learning
the case studies in one batch as“analogical encoding”and re-
late it to analogical learning [3]. Unlike analogical learning,
where students relate new information to existing schemas,
in analogical encoding, the students create schemas by using
the differences in the case studies to understand relational
structures embedded within the cases.

In this study, we investigate the effect of comparing differ-
ent solution approaches to programming questions in CS2.
We build on the existing literature on comparing; our study
is a replication of two empirical studies by Rittle-Johnson
and Star. We hypothesize that comparing and contrasting
is more effective than showing different approaches sequen-
tially, consistent with those two studies [4, 5].

1.1 The Original Studies

1.1.1 The Algebra Study
In 2007, Rittle-Johnson and Star published a study of

grade 7 students (n=70), using a pretest–intervention–posttest
design [4]. For the intervention, students were paired; pairs

1Furthermore, the empirical evidence for cognitive load the-
ory is mixed, if not negative [1, 2].



were randomly assigned to one of two conditions. In one con-
dition, students studied two worked examples side-by-side;
one example showed “Mandy’s solution” to solving an alge-
bra problem, and the other showed “Erica’s solution”, an-
other valid approach. The students were asked why Mandy
and Erica got the same solution, and why one might use
Erica’s approach, which had fewer steps.

The other condition saw the same two examples, but se-
quentially. On one page was Mandy’s solution, and a ques-
tion asking why one might use that approach. On the next
page was Erica’s solution, and a question about it.

Rittle-Johnson’s and Star’s pretest/posttest was written
to probe students’ knowledge using the following knowledge
taxonomy [4], which is established in the math education
literature [6]:

• Procedural knowledge, defined as “the ability to exe-
cute action sequences to solve problems, including the
ability to adapt known procedures to novel problems
(transfer)” [7]

– Familiar problems, those that are isomorphic to
those in the intervention

– Transfer problems, new problems solvable with
the methods seen in the intervention

• Procedural flexibility, also known simply as flexibility:
knowledge of different ways of solving problems and
when to use them [8]

– Generating multiple methods to solve a problem

– Recognizing multiple methods to solve a problem

– Evaluating new methods

• Conceptual knowledge, defined as generalizable knowl-
edge that is “an integrated and functional grasp of
mathematical ideas” [8]

In their study, they found that the compare-and-contrast
condition outperformed the sequential condition with regard
to procedural knowledge and flexibility, and both groups
performed equally well on conceptual knowledge gains [4].
This had been the first study to empirically demonstrate
that comparing and contrasting was effective at improving
learning in mathematics. Previously, it had only been known
through experience reports spanning over two decades [4, 9,
10, 11]; and there was a body of research in cognitive science
using very different contexts [3, 12, 13].

1.1.2 The Estimation Study
In 2008, Star and Rittle-Johnson replicated the algebra

study with one on computational estimation [5] (n=157),
to investigate whether the same effects would be seen in a
situation where there is no right answer. While in algebra
there are multiple ways to solve a problem to get the same
right answer, in estimation there are numerous valid ways
to make estimations.

For this study, they added a second posttest to their de-
sign to probe retention of knowledge, and otherwise used
the same design. They found again that the compare-and-
contrast group learnt more with regard to procedural knowl-
edge and flexibility – and not conceptual knowledge.

Figure 1: Our study design; the pretest, posttest
and follow-up posttest were all the same.

1.1.3 This Study
From these studies and established cognitive science re-

search, it is reasonable to expect that the same would be true
if we were to ask questions about theoretical computer sci-
ence. But what about programming? We know that reading
code is full of structure that students have difficulty compre-
hending [14] – and high cognitive load as a result. A problem
such as “estimate 10*27” has much less cognitive load than
to read ten lines of code and write its output, or to write
five lines of code.

Furthermore, a grade 7 student has experience with num-
bers and equations from the past seven years of mathematics
education. A first-year computer science student has much
less to draw on when presented code for the first time. As
such, we were motivated to see whether replicating Rittle-
Johnson and Star’s studies with a programming example
would produce different results.

To be consistent with the experiment being performed
on inexperienced non-beginners, we chose to do our experi-
ment in a first-year CS2 course. Basic algorithms and data
structures provide a context rich in examples of different
approaches to solving problems – for this study, we chose
collision resolution of hashing.

