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Abstract

We consider a classic social choice problem in an online set-
ting. In each round, a decision maker observes a single agent’s
preferences over a set of m candidates, and must choose
whether to irrevocably add a candidate to a selection set of
limited cardinality k. Each agent’s (positional) score depends
on the candidates in the set when he arrives, and the decision-
maker’s goal is to maximize average (over all agents) score.
We prove that no algorithm (even randomized) can achieve an
approximation factor better than O( log logm

logm
). In contrast, if

the agents arrive in random order, we present a (1− 1
e
−o(1))-

approximate algorithm, matching a lower bound for the of-
fline problem. We show that improved performance is possi-
ble for natural input distributions or scoring rules.
Finally, if the algorithm is permitted to revoke decisions
at a fixed cost, we apply regret-minimization techniques to
achieve approximation 1− 1

e
−o(1) even for arbitrary inputs.

Introduction
Suppose that a manufacturer wishes to focus on a selected
set of possible products to offer to incoming consumers. On
each day a new client arrives, selecting her favorite product
among those being offered. However, the client may also
express preferences over potential products, including those
that are not currently being offered. The manufacturer must
then decide whether or not to add new production lines to
make available to that consumer, as well as to future con-
sumers. While adding a new product would potentially in-
crease customer welfare, it carries with it some opportunity
cost: it would be impractical to offer every possible prod-
uct, so choices are effectively limited and irrevocable (since
new production lines incur substantial overhead). Adding
new products may be worthwhile if many future customers
would prefer the chosen product as well, though this is not
known to the manufacturer in advance. The problem is thus
one of online decision-making, where uncertainty of future
preferences must be balanced with the necessity of making
decisions to realize current gains.

In our study of this problem, we model the underlying
restriction on the set of candidates that can be chosen as a
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cardinality constraint. That is, there is a bound k on the num-
ber of alternatives that can be chosen. To model the agents’
valuations, we use a positional scoring rule, given by a non-
increasing vector α, denoting the score associated with every
rank. An agent’s value for a “slate” of items is therefore the
score of the maximum rank of any item on the slate at the
time of the agent’s arrival. The designer’s goal is to maxi-
mize the sum of agents’ scores.

We consider the following three different models for the
manner in which the agents preferences are set, arranged in
strictly decreasing order of generality:

• Adversarial model: the sequence of agent preferences is
arbitrary (but non-adaptive, meaning that they cannot de-
pend on the outcome of an algorithm’s randomization).1

• Random order model: the set of agent preferences is ar-
bitrary, but the order of agent arrival is uniformly random.

• Distributional model: The player preferences are drawn
independently from a fixed distribution.

For general positional scoring rules, we cannot hope to
achieve an arbitrarily good approximation to the optimal (in
hindsight) choice of k candidates, even for the random order
model. The offline problem is known to be APX-hard, with
a tight inapproximability bound of (1 − 1

e ) via a reduction
to Max k-Cover (Lu and Boutilier 2011). This raises two
questions: 1) Can we get close to this offline approximation
ratio, in online settings? 2) Are there natural assumptions
under which we can attain even better approximations? We
examine these questions under the various valuation and in-
put models described above.

Results We first consider the adversarial model of input.
We show that no online algorithm can obtain a bounded
competitive ratio: it is not possible to achieve a score larger
than an O( log logm

logm ) fraction of the optimal (offline) score.
We prove this lower bound using an indistinguishability
argument, and in particular it is independent of computa-
tional complexity assumptions. Moreover, this inapproxima-
tion bound applies even in the case where k = 1 and the
positional scoring rule takes values in {0, 1}.

1This adversarial model is also referred to as an “oblivious ad-
versary”, in the online algorithms literature.
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Motivated by this negative result, we consider the random
order model. We show that for an arbitrary positional scor-
ing function, one can approximate the optimal set of candi-
dates to within a factor of (1 −

(
k−1
k

)k − o(1)), where the
asymptotic notation is with respect to the number of agents.
Thus, as n grows large, our online algorithm achieves ap-
proximation factor 1 − 1/e, matching the lower bound for
offline algorithms (Lu and Boutilier 2011). In the special
case k = 1, the regret exhibited by the online selection
method vanishes as n grows large. Our approach is to sam-
ple a small number of initial customers, then apply the
greedy hill-climbing method for submodular set-function
maximization to the empirical distribution of observed pref-
erences. The technical hurdle to this approach is to bound the
sample complexity of the optimization problem. We prove
that structural properties of the greedy optimization method
imply that polynomially many samples are sufficient.

We also show how to improve the competitive ratio to (1−
o(1)) for the case where agent preferences are sampled i.i.d.
from a Mallows distribution (with an unknown preference
ranking). If, in addition, the Borda scoring rule is used, we
show how to achieve this improved competitive ratio with
only logarithmically many samples.

Moving away from positional scoring functions to ar-
bitrary utility functions, we apply a recent result due to
Boutilier et al. (2012) who demonstrated that a social choice
function can approximate the choice of a candidate to max-
imize agent utilities to within a factor of Õ(

√
m) (where m

is the number of candidates), even if only preference lists
are made available. We combine this theory with our pre-
vious result to conclude that the same approximation factor
applies in the online setting for arbitrary utility functions, in
the random-order model.

Finally, we revisit the adversarial model of input and con-
sider a setting in which the decision maker is allowed to re-
move items from the selection set, at a cost. In this case, we
show that regret-minimization techniques can be applied to
construct an online algorithm with vanishing additive regret.
An important difficulty in this case is that the cost to remove
an item may be significantly larger than the score of any
given agent. One must therefore strike a balance between
costly slate reorganization and potential long-term gains. We
show that it is possible to achieve vanishing regret in this set-
ting, where the rate at which regret vanishes will necessarily
depend on the removal cost.

