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Abstract. In this paper, we describe a mechanism for ontology align-
ment using instance based matching of types (or classes). Instance-based
matching is known to be a useful technique for matching ontologies that
have different names and different structures. A key problem in instance
matching of types, however, is scaling the matching algorithm to (a)
handle types with a large number of instances, and (b) efficiently match
a large number of type pairs. We propose the use of state-of-the art
locality-sensitive hashing (LSH) techniques to vastly improve the scala-
bility of instance matching across multiple types. We show the feasibility
of our approach with DBpedia and Freebase, two different type systems
with hundreds and thousands of types, respectively. We describe how
these techniques can be used to estimate containment or equivalence re-
lations between two type systems, and we compare two different LSH
techniques for computing instance similarity.

Keywords: Ontology Alignment, Schema Matching, Linked Data, Se-
mantic Web

1 Introduction

Ontology (or schema) matching is a well-studied problem in the literature that
has received considerable attention over the last decade, as is clearly evident
from the large number of papers published over the years [30, 15, 27, 5, 17, 21,
19, and many others]. In these works, the predominant approach to matching
exploits purely schema-related information, i.e., labels or structural information
about the type hierarchy. This schema-based approach to schema matching is
a practical starting point that proves adequate in a number of applications.
However, schema-based matchers have their limitations, especially in situations
where schema elements have obscured names [27]. This observation gave rise to
a class of instance-based matchers [29, 16, 4, 18, 6] in which the instance data are
consulted as well in order to determine the schema mappings.

For both classes of matchers, the focus of most of these past works has been
on achieving high precision and/or recall. While these are important evaluation
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metrics to illustrate the correctness of the developed techniques, a metric that is
often ignored in the evaluation is scalability. With the rapid rise in the size and
number of data sources on the web, effective schema matching techniques must
be developed that work at web scale. One only has to look at the Linked Open
Data cloud [7] to be instantly exposed to approximately 300 sources with thou-
sands of (RDF) types (or classes), with new sources of types added constantly.
Data that reside in different sources in the web is clearly associated, but dis-
covering these relationships can only be achieved if we are able to deduce which
types in the various sources are related. As a simple example, consider an entity
like the city of Boston. It is not hard to see that information for this entity can be
found in the following datasets: (a) the DBpedia entity for Boston has the type
http://dbpedia.org/ontology/City; (b) the Freebase entity for Boston has
the type http://rdf.freebase.com/rdf/location/citytown or http://rdf.
freebase.com/location/location; (c) in RDFa, using the schema.org vocabu-
lary, it has type http://schema.org/Place or http://schema.org/City; and
(d) the GeoNames entity has the type http://www.geonames.org/ontology#P.

Clearly, we would like to be able to create matchings between all these types
with the different (often obscure) names in the different sources. Given that
instance-based approaches are more appropriate to deal with the differences in
schema vocabularies, it seems appropriate to consider such techniques in this
context. However, scalability is a key problem in applying these techniques to
web scale. To see why, consider a simple setting in which we have n types in one
data source, m types in another, and we assume that we have l instances for
each of these types. Then existing approaches would require n ×m type com-
parisons, where each type comparison requires at least O(l) instance comparison
operations. Clearly, this is not scalable for most realistic usage scenarios.

In this paper, we focus on the problem of scaling instance-based ontology
alignment using locality-sensitive hashing (LSH) [32] techniques drawn from
data mining. Specifically, we show how one can use LSH techniques such as
MinHash [10] and random projection (a.k.a. random hyperplane or RHP) to
estimate instance similarity [13] and hence infer type similarity. To compute
instance similarity between two types, we first need to define the granularity
with which an instance is defined for the purposes of similarity analysis. Whole
instances frequently do not match between different type systems because of
slight differences in representing instances as strings, e.g., “Bank of America”
versus “Bank of America, Ltd”. As a result, we compute instance similarity using
tokenized strings to reduce the probability of misses due to string differences.

Instead of computing pairwise Jaccard similarity for all pairs of instance sets
in the two type systems, we use the MinHash technique to efficiently estimate
Jaccard similarity with a very low error rate while (a) compressing the instance
data to a fixed size for comparison, such that l instances can be succinctly
represented by a set of k hashes, where k is a small fixed number such as 500;
and (b) eliminating most of the irrelevant n×m type comparisons efficiently while
providing mathematical guarantees about false negatives (the algorithm cannot
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introduce false positives since it only prunes potentially irrelevant comparisons,
i.e., those with similarity measures below a given threshold).