2. METHODS

2.1 Study design
Our study took place in a CS2 class in Python at the

University of Toronto in the spring of 2012; over 300 students
were enrolled in the class, in three separate lecture sections2.
Two lecture sections were taught by a senior teaching-track
faculty member; the third section was taught by a graduate
student.

Our study used a pretest–intervention–posttest–follow-up
design (we refer to the pretest, intervention, posttest and
follow-up as the four “portions” of the study). The pretest,
posttest, and follow-up posttest were all the same. The in-
tervention given was a workbook on hashtables, containing
an introduction, worked examples, and questions. 241 stu-
dents partook in at least one portion of the study, 83 of
which participated in all four portions.

A randomly-distributed half of the class received work-
books where questions were presented sequentially (control
group); the other half received workbooks where the ques-
tions were presented in a compare-and-contrast fashion (ex-
perimental group). Both groups received the same introduc-
tion and worked examples. The intervention was double-
blind in that the researcher did not know which student had
done which workbook, and students did not know whether

2Our study was performed with approval from the Univer-
sity of Toronto Office of Research Ethics, Protocol #27388.
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Figure 2: Above: The questions of the control group’s workbook; below: the experimental group



theirs was the control. Unlike Rittle-Johnson and Star’s
work, we did not pair students for the intervention.

Students were repeatedly told during the pretest, posttest,
and follow-up posttest, to leave questions blank rather than
guess. Each page of the tests also repeated this request, in
bold. Students received no grades or other compensation for
participating in the study; analysis was performed after the
term had ended, and we did not have access to the map-
ping of student IDs (used to connect pretests to workbooks
to posttests) to any other student information (name, final
grade, etc).

The four portions of the study were delivered over a three
week period, as shown in Figure 2. In the first week, we gave
both pretest and the workbooks; in the second week, we gave
only the posttest; in the third week we gave the follow-up.
While we would have liked more time between the posttest
and follow-up, we were constrained by the instructors’ abil-
ity to fit in time for the study, as well as to administer each
stage of the study to the three lecture sections on the same
days. The third week of the study, it should be noted, was
also the last week of the term.

2.2 Pre/Posttests
In their experiments, Rittle-Johnson and Star separated

questions into whether they assessed procedural knowledge,
flexibility, and conceptional knowledge. As a replication of
their studies, our pretests were based on their assessments
and categorizations (Table 1).We felt it was important to
use the same knowledge taxonomy so that we could prop-
erly relate our findings to theirs. In their studies, procedural
knowledge meant solving mathematics problems – here, it
means reading and writing code. In both cases, the procedu-
ral knowledge represents the questions the students worked
on for the interventions.

We piloted our questions informally on seven volunteer
graduate students who had experience as TAs for the CS2
course we were probing, and two other TAs who had no
Python experience (to ascertain how much guesswork could
be used on the questions).

2.3 Workbook questions
After a two-page introduction to hash tables with worked

examples, students’ workbooks then contained four ques-
tions to complete on hash tables. (This is the only instruc-
tion students received on hash tables.) The control group
received questions sequentially (shown in Figure 2):

1. Code to insert using linear probing

2. A question to insert some elements to a table

3. A question on writing code to delete elements from a
table

4. Code to insert using quadratic probing

5. A question to insert some elements to a table

6. A question why one would or would not use this colli-
sion resolution method

The experimental group was asked the same or similar
questions, but in a different order:

1. Code to insert using linear probing and to insert using
quadratic probing was displayed side-by-side

2. The same questions to insert elements using linear
probing and quadratic probing

3. The same question to write code to delete with linear
probing

4. A question asking the students to compare and con-
trast the two methods (instead of why one would use
or not use quadratic probing)

2.4 Data analysis
Pretests, workbooks, and posttests were first transcribed

– each distinct response to each question was given a code.
Codes were recorded along with the students’ ID number
to link their different assessments. Examples of codes here
mean if two students hashed the numbers 41, 89, 23 and 55
as [41, 89, 23, 55, , , , ,] then they would hve the same code;
if a student answered that question with [ , , 23, , 41, 55, , ,
89, ], they would get a different code.

These numerous preliminary codes were then grouped and
consolidated into a smaller, more workable set of new codes.
This stage of encoding had a level of subjectivity to it, so the
first author gave a fifth of the transcriptions to the other two
authors to encode. The three authors then discussed their
encodings until a consensus was reached. The first author
then used the consensus on how to group codes to encode
the rest of the transcriptions. Each code was then given a
quantitative score. A total of 11 marks were available for
procedural questions; 16 for flexibility questions; and 4 for
conceptual questions.