Related Work
The problem of selecting a single candidate given a se-
quence of agent preference lists is the traditional social
choice problem. The offline problem of selecting a set of
candidates that will “proportionally” represent the voters’
preferences was introduced by Chamberlin and Courant
(Chamberlin and Courant 1983). Subsequently Lu and
Boutilier (2011) studied the problem from a computational
perspective, in which several natural constraints on the al-
located set were considered. In particular, it was shown that
for the case where producing copies of the alternatives bears
no cost, the problem of selecting which candidates to make

available is a straightforward case of non-decreasing and
submodular set-function maximization, subject to a cardi-
nality constraint, which admits a simple greedy algorithm
with approximation ratio 1 − 1/e. Our work differs in that
the agent preferences arrive online, complicating the choice
of which alternatives to select, as the complete set of agents
preference is not fully known in advance.

In our online setting, we refer to the Mallows model
(1957), a well-studied model for distributions over permuta-
tions (e.g. (Fligner and Verducci 1986; Doignon, Pekeč, and
Regenwetter 2004)) which has been studied and extended in
various ways. In recent work, Braverman and Mossel (2008)
have shown that the sample complexity required to estimate
the maximum-likelihood ordering of a given Mallows model
distribution is roughly linear. We make use of some of their
results in our analysis.

Adversarial and stochastic analysis in online computation
have received considerable attention (e.g. (Even-Dar et al.
2009)). In our analysis, we make critical use of the assump-
tion that agent arrivals are randomly permuted. This is a
common assumption in online algorithms (e.g., (Karp, Vazi-
rani, and Vazirani 1990; Kleinberg 2005; Mahdian and Yan
2011)). In our analysis of the random order model, we use
sampling techniques that commonly used in secretary and
multi-armed bandits problems (Babaioff et al. 2008).

In a recent paper, Boutilier et al. (2012) consider the social
choice problem from a utilitarian perspective, where agents
have underlying utility functions that induce their reported
preferences. The authors study a measure called the distor-
tion, to compare the performance of their social choice func-
tions to the social welfare of the optimal alternative. We use
their constructions in our results for the utilitarian model.

The online arrival of preferences has been previously
studied by Tennenholtz (2004). This work postulates a set
of voting rule axioms that are compatible with online set-
tings. Also, Hemaspaandra et al. (2012) studied the task of
voter control in an online setting.

In our study of the problem under adversarial models, we
propose a relaxation of the online model in which revoca-
tions of the decisions can be made at a fixed cost. A simi-
lar relaxation of an online combinatorial problem was pro-
posed by Babaioff et al. (2009). We highlight two main dif-
ferences from our setting. First, they do not assume an ad-
ditive penalty as a result of cancellations; rather, every such
buyback operation incurs a multiplicative loss to the final ob-
jective value. More importantly, in their model, each agent’s
valuation of the algorithm’s solution is measured w.r.t. the
final state of the solution. In our model however, the agents’
valuations are given with respect to the content of the slate
at the end of their arrival steps.

Preliminaries
Given is a ground set of alternatives (candidates) A =
{a1, . . . , am}. An agent i ∈ N = {1, . . . , n}, has a prefer-
ence �i over the alternatives, represented by a permutation
πi. For a permutation π and an alternative a ∈ A, we will let
π(a) denote the rank of a in π. A positional scoring func-
tion (PSF) assigns a score v(i) to the alternative ranked ith,
given a prescribed vector v ∈ Rm≥0. A canonical example of



a positional scoring rule is the Borda scoring rule, which is
characterized by the score vector (m−1,m−2, . . . , 0). For
an (implicit) profile of agent preferences π = (π1, . . . , πn),
we denote the average score of a single element a ∈ A by
F (a) = 1

n

∑n
i=1 Fi(a), where Fi(a) = v(πi(a)) (agent i’s

score for alternative a). Moreover, we will consider the score
of a set S ⊆ A of candidates w.r.t. to a set of agents as the
average positional scores of each of the agents, assuming
that each of them selected their highest ranked candidate in
the set: F (S) = 1

n

∑
i∈N maxa∈S Fi(a).

The online budgeted social choice problem. We consider
the problem of choosing a set of k ≥ 1 candidates from
the set of potential alternatives. An algorithm for this prob-
lem starts with an empty “slate” S0 = ∅ of alternatives, of
prescribed capacity k ≤ m. In each step t ∈ [n], an agent
arrives and reveals her preference ranking. Given this, the
algorithm can either add new candidates I ⊆ A \ St−1 to
the slate (i.e. set St ← St−1 ∪ I), if |St−1| + |I| ≤ k, or
leave it unchanged. Agent i in turn takes a copy of one of
the alternatives currently2 on the slate, i.e. St. Any addition
of alternatives to the slate is irrevocable: once an alterna-
tive is added, it cannot be removed or replaced by another
alternative. The offline version of this problem is called the
limited choice model in (Lu and Boutilier 2011).

Some of our results will make use of algorithms for maxi-
mizing non-decreasing submodular set functions subject to a
cardinality constraint. A submodular set function f : 2U →
R≥ upholds f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ) for
all S ⊆ T ⊆ U and x ∈ U \ T .

The Adversarial input Model: Lower Bounds
We begin by considering general input sequences, in which
agents can arrive in an arbitrary order. For arbitrary posi-
tional scoring rules (normalized so that scores lie in [0, 1]),
a constant approximation is possible when the entire input
sequence can be viewed in advance (Lu and Boutilier 2011).
In this section we show that this result cannot be extended
to the online setting: no algorithm can achieve a constant
competitive ratio for general inputs.

Our negative result applies to a very restricted class of
scoring rules. In the inputs we consider, each agent i ∈ N
is interested in a single item a ∈ A, and the total score is
increased by one point for every satisfied agent. In other
words, our scoring vector is the m-dimensional vector with
1 in the first entry, and zeroes in the other entries. In vot-
ing theory, this is referred to as the single non-transferable
vote rule (STNV). Note that the offline k-slate optimization
task is trivial: sort the candidates in non-increasing order of
scores, and take the top k candidates.