While set similarity is one metric for measuring instance similarity, it can
be unduly influenced by terms that occur very frequently across all types. We
therefore also estimate cosine similarity of term frequency vectors for instances
of each type, where the term frequencies are weighted by the tf ∗ idf measure.
In the context of instance similarity computations, tf ∗ idf is a weight that
reflects the degree to which a term appears in a particular type, compared to
its occurrence in all types. This measure then corrects for possible biases in the
similarity computation due to frequently occurring words.

As in the case of Jaccard similarity, we estimate cosine similarity on all
types using LSH techniques, because an all-to-all cosine similarity computation
is not feasible in practice. Specifically, we use the random projection method
for estimating cosine similarity between term frequency vectors for all candidate
type pairs (i.e., pairs with an expected similarity above a given threshold). The
core idea behind the random projection method relies on choosing a set of k
random hyperplanes to hash the input vectors [13], thus once again allowing
comparisons of k hashes.

Both cosine and Jaccard measures of instance similarity can be affected neg-
atively when the sets of instances between two types being compared have very
disparate sizes. For instance, if type A has 10 instances, and type B has 100
instances, the maximum Jaccard similarity one can get is 10/100 or 0.1. We
measure containment between types as well as their similarity to determine if
the relationship between the two types reflects equivalence or containment.

Our contributions in this paper are: (a) we describe the use of LSH tech-
niques for the efficient computation of instance-based similarity across disparate
ontology types or schema elements, (b) we show how these techniques can be
used to estimate containment or equivalence relations between two type systems,
(c) we compare Jaccard similarity and cosine similarity, to correct for possible
biases in estimation of similarity due to frequently occurring words, and (d) we
evaluate the utility of this approach with Freebase and DBpedia, which are two
large linked open datasets with different type systems.

2 Preliminaries: Locality Sensitive Hashing (LSH)

When comparing large numbers of types based on the similarity of their in-
stances, there are two primary scalability hurdles:

– First, to compare two types with L instances each regardless of similarity
metric, at least O(L) operations are required. For large values of L, this
repeated cost becomes the performance bottleneck.

– Second, to compare all pairs of types requires a quadratic computational
cost; but in practice, only pairs of types with a high enough similarity are
of interest. How can we save computation by pruning out those type pairs
with low similarity?
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2.1 Reducing Comparison Cost for One Type Pair

Locality Sensitive Hashing (LSH) [32] addresses the first scalability hurdle by
approximating the similarity in the following way.

Let U be a set of objects, a similarity measure sim is a function from U2 to
the interval of real numbers [0, 1] such that, for u and v in U , sim(u, v) indicates
the relative similarity between u and v. For example, sim(u, v) = 0 indicates no
similarity at all between u and v, whereas sim(u, v) = 1 corresponds to perfect
match between u and v.

Let sim be a similarity measure defined in U2. A family F of hash functions
from U to the set Z of integers is sim-sensitive iff., for any pair (u, v) ∈ U2,
the probability Pr(f(u) = f(v)) that a randomly chosen hash function f of F
hashes u and v to the same value is equal to the similarity sim of u and v, that
is, Pr(f(u) = f(v)) = sim(u, v).

The key idea in LSH is to estimate the similarity sim(u, v) between two
elements u and v more efficiently by randomly sampling hash functions from a
hash family F to estimate the proportion of functions f such that f(u) = f(v).
From the sampling theory, we know that the number of functions, denoted as n,
can be relatively small with a relatively small sampling error (e.g., for n = 500,
the maximum sampling error is about ±4.5% with 95% confidence interval).
Hence, the similarity between u and v can be estimated based on a small number
of functions from the hash family.

2.2 Avoiding Quadratic Comparisons

To address the second hurdle of avoiding the quadratic complexity associated
with comparing all pairs of types, we describe another well known technique,
called banding, that can help efficiently select pairs of types whose similarities
are likely to be above a given threshold.

Let (f1, . . . , fn) be a list of n independent functions from a sim-sensitive
hash family F . The signature matrix, denoted (f1, . . . , fn)-sigM(U), is a matrix
of n rows and |U| columns whose jth column contains the signature, (f1, . . . , fn)-
sig(uj), of the jth element uj of U . The cell (f1, . . . , fn)-sigM(U)[i, j] at row i
and column j (1 ≤ i ≤ n and 1 ≤ j ≤ |U|) is equal to fi(uj). Figure 1 shows an
example of such a matrix with n = 12 and |U| = 4.