The coding and marking of the pretests and posttests was
done with a blind analysis [15] – we did not know which
students were in which experimental condition when coding
a given pre/posttest.

To determine whether the two conditions performed dif-
ferently, we performed a hierarchical linear analysis, group-
ing students by section. This was done separately for each
question type (procedural, flexibility, conceptual). The nlme
package in R (version 2.15.1) was used to generate the hierar-
chical linear models [16]. In our interpretation of the results,
we use the standard p = 0.05 threshold for statistical signif-
icance.

2.5 Hierarchical linear modeling
Hierarchical linear modeling (HLM) is also known as“mul-

tilevel modelling” and “mixed-effect modelling” [17]. It is
used often in education studies for its ability to handle nested
data structures, such as students being nested in schools
or classes; ignoring this nesting and performing a regres-
sion analysis will result in an inflated Type I error [17]. It
also allows us to test cross-level interactions, and the anal-
ysis allows for drop-out between tests. HLM also allows us
to examine individual growth over time, unlike traditional
ANOVA and ANCOVA methods [18].

3. PRETEST
As the procedural questions on the pretest could correctly

be answered by any student with sufficient Python knowl-
edge, students’ scores on the pretest were fairly high – stu-
dents could answer about 40% of the procedural questions on
the pretest. Flexibility questions, however, were less likely
to be known in advance (Table 2).

We began by first testing whether the experimental group’s
pretest scores were different from the control group’s, on a
section by section basis. There was no significant difference
between the two groups within each section.



Problem type Sample items Scoring on sample item
Procedural knowledge (7 questions – 11 points)
Familiar: code reading (4 Qs) Add the elements 41, 89, 23 and 55 to the table [using the code

above for linear probing].
1 pt for each correct an-
swer

Transfer: code reading (2 Qs) Add the elements 2, 9891, 30, 27, 33 and 34 for the table [using
the code above for chaining].

1 pt for each correct an-
swer

Transfer: code writing (1 Q) Write code to remove a given element from the hash table [that
uses chaining].

5 pts for code correctness

Flexibility (6 questions – 16 points)
Generating multiple methods (2
Qs)

Hash the elements 12, 22, 33 and 42 in two different ways. [Ta-
ble] What did you use for your hash function and collision res-
olution for way 1? Way 2?

1 pt for each reasonable
way

Recognize multiple methods (2
Qs)

What are two ways of resolving collisions? 1 pt for each reasonable
way

Evaluate non-conventional
methods (2 Qs)

Heather comes up with a collision resolution strategy where if
inserting an element would result in a collision, she uses a second
hash function to try to hash the element. Is this a good idea?

1 point for a conclusion,
1 point for a correct ar-
gument

Conceptual knowledge (2 Qs – 4 points; 1 Q worth 1 pt, 1 Q worth 3 pts)
Conceptual questions (2 Qs) All our examples [with h(k) = k%10] had a 10-element list.

What sort of hash function might you use if you had a 100-
element list?

1 pt for “%100” or equiv-
alent

Table 1: Sample items for assessing procedural knowledge, flexibility, and conceptual knowledge

Next, we compared the three lecture sections. No dif-
ferences were found between the three lecture sections re-
garding procedural knowledge, and flexibility. However, for
conceptual knowledge, the section taught by the graduate
student performed significantly worse than the two lecture
sections taught by the teaching-track faculty member (M =
22% vs 37%/39%; p = 0.047).

It is worth noting that while in aggregate, students in
the experimental group had a higher mean on the pretest
than the control group, the difference was not statistically
significant.

4. POSTTEST RESULTS
For this portion of the analysis, we only used scores of

participating students who completed the intervention. The
analysis includes students who only completed one of the
two posttests. Between the three tests, a total of 366 tests
are used herein, from 165 students.