We emphasize that even though one can view an arbi-
trary input sequence as adversarial, we model such an ad-
versary as non-adaptive (or equivalently, oblivious). By this
we mean that the input sequence is set before the algorithm
realizes any randomness in its candidate choices. If an ad-
versary were allowed to be adaptive, a strong lower bound

2Our results remain unchanged if the customer can only choose
from among the items that were on the slate before he arrived.

on algorithm performance would be trivial. Indeed, an adap-
tive adversary could simply choose, on each round, to set
an agent’s preference to an item not currently on the slate;
this would prevent any algorithm from achieving a bounded
competitive ratio. With this in mind, we focus on study-
ing non-adaptive adversaries, which are more appropriate in
cases where the algorithm’s choices should not affect the
preferences of future agents. However, even against a non-
adaptive adversary, we prove that no online algorithm can
achieve a constant approximation.

Proposition 1. For a non-adaptive adversary and any
randomized online algorithm, the competitive ratio is
O( log logm

logm ), even in the special case of STNV.

Proof. Let X ≥ 1 and ` ≥ 1 be integer values to be spec-
ified later. We define a set of input sequences {I1, . . . , I`}.
Input Ij consists of nX/m agents who desire item 1, fol-
lowed by nX2/m agents who desire item 2, nX3/m agents
who desire item 3, and so on, up to nXj/m agents who
desire item j. We will refer to each of these contiguous sub-
sequences of agents with the same desire as blocks. After
these j blocks, the remaining agents’ preferences are divided
equally among the items in A, in an arbitrary order. Note
that, for this set of input sequences to be well-defined, we
will require that ` ≤ m and

∑`
j=1 nX

j/m ≤ n.
Consider the behavior of any (possibly randomized) algo-

rithm on input I`. First, we can assume w.l.o.g. that when
the algorithm adds an item, it adds the currently requested
item (as otherwise it could wait until the next request of the
added item and obtain the same social welfare). Any such
algorithm defines a probability distribution over blocks, cor-
responding to the probability that the algorithm selects an
item while that block is being processed. In particular, there
must exist some block r such that the probability of select-
ing an item during the processing of that block is at most
1/`. Moreover, since inputs I` and Ir are indistinguishable
up to the end of block r, the probability of selecting an item
in block r is also at most 1/` on input Ir.

On input Ir, the optimal outcome is to choose item r, for
a score of at least nXr/m. If any other item is chosen, the
score received is at most nXr−1/m + n/m = n(Xr−1 +
1)/m. Thus, the expected score of our algorithm is at most
1
`n(Xr + 1)/m + n(Xr−1 + 1)/m, for an approximation
factor of 1

` + 1
`Xr + 1

X + 1
Xr ≤

1
` + 2

X .
Setting X = ` = log(m)/ log log(m) yields the de-

sired approximation factor, and satisfies the requirement∑`
j=1 nX

j/m ≤ n.

The Random Order Model
We briefly recall the random order model. We assume that
the set of agent preference profiles is arbitrary. After the set
of all preference has been fixed, we assume that they are
presented to an online algorithm in a uniformly random or-
der. The algorithm can irrevocably choose up to k candidates
during any step of this process; each arriving candidate will
then receive value corresponding to his most-prefered can-
didate that has already been chosen. The goal is to maximize



the value obtained by the algorithm, with respect to an arbi-
trary positional scoring function.

In general, we cannot hope to achieve an arbitrarily close
approximation factor to the optimal (in hindsight) choice of
k candidates, as it is NP-hard to obtain better than a (1− 1

e )
approximation to this problem even when all profiles are
known in advance3. Our goal, then, is to provide an algo-
rithm for which the approximation factor approaches 1 − 1

e
as n grows, matching the performance of the best-possible
algorithm for the offline problem4.

Let F (·) be an arbitrary PSF, based on score vector v;
w.l.o.g. we can scale v so that v(1) = 1. Note that this im-
plies that F (a) ∈ [0, 1] for each outcome a. If agent i has
preference permutation πi, then write Fi(·) = v(πi(·)) for
the scoring function F applied to agent i’s permutation of
the choices. Also, we’ll write σ for the permutation of play-
ers representing the order in which they are presented to an
online algorithm. Thus, for example, Fσ(1)(a) denotes the
value that the first observed player has for object a.

For S ⊆ A and PSF F , write F (S) = maxa∈S F (a) —
the value of the highest-ranked object in S. Given a set T
of players, FT (S) =

∑
j∈T Fj(S) is the total score held by

the players in T for the objects in S. We also write FT (S) =
FT (S)
|T | for the average score assigned to set S. Let OPT =

maxS⊆A,|S|≤k FN (S) be the optimal outcome value.
Let us first describe a greedy algorithm for the offline

problem that achieves approximation factor (1 − 1/e), due
to Lu and Boutilier (2011). The algorithm repeatedly selects
the candidate that maximizes the marginal gain in the ob-
jective value, until a total of k candidates have been chosen.
As any PSF, F (·) can be shown to be a non-decreasing, sub-
modular function over the sets of candidates. This algorithm
obtains approximation 1− (k−1k )k, which is at most 1−1/e
for all k. We will write Greedy(N, k) for this algorithm ap-
plied to set of players N with cardinality bound k.

We now consider the online algorithm A, listed as Algo-
rithm 1. We write V (A) for the value obtained by this
algorithm. We claim that the expected value obtained by A
will approximate the optimal offline solution.

Theorem 2. If m < n1/3−ε for any ε > 0, then E[V (A)] ≥
(1− (k−1k )k − o(1))OPT .

The first step in the proof of Theorem 2 is the following
technical lemma, which states that the preferences of the first
t players provide a good approximation to the (total) value
of every set of candidates, with high probability.

3We can reduce Max-k-Coverage (Feige 1998) to the budgeted
social choice problem for the case of l-approval: the PSF where the
first l positions receive score 1, and others receive score 0.

4For the special case of the Borda scoring rule, it can be shown
that the algorithm that simply select a random k-set obtains a 1 −
O(1/m)-approximation to the offline problem. Furthermore, this
algorithm can be derandomized using the method of conditional
expectations. We omit the proof due to space considerations. An
alternative method for the case of the Borda scoring rule would
be to combine our sampling-based technique with the algorithm
proposed by Skowron et al. (2013)

Algorithm 1: Online Candidate Selection Algorithm
Input: Candidate set A, parameters k and n, online

sequence of preference profiles

1 Let t← n2/3(log n+ k logm);
2 Observe the first t agents, T = {σ(1), . . . , σ(t)};
3 S ← Greedy(T, k);
4 Choose all candidates in S and let the process run to

completion;

Lemma 3. Pr[∃S, |S| ≤ k : |FT (S)− F (S)| > n−1/3] <
2
n , where the probability is taken over the arrival order.