The randomly selected functions (f1, . . . , fn) can be grouped into b mutually
disjoint bands (or groups), each containing r functions (n = b× r) as illustrated
in Figure 1, where b = 4 and r = 3. For two elements uj and uk in U (1 ≤ j <
k ≤ |U|), the pair (uj , uk) is considered a candidate pair iff. there is a band bl (
1 ≤ l ≤ b) such that, for each function f in this band bl, f(uj) = f(uk). In other
words, (uj , uk) is a candidate pair iff. there is a band bl such that the signatures
of uj and uk in that band are equal. For example, in Figure 1, (u1, u2) is a
candidate pair because their signatures have the same value in band 2, whereas
(u1, u3) is not a candidate pair because their signatures are different in all 4
bands. Intuitively, pairs with high enough similarities are more likely to have
their signatures agree in at least one band.
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Fig. 1. Example of Signature Matrix and bands

Formally, the probability that a pair (u, v) with similarity s is selected by
this banding technique is 1 − (1 − sr)b. Regardless of the value of r and b, the
curve (see Figure 2) representing the probability that a pair (u, v) is considered
a candidate as a function of sim(u, v) has a characteristic S-shape. This means,
for a given similarity threshold and a given acceptable false negative rate rate
(which means type pairs with similarity above this threshold are missing), r and
b can be chosen so as to maximize the likelihood that the actual false negative
rate remains below the given parameter rate.

In practice, for efficiency (i.e., to avoid pairwise comparisons), in each band
bl, projections of signatures to bl are hashed by a hash function h, and elements
whose projected signatures on bl hash to the same value are put in the same
bucket. Assuming that the chances of collisions for h are negligible, two elements
u and v will end up in the same bucket of a band bl iff. their signatures agree in
the band bl. Finally, a pair (u, v) is considered a candidate iff. there is at least a
band in which u and v are put in the same bucket.

3 Instance-based Type Matching with LSH

For matching a finite set T of types based on their instances, we take an Infor-
mation Retrieval (IR) approach to associate a list of terms termlist(t) to each
type t ∈ T . Conceptually, for a given type t, we build a document dt by con-
catenating, for a given property (e.g., rdfs:label), all its values for all instances of
t. After applying standard IR processing to dt (e.g., tokenization, lowercasing,
stemming, etc.), we obtain a list of terms termlist(t). For two types t and t′,
we use the similarity between termlist(t) and termlist(t′) as a measure of the
similarity between t and t′. We consider cosine (cossim) similarity and Jaccard
(jaccsim) similarity, and their well known LSH equivalents using the random
projection method and the MinHash method, respectively.
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Fig. 2. Probability of a (u, v) selected as a function of sim(u, v) (r = 7 & b = 25)

3.1 Cosine Similarity (Random Projection Method)

To measure the cosine similarity of two types, we weight each term r ∈ termlist(t)
using the formula termvec(t)[r] = tf(r, dt) × idf(r), where tf(r, dt), the term
frequency, is the number of occurrences of r in termlist(t), and idf(r), the in-
verse document frequency, is defined as idf(r) = log(|T |/(1 + d)) where d is
the number of types that contain this term r. idf(r) measures how common the
term r is in all types; a very common term (i.e., low idf(r)) is not informative for
type matching. We then use the random projection method to estimate cosine
similarity, which we give a brief introduction below.

If U is a vector space, a traditional metric used to measure the similarity
between two vectors u and v in U is cosine similarity, denoted cossim(u, v)
and defined as the cosine of the angle θ between u and v (see Figure 3). A
closely related similarity to the cosine similarity between two vectors u and v,
the angular similarity angsim(u, v), is defined as angsim(u, v) = π−θ

π , where
θ is the angle between u and v (0 ≤ θ ≤ π). cossim(u, v) is computed from
angsim(u, v) as follows: cossim(u, v) = −cos(π × angsim(u, v)).

For the ease of presentation, we describe how angsim-sensitive family of
functions can be constructed. Given two vectors u and v, let P denote the plane
they form, presented in Figure 3. Consider a hyperplane H, which can be char-
acterized by one of its normal vectors n. H intersects P in a line. The probability
that a randomly chosen vector n is normal to a hyperplane H whose intersec-
tion with P does not pass between u and v (such as d in Figure 3) is precisely
angsim(u, v) = π−θ

π . The intersection of H and P does not pass between u and
v, iff. the dot products n.u and n.v of n with u and v have the same sign. It follows
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Fig. 3. Angular Similarity between two vectors

that, for a vector space U , the family of functions F = {fw | w ∈ U} defined as
follows is an angsim-sensitive family: for any u and w in U , fw(u) = sign(w.u).