Pretest Posttest Follow-up
M (%) σerr M (%) σerr M (%) σerr

Control (sequential)
Procedural 37.6 2.4 50.6 2.7 50.6 3.3
Flexibility 13.2 2.5 47.1 3.7 49.4 4.4
Conceptual 32.6 4.0 64.7 3.8 65.4 4.8

Experimental (compare & contrast)
Procedural 41.0 2.7 57.2 2.5 56.2 2.9
Flexibility 21.9 3.5 53.9 3.0 57.5 3.7
Conceptual 35.7 4.0 60.1 3.8 62.9 4.9

Table 2: Aggregate scores including all
three sections, for students who wrote the
pretest/intervention. Students included in this
table may have written 0, 1, or 2 posttests.

4.1 Procedural knowledge
In our hierarchical model, we found that students in the

experimental section demonstrated significantly more proce-
dural knowledge on the two posttests (p = 0.02). Of the 11
points for procedural knowledge, the experimental section
scored 0.61 points (6%) better than the control (4.1 vs. 3.5;
σ = 0.3).

We found that while scores varied between lecture sections
(σ = 0.3, scores are out of 11), that variation was not seen in
the effect of treatment on procedural knowledge (σ ∼= 0.00).

Students’ measured procedural knowledge increased by
0.83 points out of 11 (7%) between posttests (σ = 0.4), indi-
cating students were improving at reading and writing code.
Two factors may be responsible. First, at this point in term,
students may be better at reading and writing code. Sec-
ond, that students were more familiar with the test and had
written it previously.

4.2 Flexibility
As expected, the experimental group outperformed the

control group on the two posttests (p = 0.047). The exper-
imental group scored 0.12 points out of 16 better than the
control group (0.33 vs. 0.45; σ = 0.1).

Like for procedural knowledge, this did significantly im-
prove between posttests, but the effect was slight (on aver-
age, students gained 0.08 points with each test; σ = 0.06).

Posttest flexibility scores did not vary significantly be-
tween lecture sections (σ ∼= 0.0), nor did the learning gains
vary between lecture sections (σ ∼= 0.0).

4.3 Conceptual knowledge
For conceptual knowledge, no significant effect was found

between treatments (p = 0.860) in our hierarchical linear
model. The control group had slightly, but non-significantly
better scores on conceptual questions (0.89 points out of 4
vs. 0.87; σ = 0.1 for both).



The three lecture sections did not differ regarding concep-
tual knowledge gains on the posttests (σ ∼= 0.0), although
they began with different pretest scores.

And like in the other question categories, a small and
significant learning effect was seen between posttests (each
new test added 0.64 points out of 4 to students’ scores; σ =
0.09).

5. STUDENTS WITHOUT PRETESTS AND
INTERVENTIONS

Excluded in the previous section were students absent the
day we gave the pretest and the intervention. However, a
number of those students participated when we gave the
posttests in the following weeks (n=24). For these students,
their first posttest is effectively a pretest, but given later in
the term than the rest of the class. And if these students
wrote both of the posttests, we can use it to probe how
much they learnt only from repeated testing, since the effect
of the intervention will not be present in their scores. These
students fall into three mutually exclusive categories:

Group 1 Those who did only the first posttest (n=9)
Group 2 Those who did only the second posttest (n=7)
Group 1+2 Those who did only the first and second posttests

(n=8)

There are no significant differences between the scores of
these three groups. For the students who did both posttests
(Group 1+2), no significant gains are seen between the two
tests (Table 3). This section acts as a sanity check of our
results in the previous section3.

First posttest Second posttest
G 1 ∪ 1+2 G 1+2 G 2 G 1+2

M σ M σ M σ M σ
Proced. 44% 7% 60% 9% 33% 13% 41% 8%
Flexib. 18% 7% 21% 10% 20% 12% 22% 10%
Concep. 26% 9% 13% 13% 31% 14% 31% 16%

Table 3: Performance of students who did not write
pretest/intervention, but wrote one (Group 1 and
Group 2) or two posttests (Group 1+2).

These three groups of students had scores that were sig-
nificantly like the scores of students who wrote the pretest.
Although these students wrote their first test one or two
weeks later than their peers, they did not perform better
despite having had more time to learn how to read and write
Python. Looking at Group 1+2, we see their scores did not
increase between posttests. These students’ second posttests
are significantly similar to the wider class’ pretests, and not
significantly similar to the wider class’ posttests. This indi-
cates that the interventions had a real effect on the students
who completed them, regardless of treatment.