Proof. Let t be defined as in Alg. 1. Choose any set S with
|S| ≤ k. For each j ∈ [t], let Xj be a random variable de-
noting the value Fσ(j)(S). Note that E[Xj ] = F (S) for all
j, and that FT (S) = 1

t

∑
Xj . By the Hoeffding inequality

(without replacement), for any ε > 0,Pr[|FT (S)−F (S)| >
ε] < 2e−ε

2t. By the union bound over all S with |S| ≤ k,

Pr[∃S, |S| ≤ k : |FT (S)− F (S)| > ε]

< 2

k∑
`=1

(
m

`

)
e−ε

2t ≤ 2mke−ε
2t

Setting t = n2/3(log n + k logm) and ε = n−1/3 then
yields the desired result.

With Lemma 3 in hand, we can complete the proof of The-
orem 2 as follows. Since FT (S) is almost certain to approxi-
mate F (S) well for every S, our approach will be to sample
T , choose the (offline) optimal output set according to the
preferences of T , then apply this choice to the remaining
bidders. This generates two sources of error: the sampling
error bounded in Lemma 3, which is at most n−1/3 per agent
for a total of n2/3, and the loss due to not serving the agents
in T , which is at most t = n2/3(log n + log k). Noting that
OPT cannot be very small (it must be at least n

m ), we con-
clude that the relative error vanishes as n grows large.

One special case of note occurs when k = 1; that is, there
is only a single candidate to be chosen. In this case, the regret
experienced by our online algorithm vanishes as n grows.

Corollary 4. If k = 1 and m < n1/3−ε for any ε > 0, then
E[V (A)] ≥ (1− o(1))OPT .

Remark Algorithm 1 makes use of the greedy algorithm,
resulting in a computationally efficient procedure. How-
ever, our sampling method is actually more general: one
can use any offline α-approximate algorithm on line 3 to
obtain an overall competitive ratio of α − o(1) in our
online setting. In particular, in the absence of computa-
tional tractability constraints, one could obtain a competi-
tive ratio of 1 − o(1). Furthermore, some classes of pref-
erences (e.g. single-peaked preferences and single-crossing
preferences) are known to admit improved algorithms that
could be applied (e.g., (Betzler, Slinko, and Uhlmann 2013;
Skowron et al. 2013)).



A connection to the unknown distribution model After
having considered the random order model as an example
of an input model where a certain degree of random noise
allows us to obtain a comparatively efficient algorithm, one
might ask if there are any other input models to which sim-
ilar techniques could be applied. Due to a recent result by
Karande et al. (2011) in a related online setting, we argue
that the case in which the agent preferences are sampled
i.i.d. from an unknown discrete distribution over preferences
is a special case of the aforementioned random order model.
The discussion, which contains a formal description of the
equivalence theorem, is given in the full version of the paper.

Additional extensions and special cases
Following the issue of having a distribution over preference
“types”, can we obtain any better results for specific distri-
butions? We consider the case where each of the incoming
agent preferences are drawn i.i.d. from a Mallows distribu-
tion, with an unknown underlying reference ranking (see the
full version for a formal definition of the Mallows distribu-
tion). We show that if n is sufficiently large, than there exists
an online algorithm for selecting the optimal k-slate, which
obtains a competitive ratio of 1−o(1). For the random order
model and Borda scores, we provide an efficient 1 − o(1)-
competitive online algorithm (requiring only a logarithmic
number of samples). These two algorithms are described in
the full version of the paper.

Our final extension to the random order model pertains to
a result by Boutilier et al. (2012). Assuming that agents have
utilities for the alternatives in A , i.e., cardinal preferences,
but only report on the ordinal preferences, induced by the
values for the items, the question is: how well do positional
scoring rules perform in selecting the optimal items, relative
to the total valuation of the maximum-valuation item? We
argue that given this complication, the addition of an online
arrival of the agents does not impose a significant barrier to
the design of efficient positional scoring rules. The relevant
discussion is given in the full version of the paper.

The Item Buybacks Extension
Given our lower bounds for adversarial inputs for the online
social choice problem with binary valuations, one may argue
that the fact that decisions must be irrevocable may be too
stringent. Indeed, in many scenarios, it is often the case that
changes to the contents of the slate can be made at a cost.
We therefore consider a natural relaxation of our setting: in-
stead of making the item additions to the slate irrevocable,
we allow for the removal of items, at a fixed cost ρ > 0.
That is, at any point in time t, in addition to adding items to
the slate St, (conditioned on |St| ≤ k), the decision maker
is allowed to remove items in St at a cost of ρ per item.
The goal is to maximize the net payoff of the algorithm: for
the sequence of states (S(1), . . . , S(n)) corresponding to the
sequences of agent valuations, such that agent t’s score for
slate S(t) is Ft(S(t)), the goal is to maximize the function∑n
t=1(Ft(S

(t)) − ρ · |S(t−1) \ S(t)|) (for consistency, we
assume that S(0) = ∅). A similar approach of relaxing the
restrictions of an online setting was studied by Babaioff et

al. (2009). Note that we still compare performance against
the original offline problem without buybacks. Indeed, fol-
lowing the learning literature, we are interested in whether
allowing buybacks in the online problem can offset the gap
in approximability relative to the offline problem.

Clearly, this gives rise to a “spectrum” of online problems,
where for ρ large enough we are left with our original set-
ting, whereas for ρ = 0, the algorithm can simply satisfy
each incoming agent. The goal of this section is to show that
under this relaxation of the model, and assuming that the
agent valuations are in the range [0, 1] (note that we do not
require them to be consistent with some score vector), then
the task of optimizing the contents of the slate at every step
can be effectively reduced to a classical learning problem.