When we try to apply this classical version of random projection to instance-
based type matching, we observe that the computation of the dot product re-
quires a set of random vectors whose size is equal to the total number of distinct
terms in all termlist(t) for t ∈ T . However, this angsim-sensitive family is
impractical for the following reasons:

– First, it is inefficient because it requires storing, in main memory, very large
dimensional randomly generated vectors. For example, for a ±3.2% error
margin at 95% confidence level, about 1000 such vectors need to be kept (or
regularly brought) in main memory. For large dataset such as Linked Data,
the number of distinct terms (i.e., the dimension of the normal vectors) can
be quite large. For reference, the number of words in the English language
is estimated to be slightly above one million.

– Second, it requires that the total number of distinct terms (i.e., the dimen-
sion of the randomly selected vectors) must be known in advance - before
any signature computation or similarity estimation can be performed. This
is a significant hurdle for an efficient distributed and streaming implemen-
tation, where the similarity between two types t and t′ can be computed as
soon as all the terms in termlist(t) and termlist(t′) have been observed.

To address these two limitations, we consider a different angsim-sensitive
family for our problem of instance-based type matching. Given a universal hash
family H [12], a more efficient angsim-sensitive family F ′ = { f ′h |h ∈ H }
to sample from in our case is defined as follows (with termset(t) = {r | r ∈
termlist(t)}): for t ∈ T and h ∈ H,

f ′h(t) =

{
+1 if

∑
r∈termset(t) termvec(t)[r]× h(r) ≥ 0

−1 otherwise
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Thus, randomly selecting elements of F ′ is equivalent to randomly selecting
elements of H. Note that f ′h ∈ F ′ is the same as fw ∈ F where, for a term r,
w[r] = h(r) (w[r] denotes the weight of the term r in vector w).

The angsim-sensitive family F ′ addresses the issues of the standard angsim-
sensitive family F in two ways. First, instead of storing, in main-memory, very
lengthy random vectors, we simply need to store n random hash functions h ∈ H.
In practice, we use the set of 1000 Rabin Fingerprints [9] of degree 37 (i.e., ir-
reducible polynomials of degree 37) as H. Each randomly selected element of
H can thus be stored in less than 64 bits. Second, for two types t and t′, their
signatures can be computed in a streaming fashion, which means we can update
the signature for each type as the instance values of that type are read incre-
mentally. With the angsim-sensitive family of functions, signature construction
can be done independently for each type and is therefore fully parallelizable. In
practice, we implemented the random projection method with Hadoop.

3.2 Jaccard Similarity (MinHash)

For a type t, the list of tokenized terms for instances of the type termlist(t)
may contain repeated terms. Taking into account term repetition enables us
to distinguish between types with the same set of terms while the terms have
different frequencies between the two types. For each type t in the finite set T
of types, we associate a set of occurrence annotated terms termOccSet(t) =
{r : k | r ∈ termlist(t) & 1 ≤ k ≤ occ(r, termlist(t))} where occ(r, l) denotes
the number of occurrences of a term r in the list l. An occurrence annotated
term r : k of a type t corresponds to the kth occurrence of the term r in the
list termlist(t) of terms of t. We then measure the similarity of two types using
Jaccard similarity on their instance values. Traditionally, the Jaccard similarity
jaccsim(u, v) of two sets u and v elements of U is defined as the ratio of the size of
the intersection of the two sets divided by the size of their union: jaccsim(u, v) =
| u ∩ v |
| u ∪ v | . To address the scalability issues, we employ MinHash, a standard LSH

technique to estimate the Jaccard similarity over the set U of all the sets of
occurrence annotated terms termOccSet(t) with t ∈ T .