6. DISCUSSION
Overall, we found that the experimental group outper-

formed the control group. The experimental group per-
formed better on the posttests with regard to procedural

3This section has two notable threats to validity: the small
sample size, and the likelihood that students who skipped
1-2 lectures may not be representative of the whole class.

knowledge, and flexibility – and the groups were tied on
conceptual knowledge. Our findings indicate that having
students compare-and-contrast different valid approaches to
solving programming problems is more effective than show-
ing the same approaches sequentially.

We found that the effect held in our second posttest, and
that repeated testing resulted in higher scores with regard
to procedural knowledge, flexibility, and conceptual knowl-
edge. However, this effect was only seen in students who
participated in the intervention – students who wrote only
both the posttests did not see a significant gain between
them. In short, while the control group learnt less than the
experimental group, the control group still learnt more than
those who had no intervention at all!

Looking at the students who only wrote posttests, we ob-
served that scores were not dependent on how far along in
the term the student was when they wrote their first test.
This indicates that the learning effect between posttests seen
in students who did the intervention was not due to increased
practice with the overall course content, but due to increased
practice with our particular activity.

It is not surprising that students’ scores would increase
with repeated testing [19] – this has been found in of itself
to be effective in teaching.

6.1 Theoretical Understanding
So, why would comparing and contrasting different solu-

tions facilitate learning? First, it aids students in identifying
what is important in a problem, and what the different fea-
tures are [13]; in a sense, this provides a road-map to the
problem. If presented with only one piece of code, it is diffi-
cult for a novice to interpret which parts are important [14]
– with more pieces of code a novice can construct patterns
and schema.

This runs against what one would expect from a cognitive
load theory perspective – by presenting more at once, this
increases cognitive load. However, there is mixed evidence
for cognitive load theory [1, 2] – and compare-and-contrast
activities may help students abstract the code they are given,
allowing them to handle a larger cognitive load.

In our study, the students who did the sequential work-
books did better than those who did no workbook at all –
though our sample size for the latter group is very small. In-
terestingly, in Loewenstein et al’s study, students given two
sequential case studies to analyze learnt less than students
not given any case studies at all [3]. It is possible that this
difference is due to the study setting: our study was in situ,
and theirs was a laboratory setting.

6.1.1 Conceptual knowledge
In our analysis, conceptual knowledge had different results

than procedural knowledge, and flexibility. In the pretests,
conceptual knowledge was the only category where we saw
differences between lecture sections: the more experienced
instructor’s sections had better conceptual knowledge. Con-
ceptual knowledge was also the only category where the ex-
perimential and control groups had similar gains from hav-
ing an intervention done – both outperforming students who
had neither intervention.

This was somewhat unexpected; existing literature has
found that comparing and contrasting would lead to greater
improvements in conceptual knowledge [20, 7]. However,
Rittle-Johnson and Star’s study had the same result as ours:



conceptual knowledge was not increased by their compare
condition [4]. Examining this more, they found in later work
[5] that conceptual knowledge increases more in response
to compare-and-contrast when a student already knows one
way to solve the problem, but the effect is not seen when
the student does not begin with that much knowledge.

To probe this, we compared students who scored at least
one point on the pretest conceptual questions to students
who scored no points.

For the students who began with conceptual knowledge,
there was no overall significant difference between the con-
trol and experimental groups in terms of conceptual learning
gains. However, the difference between treatments varied by
lecture section: in the section taught by the graduate stu-
dent, the gains in the experimental group were significantly
more than those in the control group. For the other two
lecture sections, there was no significant difference between
conditions.

For the students who began without conceptual knowl-
edge, those in the experimental group had better follow-up
posttest scores than those who were in the control group.
Again, the effect was strongest in the lecture section taught
by the graduate student, as seen in Table 4.

Instructor/Group Pretest Posttest Follow-up
M % σ M % σ M % σ

Has pretest conceptual knowledge
PhD’s experimental 70 12 90 10 81 12
PhD’s control 57 7 75 7 75 14
TTF’s experimental 59 3 62 5 60 6
TTF’s control 63 4 71 5 74 6

Does not have pretest conceptual knowledge
PhD’s experimental 0 0 65 7 73 11
PhD’s control 0 0 50 10 50 16
TTF’s experimental 0 0 45 9 56 10
TTF’s control 0 0 58 5 49 6

Table 4: Scores on conceptual questions; PhD =
graduate student; TTF = Teaching-track faculty.