Warmup: k = 1

For the purpose of exposition, we begin with the special case
of k = 1. We will assume that each agent i ∈ N has a
positional scoring rule Fi : [m] → [0, 1], based on a score
vector v, normalized so that v(1) = 1.5

Our approach is to employ the multiplicative weight up-
date (MWU) algorithm (e.g., (Freund and Schapire 1997;
Arora, Hazan, and Kale 2012)), designed for the following
expert selection problem. Given a set of m experts, the de-
cision maker selects an expert in each round t = 1, . . . , T .
An adversary then determines the payoffs that each expert
yields that round. The performance of such an online policy
is measured against the total payoff of the best fixed expert
in hindsight. The MWU algorithm works as follows. Start-
ing from a uniform weight vector (w0

1 = 1, . . . , w0
m = 1),

at each step t, the algorithm selects expert j ∈ [m] with
probability wti/

∑m
j=1 w

t
j . After round t, If the payoff of

expert i is F t(i) ∈ [0, B], update the weights by setting
wt+1(i) = (1 + ε)F

t(i)/B , for some parameter ε > 0.
We reduce our problem to this setting by partitioning the

input sequence into dn/Be ‘epochs’ of lengthB, for a given
B, and selecting slates for each epoch anew. We then use
the MWU algorithm, treating the B-length epochs as single
steps in the original learning problem, and the slate states as
our possible ‘experts’. We call this algorithm EpochAlg. A
formal description appears in the full paper.

Now, we make crucial use of the following result, as
adapted from (Arora, Hazan, and Kale 2012), which guar-
antees a bound on the additive regret of the MWU:
Proposition 5 (Arora, Hazan, and Kale 2012). Consider a
T -step experts selection problem with m experts. Then the
MWU algorithm admits a payoff of at least (1 − ε)OPT −
B lnm/ε, conditioned on having ε ≤ 1/2.

The following guarantee on the net payoff (after deduct-
ing the buyback costs) of EpochAlg follows from Prop. 5:
Theorem 6. Let OPT be the maximal welfare obtained by
any fixed single item in A. The net payoff of EpochAlg is at
least OPT − (32n2ρ lnm)1/3. If n � m3 lnm and ρ =
o(n/(m3 lnm)), then this payoff is at leastOPT (1−o(1)).

5In fact, our results do not require that all agents use the same
score vector; only that each agent i has a unit-demand scoring func-
tion Fi normalized so that maxa∈A Fi(a) = 1.



Proof. By Prop. 5 and the fact that the contents of the slate
can change before every epoch, we get that the net payoff of
EpochAlg is at least OPT−ε ·OPT−(B · lnm)/ε−(ρ ·n)/B.

To minimize the first two error terms (due to running the
MWU algorithm) set ε ·OPT = (B lnm)/ε. AsOPT ≤ n,
we get that for ε =

√
(B lnm)/n, the algorithm gives a net

payoff of at least: OPT − 2 ·
√
Bn lnm− ρ · n/B

Similarly, equating the last two terms in the above bound
gives B =

(
ρ2n/(4 lnm)

)1/3
, which, plugging in our

previous formula gives a lower bound of: OPT − 2ρ ·

n(ρ2n/4 lnm)−1/3 = OPT −
(
32n2ρ lnm

)1/3
The above bound is of practical interest when the sec-

ond term (the additive regret) is asymptotically smaller than
OPT . EquatingOPT to the regret term, and using the lower
bound OPT ≥ n/m, we obtain that ρ = o(n/(m3 lnm))
is necessary for the algorithm to admit vanishing regret (this
term also gives the lower bound on n in the theorem).

Prop. 5 requires that ε ≤ 1/2, which is satisfied by our
setting of ε, B and the aforementioned bound on ρ.

Going beyond k = 1
In order to address cases where k > 1, we must notice that
the reduction to the experts selection problem required us
to consider each of the items as “experts”. Naturally, we can
take a similar approach for the case of k > 1, by considering
all possible

(
m
k

)
slates as our experts. If one is not limited

by computational resources, it is easy to see that a simple
modification of EpochAlg provides a vanishing regret:
Theorem 7. Let OPT be the maximal social welfare ob-
tained by any fixed subset of A of size k. Then the net payoff
of EpochAlg with B = (k

2ρ2n
4 lnm ) and ε =

√
B lnm/n, is

at least OPT − (32n2kρ lnm)1/3. Assuming that k5n �
m3 lnm and ρ = o( k5n

m3 lnm ), then this payoff is at least
OPT (1− o(1)).

The proof of the above theorem is largely identical
Thm. 6; we omit it due to space limitations.

Computational Efficiency
Recall that the MWU algorithm applied in Thm 7 invokes,
as a black box, the subproblem of selecting the best of a
set of experts given an offline instance of the optimization
problem. However, the expert selection problem is NP-hard
in general for k > 1. Thus, in general, this algorithm cannot
always be implemented in poly-time in each iteration.

In the case where one is interested in a computation-
ally efficient algorithm (with buybacks), we now describe a
straightforward transformation for a rich subclass of valua-
tion models. Consider the case where, for every agent i ∈ N ,
the number of candidates for which agent i has a non-zero
value is at most some constant d. We say in this case that Fi
has support size at most d (if each agent is required to report
exactly d, identically valued candidates, we end up with the
well-known d-approval scoring rule).

In this case, we can consider the following adjustment
to EpochAlg. For each agent i ∈ N , we define an alterna-
tive linear score function: F ′i (S) = d−1

∑
j∈S Fi(j). This

score function is linear over items in the candidate set, and
is guaranteed to take values in [0, 1]. Note that since the
valuations under this new valuation function are additive,
d−1Fi(S) ≤ F ′i (S) ≤ Fi(S).
Theorem 8. If for every agent i ∈ N , Fi has support size at
most d, then for any fixed ρ and large enough n, there exists
a ( 1

d − o(1))-online algorithm that uses buyback payments.

Using this transformation, and our technique for reduc-
ing the online problem to the online experts selection using
buyback payments, we can apply the algorithmic framework
given by Kalai and Vempala (2005), for the expert selec-
tion problem under linear objectives, to achieve vanishing
regret. As these linear scores differ from the original scoring
rules Fi by a factor of at most d, and only in one direction,
this implies that the online algorithm is also (1/d − o(1))-
approximate with respect to the original scoring rules. The
details are deferred to the full version of the paper.