MinHash considers a set F of hash functions where each function hmin maps
from U to the set Z of integers as follows: for u ∈ U ,hmin(u) = minx∈uh(x),
where h in a hash function from a universal hash family H1 from U to Z. hmin(u)
computes the minimal value of h on elements of u. Now, given two elements u
and v of U , hmin(u) = hmin(v) iff. the minimal value of h in the union u ∪ v is
also contained in the intersection u ∩ v. It follows that the probability that the
MinHash values for two sets are equal is equivalent to their Jaccard similarity:
Pr(hmin(u) = hmin(v)) = jaccsim(u, v). Thus, F = {hmin | h ∈ H} is a
jaccsim-sensitive family of functions. Then the Jaccard similarity of two sets
can be estimated with the percentage of n such functions whose MinHash values
are equal. Note that the transformation and MinHash computation for each

1 Elements of H are assumed to be min-wise independent : for any subset of U , any
element is equally likely to be the minimum of a randomly selected function h ∈ H.
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type is independent of other types, so they can be parallelized in a distributed
computing framework like Hadoop.

In addition to computing the Jaccard similarity between two types t and t′,
we observe that it is important to measure their containment, particularly when
the sizes of termOccSet(t) and termOccSet(t′) are very different. For two

types t and t′, Ct⊆t′ = |t∩t′|
|t| measures the containment of t in t′. It is equal to

1 iff. t is contained in t′. It can be expressed in terms of the Jaccard similarity
as follows:

Ct⊆t′ = jaccsim(t,t′)
jaccsim(t,t′)+1 × (1 + |t′|

|t| )

3.3 Banding Technique to Avoid Pairwise Comparison

Recall that to apply the banding technique, conceptually we construct a signa-
ture matrix for all types, with each column representing a type and the rows
computed from n independent hash functions. Through the banding technique,
we can generate candidate similar pairs; a pair of types becomes candidate for
further computation when they agree in at least one band. For each candidate
pair, we could store both the type URIs and the associated signatures, and dis-
tribute the actual similarity computation based on signatures across a cluster of
machines. However, it raises a strong requirement for both disk I/Os and network
I/Os in a distributed setting; note that the number of candidate pairs could still
be huge using the LSH technique and each pair of signatures take nonignorable
space. The way we address the challenge is to split the similarity computa-
tion in two phases. In phase one, we generate candidate pairs in the format of
(type-uri1, type-uri2). A join of candidate type pairs with the signature ma-
trix will produce a new type pairs in the format of (type-uri1+signature1,
type-uri2). In phase two, another join of the newly generated type pairs with
the signature matrix will do the actual computation of similarity based on the
signatures associated with type-uri1 and type-uri2.

4 Evaluation

In this section, we report the results of applying LSH techniques to find related
pairs of types in Freebase2 (retrieved on May 2012) and DBpedia [1] (version
3.6). Freebase data contains 22,091,640 entities (or topics), and DBpedia con-
tains 1,668,503 entities (or things). These entities have overall 44,389,571 label
values in Freebase and 2,113,596 labels in DBpedia. Since our goal is matching
types based on instances, we prune those types that have less than k number of
instances. For the results reported in this section, we have k = 500 which reduces
the number of types in Freebase from 15,364 to 1,069, and from 238 to 155 in
DBpedia. We further restrict the matching to label properties of the instances
(rdfs:label in DBpedia and /object/name in Freebase). The resulting sets of

2 http://www.freebase.com/
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types have overall 43,919,815 values in Freebase and 2,042,337 values in DBpe-
dia, which means on average 37,551 values per type. Notice that when compared
to the values before the pruning, the pruned datasets retain 98% and 96% of
their values, respectively. The actual number of instance values for each type
could vary significantly for each type. For example, there are 1,847,416 persons
on Freebase, and 363,752 persons in DBpedia.

For the reported results, we merge the DBpedia and Freebase datasets and
match all the types in both with themselves. This allows us to evaluate the ef-
fectiveness of the LSH techniques in discovering related types within Freebase,
within DBpedia, and between Freebase and DBpedia. For purposes of the eval-
uation, we eliminate type pairs that match a type with itself from our analysis.
We fix the number of hash functions to 500 for MinHash and 1,000 for RHP.

4.1 Discovering Equivalence and Containment Relations

We first measure the effectiveness of our approach in discovering two kinds of re-
lationships between types: equivalence (i.e., two types refer to similar real-world
concept) and containment (i.e., one type is a subclass of the other). Unfortu-
nately, there are no manual type matchings between DBpedia and Freebase,
although there are instance matches that are connected with owl:sameAs links.
We therefore need to derive ground truth for matching Freebase with DBpedia
types, using the existing owl:sameAs links at the instance level between the two
data sources. We include a pair of types in ground truth if and only if their sets of
instances are linked with at least a given number, θg , of owl:sameAs links, to en-
sure we include valid type pairs in the ground truth. We call θg the ground truth
cardinality threshold. The ground truth for discovery of equivalent and contain-
ment types within a single source is derived similarly by finding the number of
shared instances between types. A pair of types is included in the ground if an
only if there are at least θg number of instances that exist in both types (e.g., if
θg number of instances have both dbpedia:Person and dbpedia:Actor as their
types, the type pair will be included in the ground truth).