These results are the opposite of what Rittle-Johnson and
Star found. Here, the students who began without concep-
tual knowledge benefited more from the compare and con-
trast condition, and those who already had some conceptual
knowledge did not respond differently to the two treatments!
It appears that comparing-and-contrasting is even more use-
ful to novices in CS than expected. It is also possible that
this is more useful for novice instructors, given the effect was
stronger in the graduate student’s section.

6.2 Threats to Validity
If the study were to be repeated under similar constraints,

we would perform the intervention on the same day as the
first posttest, rather than on the same day of the pretest.
Our experience was that upon completing a pretest, students
were less inclined towards a workbook activity. They were
probably less likely to read it in detail than if we had done
the activity the week afterward, directly before the posttest.

With our large sample size, we are confident we have the
necessary statistical power in our analysis; for a study with

our level of groupings using HLM, n = 90 is considered suf-
ficient [21]4.

By performing a blind analysis, and administering the
tests and workbooks in a double-blind fashion, we are con-
fident the effect of researcher bias is minimal. This study is
a replication of two others[4, 5], and consistent with their
findings. We hence can generalize to the existing theory that
comparing and contrasting is more effective in mathematical
fields than teaching different approaches sequentially.

What is more difficult to generalize, however, is whether
our study represents all programming problems. Our study
finds that comparing and contrasting programming prob-
lems is more effective than a sequential approach in our
context – and, importantly, we can generalize our findings
to the existing theory. What we have here is a strengthening
of existing theory (analytical generalization), rather than a
statistical generalization to all programming problems and
all CS students. As such, we expect we would find the same
result had it been code about binary trees, or linked lists.

But what if this were replicated with comparing and con-
trasting for-loops to while-loops in CS1? It is not as clear
that we have the necessary construct validity to claim this
to be the case. But our findings do strengthen the theory
that would predict this to be the case.

Finally, it is worth noting the possibility that the students
in the experimental condition could have had better learning
gains in our study due to be being better learners, rather
than due to the intervention. However, given the random
assignment of students to conditions, and the large sample
size of the study, we consider this to be unlikely.

6.3 Implications for instruction
We recommend to CS instructors to demonstrate multiple

solution approaches while teaching programming – showing
solutions in parallel to students in CS2 (and presumably
above) appears to allow students to better differentiate im-
portant problem features and consider multiple methods [4].
In particular, having students compare and contrast consol-
idates these effects, and improves learning in multiple cate-
gories.

For CS2, where multiple approaches are typically shown
sequentially, material can be often easily rearranged to dis-
cuss different algorithms and data structures in parallel.
Comparing and contrasting as the material is taught is more
likely to have students consider the different aspects of al-
gorithms upfront.

Math teachers who have adopted teaching multiple dif-
ferent solution approaches have found another pedagogical
benefit: by discussing different solutions with students “of-
fered them access to their students’ thinking and to miscon-
ceptions that they might be harboring” [9].

6.4 Future work
While we have shown in CS2 that comparing and contrast-

ing different programming approaches leads to increased learn-
ing, it remains open whether this actually changes student
perceptions. Verifying this theoretical expectation is the
area of potential future work.

4There is no agreement as to how to calculate effect sizes
for HLM [22]; however, there are rules of thumb for what a
necessary sample size is.



Also worth examining is whether the effect we observed
would hold in a CS1 class. Rittle-Johnson and Star, in their
work, conclude that “students may need familiarity and flu-
ency with a limited range of strategies before comparison of
additional strategies aids knowledge of related concepts” [5],
which would be absent at the beginning of CS1. Possible
ideas would include comparing and contrasting for-loops to
while-loops, or using arrays to having multiple variables.

7. CONCLUSIONS
In our study, we found that students who compared and

contrasted different solutions to programming problems out-
performed those who saw the same problems sequentially,
with regard to procedural knowledge (reading and writing
code), and flexibility (generating multiple methods to solve a
problem, recognizing multiple methods, and evaluating mul-
tiple methods). No difference was found between the two
groups in conceptual knowledge.

This indicates that teaching programming by demonstrat-
ing multiple solutions to a problem and comparing and con-
trasting them is more effective than the traditional approach
of showing one solution at a time – in this case, teaching
linear probing and quadratic probing in parallel was more
effective than teaching them sequentially.

By teaching programming in this way, not only can we
expect more learning gains, but it is more likely that stu-
dents will see programming as a discipline where there is no
magical “right answer” to every problem.
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