Conclusions and Future Directions
We have described an online variant of a common opti-
mization problem in computational social choice. We have
designed an efficient sample-based algorithms that achieve
strong performance guarantees under various distributions
over preference sequences. We showed that no online al-
gorithm can achieve constant competitive ratio when agent
preferences are arbitrary, but that this difficulty can be cir-
cumvented if buybacks are allowed.

The first open question, raised by our lower bound for the
adversarial input model, is whether or not one could find a
online algorithm that matches this bound.

Another direction for research would be to improve the
rate at which the regret vanishes as n grows, both in the dis-
tributional settings, and in the adversarial setting with buy-
back. Another direction is the study of more involved combi-
natorial constraints, such as matroid or knapsack constraints.

We could also extend our work by considering cases in
which the agents can strategically delay their arrival, so as to
increase their payoffs due to having a larger set of selected
alternatives. Clearly, the pure sampling approach we have
taken in this paper would be problematic, as no agent would
like to take part in the initial sampling of preferences, and
would thus delay their arrival in order to avoid it.

Finally, our transformation to the linear valuation function
F ′(·) was done in order to make use of known algorithmic
techniques for online experts selection with linear objective
functions. To what extent can this technique be extended to
handle richer types of objective functions? Such extensions
could have implications on the competitive ratios achievable
for online social choice problems.
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The Mallows-based Distributional Model
Suppose that the agent preferences are sampled i.i.d. from
the well-studied Mallows model, which defines a family
of permutation distributions. Roughly speaking, Mallow’s
model assumes that preferences are aligned according to
some base permutation π̂, but each agent’s permutation is
(independently) perturbed according to a particular error
measure. We begin by giving a formal definition of this dis-
tribution.

Let us begin our formal definition by introducing the
Kendall-tau distance (which is also known as the Kemeny
distance or the bubble-sort distance):
Definition 9 (Kendall-tau distance). For all π, π′ ∈ Sm,
the Kendall-tau distance between π and π′ is dK(π, π′) =
#{i 6= j : π(i) < π(j) and π′(i) > π′(j)}.
Definition 10 (The Mallows model). Let φ ∈ (0, 1) and
π̂ ∈ Sm. The Mallows model distributionD(π̂, φ) is a distri-
bution over permutations of {1, . . . ,m}, such that the prob-
ability of a permutation π ∈ Sm is

Pr[π] = φdK(π,π̂)/Z (.1)

where Z is a normalization constant: Z =∑
π∈Sm φ

dK(π̂,π).

Fact 11. It can be shown that Z = 1 · (1 + φ) · · · · · (1 +
· · ·+ φm−1).

We note that the Mallows model induces a unimodal dis-
tribution. Furthermore, the parameter φ can be seen as con-
trolling the amplitude of error with respect to permutation π̂:
as φ approaches 1 the distribution tends to uniformity, and
as φ approaches 0 the distribution approaches a point mass
at π̂.

We will assume that the agent preference rankings are
drawn independently from a Mallows model distribution
D(π̂, φ), where the underlying reference ranking π̂ is un-
known. We will assume that the dispersion parameter φ is
known in advance. Our optimization task in this model is to
select a S ⊆ A of size at most k, in an online fashion, so as
to maximize the expected value of S among the remaining
agents (with respect to a given positional scoring function).

For simplicity of notation and without loss of generality,
from hereon we assume that π̂ is the identity permutation.
That is, π̂(i) = i. We note that since D(π̂, φ) is a unimodal
distribution, Theorem 2 and Claim 25 together imply an im-
mediate corollary for this distributional model.
Theorem 12. Let F (·) be an arbitrary positional scoring
function, and let A be the online algorithm listed as Al-
gorithm 1. Then if m < n1/3−ε for any ε > 0, we have
E[V (A)] ≥ (1− (k−1k )k − o(1))OPT .

Given this result, our motivating question for this section
is whether we can obtain improved results by making use of
the particular form of the Mallows model.

An Improved Result for Arbitrary PSFs
Suppose that our goal is to maximize the value of an ar-
bitrary PSF F (·), scaled so that F (1) = 1. Write Am =∑m−1
i=0 φi. We begin with a lemma about the Mallows

model, which shows that in a sampled permutation π, we
do not expect any particular candidate to be placed very far
from its position in the reference ranking (the proof appears
in the full version of paper):

Lemma 13. Let π ∼ D(π̂, φ). Then for any i 6= j,
Pr[π−1(i) = i] ≥ Pr[π−1(i) = j] + 1−φ

Am
.

Given this lemma, our strategy will be to observe many
samples from the distribution, then attempt to guess the iden-
tities of the top k elements in the underlying permutation π̂.
Since each candidate is most likely to appear in its position
from π̂, we expect to be able to determine π̂ after a rela-
tively small number of samples. Our algorithm is provided
as Algorithm 2, below.

Algorithm 2: Online Candidate Selection Algorithm for
the Mallows Model

Input: Candidate set A, Mallows model parameter φ,
parameter n, sequence of preference profiles
arriving online

1 Let t← 2( 1−φ
2Am

)2 logm log n;
2 Observe the first t agents, T = {σ(1), . . . , σ(t)};
3 For each i = 1, . . . , k, let ai be the candidate that

occurs most often in position i among πσ(1), . . . , πσ(t).;
4 Choose candidates a1, . . . , ak and let the process run to

completion;

We now show that this algorithm does, indeed, exhibit
vanishing regret as n grows large.

Theorem 14. Suppose that n > m2+ε 1
1−φ for some ε > 0.

Then algorithm A satisfies E[v(A)] ≥ (1− o(1))OPT .

The proof of the theorem, which relies on the Hoeffding
and the union bound, appears in the full version of the paper.