We use the traditional information retrieval accuracy measures, namely pre-
cision, recall and F-measure. Precision is the ratio of correct results to all results
retrieved. Recall is the percentage of results in the ground truth that are ac-
tually retrieved. The F-measure is defined as the harmonic mean of precision

and recall, calculated as F =
2× Precision×Recall
Precision+Recall

. For the type matches

based on Jaccard or cosine similarity, we need a similarity threshold to define
non-matches. However, there is no fixed threshold value that works best across
all the types, which makes threshold selection ad-hoc. A common approach in
deciding matches is to sort the matching results in a descending order of the
similarity score, and pick only the top-k results. Again, the value of k can be
different for each type. For this evaluation, we set the value of k for each type t
as the number of types t′ that match with t in the ground truth; in our ground
truth, this value varies from 1 to 86, with an average of 4. We call the resulting
measures variable-k top-k precision, recall and F-measure.
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Table 1 shows the variable-k top-k precision, recall and F-measure obtained
with θg = 1, 000. For all cases, RHP outperforms MinHash in terms of accuracy.
Note that these results are obtained without any post-processing, but by sorting
the results based on the estimated Jaccard/cosine similarity values respectively.
The superiority of the cosine metric over Jaccard suggests that tf*idf is an
effective term weighting strategy for instance-based type matching.

However, a key advantage for Jaccard is that it gives us an indication of
whether there is a containment relationship between two types, which cannot be
derived from cosine similarity. As we discussed earlier, when the sets of instance
values for two types are very different in size, the maximal similarity computed
by either Jaccard will be significantly below 1, even if one of the sets is perfectly
contained in the other. To discover containment relationship between types, we
add a post-processing phase to MinHash that sorts the output type pairs by an
estimation of containment ratio Cu⊆v from one type to the other, as discussed
in Section 3.2. A key problem in measuring accuracy is again the lack of ground
truth. We derived the ground truth for both Freebase and DBpedia using the
following method. We include into the ground truth a pair of types t1 and t2 if
the ratio of the number of instances that have both t1 and t2 as their types to the
number of instances of type t2 is above a threshold θc. For the results reported
in this section, we set θc = 0.8, which means that we have (t1, t2) in the ground
truth if 80% of instances of type t1 also have t2 as their types. For DBpedia,
in addition to the ground truth derived similarly, we use the set of all subclass
relationships in the type hierarchy in the DBpedia ontology as our ground truth.
Note that using the DBpedia ontology as a ground truth is a very conservative
approach. In DBpedia, there is a strict type hierarchy such that Song is a Mu-
sical Work which is in turn a Work, and Work is in fact a Thing. None of the
actual instances of Song are annotated with all their superclasses (e.g. Thing).
But our approach on instance-based type matching requires that instances be
annotated with both subclasses and superclasses in order to find containment.
Therefore using the DBpedia ontology is a very conservative ground truth, but
we nevertheless include it for evaluation purposes. Table 2 shows the accuracy
results for the three cases. The results for DBpedia with the derived ground truth
are far better than those for DBpedia with the ontology as the ground truth.
The results for Freebase are overall worse than that for DBpedia reflecting a
trend we saw in Table 1. We discuss possible reasons for this later.

We also measured the effectiveness of the LSH technique in pruning out a
large number of irrelevant type pairs (i.e., those with low similarity values) from
analysis. To quantify this pruning effect, we define a measure called Reduction
Ratio (RR). This measure is calculated as the ratio of the number of type pairs
for which similarity was computed by the LSH techniques, to the total number
of possible type pairs. (1 − RR) indicates the amount of computation that is
saved by the use of LSH and captures the degree to which LSH was effective for
actual type matching performance. Recall that LSH depends on (a) a similarity
threshold (type pairs with similarity values below it are considered irrelevant)
and (b) the user’s tolerance for a false negative rate (i.e., the degree to which
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Table 1. Accuracy of Discovering Equivalent/Subclass Types in Freebase and DBpedia