The Borda Scoring Rule

We now demonstrate that if our positional scoring function
is the canonical Borda scoring function, then we can ob-
tain a good approximation with fewer samples (and hence
a weaker restriction on the size of n relative to m). In the
Borda positional scoring function, for an agent with pref-
erence π ∈ Sm, the score is defined as follows: Bi(a) =
m − π(a); i.e. the scores are evenly spread between 0 and
m− 1.

We begin with a lemma about the Mallows model, which
shows that we do not expect the top candidate to be placed
very far from its position in the reference ranking:

Claim 15. Let π ∼ D(π̂, φ), and let a = π−1(i); i.e.
the first item in the permutation. Then with high probabil-
ity π̂(a) = o(m).

Proof. Fix c ∈ (0, 1). Now, consider the probability that any
of the elements bc ·mc , . . . ,m appear in position one in a



sampled permutation π:

Pr[π(i) = 1 : i ≥ bc · nc]

=

m∑
i=bc·nc

∑
π∈Sm:π(i)=1

φdK(π̂,π)

Zm
=

m∑
i=bc·nc

φi−1 · Zm−1
Zm

=

m∑
i=bc·nc

φi−1

1 + φ+ · · ·+ φm−1
(.2)

The claim follows from the fact that this is essentially a sum
of exponentially small terms

We will complement the above claim by showing that
w.h.p. (albeit not necessarily exponentially small), the posi-
tion of the first element in a sampled permutation in the ref-
erence ranking is bounded by O(logm). We then argue that
by sampling more permutations, we can augment our bound.
The claims are essentially consequences of the results ob-
tained by Braverman and Mossel. Recall that an equivalent
statement of the probability of sampling a permutation is
Pr[π] = e−βi, where β = −lnφ.
Claim 16 ((Braverman and Mossel 2008)).

Pr[π−1(1) ≥ i] ≤ e−βi/(1− e−β) (.3)

The proof of this claim is similar to the one of Claim 15.
Corollary 17.

Pr[π−1(1) ≥ lnm] ≤ m−β/(1− e−β) (.4)

The following claim argues that the error in our estimate
for the first element in π̂ goes linearly small with the number
of sampled permutations σ1, . . . , σr ∼ D(π̂, φ).
Claim 18 ((Braverman and Mossel 2008)). Suppose that the
permutations π1, . . . , πr are drawn from D(π̂, φ), and let
π(a) = 1

r

∑r
i=1 π

i(a).

Pr[|π(`)− `| ≥ i] ≤ 2 ·
(

(5i+1)·e−βi
1−e−β

)r
, for all i ∈ [m].

(.5)

Setting i = lnn, we obtain the following corollary:
Corollary 19. Let α > 0. Then for sufficiently large n,

Pr[|π(a`)− `| ≥
α+ 2

β · r
lnn] < n−α (.6)

Despite the above results that imply that using the top-
ranked element in even a single sample should get us close
to the top-ranked element in the reference ranking, we still
have to argue that w.h.p., this estimate also approximates
the expected top-ranked element, induced by the distribu-
tion. The following result provides an affirmative answer to
this question.
Theorem 20 ((Braverman and Mossel 2008)). Let L =

max
(

6 · α+2
β·r logm, 6 · α+2+1/β

β

)
. Then except with prob-

ability < 2 ·m−α, for any maximum-likelihood πm and for
all `, we have

|πm(a`)− π̂(a`)| ≤ 32L (.7)

where π̂ is the reference ranking.

So in total, with probability n−α, |π(a`) − πm(a`)| ≤
O(1). Thus, we get a natural algorithm for maximizing the
average Borda score for all but the first log n agents:

Theorem 21. The algorithm that samples the first log n per-
mutations and puts on the slate the element from A with the
highest average score obtains a 1−O(1/n)-approximation
of the optimal average Borda score.

The theorem follows from the previous conclusion and by
recalling that the maximum value any element can receive is
m− 1.

The case of k ≥ 1

Here, we show that by allowing the selection of k elements
from A, the probability of maximizing the expected Borda
rank, increases exponentially.

Theorem 22. Let π1, . . . , πlogn be a a set of log n sample
permutations, randomly drawn from distribution D(π̂, φ).
And let π be their average ranking. Then

Pr[π(ai) > log n+ i : ∀i ∈ [k]] < n−O(k) (.8)

Proof. Let π be a permutation over A such that for all i ∈
[k], π(ai) ≥ log n + i. Then consider the i’th element a in
π. The number of pairwise inversions that exist in π w.r.t it
are at least log n, by our assumption that π̂(a) > log n +
i. Then by definition of the distribution, the probability of
sampling such a permutation π is at most Zm−k

∏k
i=1 φ

logn

Zm
≤

φk·logn = n−O(k)

Note that the above theorem needs to be complemented
with an upper bound on the gap between the reference rank-
ing position of and the maximum-likelihood of each candi-
date. However, we can easily get this by sampling r = log n
permutations and applying Theorem 20, which gives a max-
imal O(1) gap between the maximum-likelihood position
and the reference rank, for any element in A, with polyno-
mially (in n) small probability. I do believe however, that the
polynomially small probability of an error could be shown
to be in fact exponentially small in k (i.e. n−O(k)).

A Utilitarian Approach
In the previous section we considered the problem of maxi-
mizing the social value of a positional scoring function in an
online setting. However, it may be more natural in some cir-
cumstances to assume that each agent assigns a non-negative
utility to each candidate, even though these utilities are hid-
den and only the preference lists are revealed to a poten-
tial social choice function. In such settings, one would wish
to choose candidates that maximize overall social welfare
(i.e. sum of utilities), again in an online fashion. However,
this goal is hindered by the fact that the utilities themselves
are never made available to the algorithm. In this section we
adapt a general technique due to Boutillier et al. (Boutilier
et al. 2012) to show that our result for online PSF maximiza-
tion extends to approximate online utility maximization.



We assume that each agent i ∈ N has a latent utility func-
tion ui : A → R≥0. A utility function ui induces a prefer-
ence profile π(ui) = πi such that πi(a) > πi(a′) precisely6

when ui(a) ≥ ui(a
′). We let π(u) denote the induced pref-

erence profile given a utility profile u.
As in (Boutilier et al. 2012), we will assume that utili-

ties can be normalized so that
∑
a∈A ui(a) = 1 for each

i. This assumption essentially states that each agent has the
same total weight assigned to her candidate utilities. Note
that without this assumption it would be impossible to ap-
proximate the optimal social welfare, since a single agent
could have a single utility score that dominates all others,
but an algorithm with access only to the preference profiles
would have no awareness of this fact.

Intuitively, we would like to choose an alternative a ∈ A
that maximizes the (unknown) social welfare sw(a,u) =∑n
i=1 ui(a), based solely on the reported vote profile −→π =

−→π (u) = (π1, . . . , πn) induced by the utility profile. Of
course, the preference profile −→π does not completely cap-
ture all of the information in the utility profile, and hence
we should expect some loss.

Our hope will be to find a social choice rule f such that, if
it were applied to the preference profile−→π , it would return a
candidate that approximately maximizes sw(a,u). The dis-
tortion of f is the worst-case approximation factor incured
when f is applied −→π (u). This notion of distortion was first
formalized by Procaccia and Rosenschein in (Procaccia and
Rosenschein 2006), and has been used in subsequent studies
of the social choice problem with partial (or noisy) infor-
mation about the underlying utilities (e.g. (Boutilier et al.
2012)). The formal definition is as follows.
Definition 23 (distortion). Let −→π ∈ Snm be a preference
profile, and let f : Snm → A be a social choice function. The
distortion of f is then given by

dist(−→π , f) = sup
u:π(u)=−→π (u)

maxa∈A sw(a,u)

sw(f(−→π ),u)
(.9)

In (Boutilier et al. 2012), Boutilier et al. proposed a ran-
domized social choice rule f with distortion O(

√
m logm),

and provided a corresponding lower bound of Ω(
√
m). This

rule f makes use of a positional scoring function H(·), that
they refer to as the harmonic scoring function. In the har-
monic scoring function, the score of a candidate ranked in
position i is Hi = 1/i. Given preference profile −→π , rule f
either a) with probability 1/2, chooses each candidate awith
probability proportional to HN (a) =

∑
i∈N H(πi(a)), or

b) with the remaining probability 1/2, returns a uniformly
random candidate.

We will make use of this social choice rule f to design an
online algorithm achieving social welfare within a factor of
O(
√
m logm) of the optimal welfare. As before, we assume

an adversarial setting: the collection of agent preferences
can be arbitrary, but they are presented to the algorithm in
an order determined by a (uniform) random permutation σ.
Our algorithm A is described as Algorithm 3, below.

6In keeping with our simplifying assumption that preference
profiles do not include indifference, we can assume that ties in util-
ity are broken in some consistent manner.

Algorithm 3: Online Candidate Selection Algorithm for
Utility Maximization

Input: Candidate set A, parameter n, sequence of
preference profiles arriving online

1 Let t← n2/3 log n;
2 Observe the first t agents, T = {σ(1), . . . , σ(t)};
3 a∗ ← f(πσ(1), . . . , πσ(t));
4 Choose candidate a∗ and let the process run to

completion;

Given a particular utility profile u we will write
E[sw(A)] to denote the expected social welfare of the out-
come returned by A, given preference profile −→π (u), over
permutations σ and randomness in A. We will also write
OPT for the optimal social welfare attainable for u, i.e.
OPT = maxa∈A

∑
i ui(a).

Theorem 24. Suppose n > m3. Then for all u,
E[sw(A)] ≥ 1

O(
√
m logm)

OPT .

The idea behind the proof of Theorem 24 is to note
that the algorithm for offline utility maximization due to
Boutilier et al. (Boutilier et al. 2012) works primarily by ap-
plying the low-distorition PSF f . However, our Theorem 2
implies that PSF value maximization can be approximated
well by an online algorithm. We can therefore approximate
the set that maximizes the (offline) value of f in the on-
line setting. As long as the errors due to sampling and omit-
ting the first t agents are not too large, this then implies an
approximation to the utility-maximizing candidate set. The
details of the proof appear in the full version of the paper.

A Correspondence with the Unknown Distribution
Model
We now note a correspondence between the random or-
der model analyzed above and a model in which rankings
are drawn from an underlying distribution over preferences.
This observation was first made by Karande et al. ((Karande,
Mehta, and Tripathi 2011)) in the context of online bipar-
tite matching. Suppose there is an underlying distribution D
over the set of rankings over the alternatives A. For each
player i ∈ N , suppose the ranking πi for player i is sampled
independently from D.

The following result due to Karande et al. states that our
algorithm for the adversarial model with random arrival or-
der applies to this unknown-distribution setting as well.

Claim 25 ((Karande, Mehta, and Tripathi 2011)). Let A be
an algorithm for the online social problem under the ran-
dom order model that obtains a expected competitive ratio
of α. Then A obtains an expected approximation ratio of at
least α for the online social choice problem in the unknown
distribution model. Furthermore, hardness results in the un-
known distribution model hold in the random order model
as well.

This result implies that algorithm A achieves approxima-
tion factor (1− (k−1k )k− o(1)) to the social choice problem



Algorithm 4: The MWU algorithm with buyback for the
slate optimization problem, k = 1

1 ∀ai ∈ A set w0
i = 1

2 Set B =
(

ρ2n
4 lnm

)1/3
, ε =

√
lnBm
n

3 for epoch t← 1 to n
B do

4 a(t) ← select ai ∈ A with probability w
(t)
i∑m

j=1 w
(t)
j

5 Replace the current item with ai; pay ρ.
6 Let S(t) denote the resulting slate.
7 Let the next B agents arrive one at a time, while the

content of the slate is S(t).
8 for i← 1 to m do
9 F (t)(S(t)) =

∑t·B
j=B·(t−1)+1 Fi(S

(t))

10 w
(t+1)
i ← w

(t)
i · (1 + ε)F

(t)(S(t))/B

when preferences are drawn from an unknown underlying
distribution, and that it is NP-hard to achieve an approxima-
tion factor better than (1− 1/e).

The Full MWU Algorithm for the Buyback
Extension (k = 1)

For simplicity, we assume that 0 = n mod B. it is not hard
to lift this assumption.
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