Freebase-DBpedia Freebase-Freebase DBpedia-DBpedia
MHash RHP MHash RHP MHash RHP

Top-1 Precision 73.7% 75.0% 54.7% 59.9% 84.6% 100.0%
Top-k Precision 48.9% 61.7% 53.8% 60.7% 86.7% 100.0%
Top-k Recall 69.0% 80.4% 17.3% 19.9% 76.5% 82.4%
Top-k F-score 57.2% 69.8% 26.2% 30.0% 81.3% 90.3%

Overall Recall 84.8% 90.5% 87.7% 93.5% 94.1% 94.1%
RR at Max 0.21 0.18 0.22 0.13 0.34 0.05
RR at 80% 0.15 0.04 0.19 0.03 0.05 0.05

recall is important to the user). Our experiments were run very conservatively,
with very low similarity thresholds (1% for MinHash and 10% for RHP), and
false negative rates of 10% for MinHash and 5% for RHP. Yet, we obtained
an overall 77% savings in computation (i.e., RR = 23%): only 354,404 type
comparisons were performed out of the 1,498,176 total possible pairs of types.
Table 1 shows the reduction ratio, RR at Max, achieved at the maximum possible
value of recall (i.e., for our very conservative setup with little tolerance for false
negatives), and, RR obtained if the threshold and the acceptable false negative
rate were adjusted to produce about 80% recall value. For example, for Freebase-
Freebase case, in our conservative setup where we were willing to accept about
5% false negative rate for RHP, we achieved a 93.5% recall with RHP. At this
recall, reduction ratio is 0.13, i.e., similarity estimation was actually computed
for 13% of the total number of type pairs. However, if 80% recall is acceptable
(i.e., a higher acceptable false negative rate), reduction ratio of 0.03 (i.e., 97%
in savings) can be achieved.

In addition, we compared the running time of similarity computation using
MinHash and RHP signatures, with the exact Jaccard and cosine similarity com-
putation, using a subset of 200 types (100 types from each dataset) containing
overall 3,690,461 label values (average 18,452 values per type). We picked this
smaller subset to make it feasible to run the exact computation on a single ma-
chine for a fair comparison with an implementation of the LSH techniques that
does not take advantage of our Hadoop-based implementation. The experiment
was run on a Linux machine with 4 cores and 24GB of memory. The exact Jac-
card similarity computation took 1,666.28 seconds (28 minutes) while the simi-
larity computation using the MinHash signatures took only 0.409 seconds. The
error in similarity scores was 0.008, and overall 4,958 similarity computations
(out of the possible 40,000) were performed. The exact computation returned
1,152 pairs, and MinHash results missed only 30 of these pairs which means a
recall of 97.4%. The exact cosine similarity took 302.06 seconds to run while the
RHP-based computation took 2.41 seconds. The average error in cosine similar-
ity scores was 0.025, but given our conservative settings which results in block
size 2, no calculations were saved as a result of banding, and therefore the recall
was 100%.
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Table 2. Accuracy of Discovering Containment Relationship in Freebase and DBpedia

DBpedia-Derived DBpedia-Ontology Freebase-Derived

Top-1 Precision 85.7% 81.3% 74.4%
Top-k Precision 87.0% 85.0% 63.3%
Top-k Recall 55.1% 24.4% 22.0%
Top-k F-score 67.4% 37.9% 32.6%
Overall Recall 55.1% 24.4% 22.6%

We next turn to investigate the differences in the evaluation results for infer-
ring equivalence/subclass relations. As shown in Table 1, the similarity measures
we used achieve good accuracy in the Freebase-DBpedia and DBpedia-DBpedia
cases, but not in the Freebase-Freebase case. As we will explain in the next sec-
tion, the reason for this low accuracy is not poor performance of the similarity
measure, but existence of several related types that share similar instance values
and therefore are returned as false positives (e.g., Actor and Music Director).

4.2 Discovering Semantically Related Types

To investigate the reason behind lower precision in Freebase-Freebase case, we
manually inspected a subset of the results. Upon manual inspection, we observed
that a large portion of wrong matches in top-k results are between types that
are not equivalent, but are semantically related. For example, the two types
represent person entities (e.g., type athlete linked to type tv actor), or in
general, the two types are a subclass of a single type. Based on this observation,
we extended the ground truth for Freebase-Freebase case to include such type
pairs. We first derive subclass relations from instance data, and then add the
pairs of types that are subclasses of the same type to the ground truth. This
improved the variable-k top-k Precision score to 66.4% in MinHash with overall
recall at 90.0%, and 69.0% in RHP with overall 78.2% recall. In this case, we
observe that MinHash performs almost as well as RHP in terms of precision,
with better recall. This shows that Jaccard similarity and therefore MinHash
are more suitable in discovering semantically related types.

In our manual inspection of the results, we asked four members of our team
to individually evaluate a set of 144 pairs of types in the Freebase-Freebase re-
sults, that are the top 5 (or less) matches for 50 random types in Freebase. One
of the four members performed the evaluation solely by looking at type names,
while others also inspected a sample of instance values. The evaluator based only
on type names found only 33 out of the 144 pairs accurate, while others found
between 77 and 92 type pairs accurate. The difficulty of matching by type names
only in these scenarios arises both from types with only machine generated iden-
tifiers (e.g., http://rdf.freebase.com/rdf/m/06vwzp1) and from types with
obscure human generated identifiers (e.g., the instances http://rdf.freebase.
com/rdf/base/database2/topic are famous mountains). For the evaluations
based on inspection of instance values, 2 out of 3 evaluators agreed on 88 of the
type pairs, for a precision of 61.1%.
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5 Related Work

The problem of matching database schema and ontologies with the goal of finding
elements that are semantically related has been studied extensively in the past. In
the existing categorization of schema and ontology matching techniques [22, 31,
33], our approach falls into the purely instance-based and element-level category,
as we rely on instance values rather than element labels and schema structure
and information. Our proposed techniques improve the scalability of a technique
referred to as similarity-based disjoint extension comparison [22], which unlike
the common extension comparison technique [26, 28] does not require the classes
to share the same set of instances. Our technique is unsupervised and can be
used to extend existing rule-based matching systems. The inability to effectively
exploit data instances has been recognized as the main drawback of rule-based
techniques [17, page 86]. In the categorization provided by Kang and Naughton
[27], our method falls into the interpreted class of matching techniques since
we rely on an interpretation of instance values. However, unlike the majority
of interpreted matchers, we do not rely on attribute names, nor do we rely on
learning and the availability of training data.

Examples of matching systems that use instance values in matching are
COMA++ [2, 21], SEMINT [29], LSD [16], Autoplex [4], Glue [18], and DUMAS
[6]. Of these, only COMA++ and DUMAS are unsupervised. COMA++ sup-
ports two instance-based matchers in addition to several schema-based methods:
1) constraint-based matching methods that consider characteristics or patterns
in instance values such as type, average length, and URL or email patterns; 2) a
content-based matcher that builds a similarity matrix by performing a pair-wise
comparison of all instance values and aggregating the result. Our approach can
be seen as a way of making such a content-based matcher scalable. To the best
of our knowledge, we are the first to address the scalability of such all-to-all
instance-based matching. DUMAS relies on identification of duplicate records
by string similarity matching in advance to improve the accuracy and efficiency
of the approach. The attribute identification framework proposed by Chua et
al [25] uses duplicates that are identified by matching key identifier attributes
(as opposed to string matching) and takes into account several properties of
attributes derived from instance values.

There are also instance-based approaches that do not rely on overlapping or
similar instance values, but take into account the correlation between attributes
or their properties. Notably, Kang and Naughton [27] propose a two-step match-
ing that first builds a dependency graph for the attributes in each data source
by mining the instance values, and then uses a graph matching algorithm to
find attribute correspondences. Dai et al [14] propose an information-theoretic
measure to validate the matching results that can work even if both schema
information and instance values do not match (e.g., merging of two customer
databases from companies that do not share any customers). In our work, our
goal is to match elements (types) only if their instance values are similar. The
approach presented in this paper can be used as a part of large-scale data inte-
gration and analytics systems [23] and link discovery systems [24, 8]. Our work
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is motivated by the massive growth in the amount of data available on the web,
and our experience in matching large enterprise repositories [11, 19, 20].

For an overview of other schema-based and instance-based techniques, refer
to existing survey articles and books [3, 22, 27, 31, 33].

6 Conclusion

We present an instance-based type matching approach based on locality-sensitive
hashing and evaluate it on linking two large Linked Data sources on the web.
We show how LSH techniques are very effective in pruning large numbers of
irrelevant type comparisons, and point to how they can be deployed for type
matching and type containment.
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