
Linking Semistructured Data on the Web

Soheil Hassas Yeganeh
University of Toronto

soheil@cs.toronto.edu

Oktie Hassanzadeh
University of Toronto

oktie@cs.toronto.edu

Renée J. Miller
University of Toronto

miller@cs.toronto.edu

ABSTRACT
Many Web data sources and APIs make their data available
in XML, JSON, or a domain-specific semi-structured format,
with the goal of making the data easily accessible and usable
by Web application developers. Although such data formats
are more machine-processable than pure text documents,
managing and analyzing such data in large scale is often
nontrivial. This is mainly due to the lack of a well-defined
(or understood) structure and clear semantics in such data
formats, which could result in poor data quality. In the xCu-
rator project, we add structure to such data with the goal
of publishing it on the Web as Linked Data. We enhance
the quality of such data by: extracting entities, their types,
and their relationships to other entities; performing entity
(and entity type) identification; merging duplicate entities
(and entity types); linking related entities (internally and
to external sources); and publishing the results on the Web
as high-quality Linked Data. This is all in a light-weight
easy-to-use and scalable framework that effectively incorpo-
rates user feedback in all phases. We describe the initial
framework of our system and report the results of using our
system for managing large volumes of (user-generated) data
on the Web in several real world applications.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; H.2.5 [Database

Management]: Heterogeneous Databases

Keywords
Semistructured data, Schema Discovery, Linked Data

1. INTRODUCTION
Over the past decade, there has been a massive increase

in the amount of semistructured data on the Web. Data and
Web service providers often use generic data formats such
as JSON, XML or XML-based formats, or other industry-
standard or domain-specific text-based formats such as Bib-
TeX (and other bibliographic data formats), XMCD (audio
CD data format) or DrugCard (drug information) to name
a few. Although using such data formats has made data
sharing and exchange significantly easier, the management,
analysis, and querying of such data has become increasingly
difficult. This is mainly due to the lack of (an enforced)
schema and clear semantics in such formats. As a result,
both the data values and their structure may be inconsis-
tent and contain errors, making it difficult for users to un-
derstand and query the data source contents.

On the other hand, many tools, systems, technologies and
standards have been developed in order to realize the vision

Copyright is held by the author/owner. Fourteenth International Workshop
on the Web and Databases (WebDB 2011), June 12, 2011 - Athens, Greece.

<clinical_study/>

< id_info />

< org_study_id />

< secondary_id />

< nct_id />

< sponsors />

< collaborator />

< lead_sponsor />
< agency />

< agency_class />

< agency />

< agency_class />

< location />

< facility />< address />

< country />

< city />

Le
av

es
 r

ep
re

se
nt

in
g

en
tit

ie
s

Same entity types

Dummy non-leaf
element

NIDA-06969-1

R01-06969-1

NCT00000219

United States

Burlington

National Institute on Drug Abuse (NIDA)

NIH

Other

University of Vermont

Figure 1: Sample XML elements from Clinical Trials

of the Semantic Web, a Web of Data consisting of objects (or
entities) with facts (or triples) that describe their relation-
ships and attributes in a reasonably structured way, using
the Resource Description Framework (RDF) data model. In
particular, there has been an increasing interest in following
the Linked Data principles to publish data on the Web, as
a part of the Linking Open Data (LOD) community project
at W3C [10]. These principles significantly enhance adapt-
ability and usability of the data on the Web. The number of
triples published by the LOD data sources (aka LOD cloud)
has grown from around 500 million triples in 2007, to more
than 25 billion triples that currently describe millions of in-
terlinked entities in various domains. Part of the success of
the LOD project relies on tools that assist data publishers in
publishing Linked Data out of existing structured sources.
In particular, a class of tools known as RDB2RDF systems
[19] have been developed that transform existing relational
sources into RDF or provide dynamic RDF views. However,
very few tools exist that assist data publishers in expos-
ing semistructured data as Linked Data on the Web in a
similarly generic way. This is mainly due to the inherent
difficulty of such transformations, difficulties that go well
beyond data model translation (translating XML data to
RDF data) or schema inference.

Consider the XML data shown in Figure 1 describing a
clinical trial in ClinicalTrials.gov. Transforming this data
into high-quality Linked Data involves multiple steps. First,
we need to perform entity type identification, which involves
detecting entities (or resources), their types (or classes) and
attributes (or properties). This information can be derived
from a reasonable sample of data. A simple heuristic might
consider non-leaf elements as entity types (e.g., <clini-
cal_study/>), while leaf elements containing only text (e.g.,
<agency_class/>) are translated into attributes of the par-
ent entity type. However, simple heuristics like this will not
always lead to high-quality linkable data. For instance, in
Figure 1, there is a non-leaf, container element (<id_info/>)

which does not represent an entity type, and there is a leaf
element (<country/>) which is an entity type. It is impor-
tant to ensure country values are represented as entities (not
literal values) and can be linked to appropriate entities in
the LOD cloud. Another challenge associated with auto-
matic entity type identification is detecting duplicate types.
In Figure 1, there are two identical subtrees in the structure
(<lead_sponsor/> and <collaborator/>). These subtrees
are different instances of the same entity type, which may
not be obvious at first glance. Such subtrees should be de-
tected as identical types in order to avoid data duplication,
and to make it possible to properly link related entities.

After detecting entity types and their attributes, the data
needs to be transformed into triples that describe the en-
tities, their relationships, and their attributes. A major
challenge in this transformation is the existence of duplicate
instances. Such duplicates may result from (i) the exis-
tence of multiple occurrences of the same entity in different
locations in a data set, (ii) different versions of the same
data, and (iii) actual duplicates in the source. The problem
is further complicated by the existence of fuzzy duplicates,
i.e., entities that have different representations, but refer to
the same real-world entity. For example, once we identify
<country/> as an entity type, we need to detect whether
two instances with different representations (e.g., “United
States” and “U.S.A”) refer to the same country and, if so,
merge them into a single instance (entity).

The final step in this process is interlinking entities and
their types to external knowledge repositories and data
sources. There could be several ontologies and Web sources
that contain information about our source entities and their
types. Linking from entity types to external ontologies can
enhance entity type identification and enhance the quality
of the identified types, in addition to the benefit to en-
tity identification. As an example, by matching leaf el-
ement <country/> with Freebase’s /location/country or
DBpedia’s dbpedia-owl:Country entity types, we find ad-
ditional evidence for our identified type, and we will be
able to link the entity with label “U.S.A.” with Freebase
resource /en/united_states or DBpedia resource dbpe-
dia:United_States.

Contributions. In this paper, we present xCurator, a
system capable of transforming semistructured data into
high-quality Linked Data automatically with optional hu-
man intervention. Our contribution is threefold:
• We present an end-to-end framework for transforming a
possibly large set of semistructured data instances into rich
high-quality Linked Data. The input to the system can be
instances of static semistructured data sources available on
the Web, or dynamic user-generated content such as BibTeX
entries, or RSS feeds.
• We present a brief overview of our implementation of each
component of the proposed framework, and more detailed
discussion of the entity type extraction process. We use or
extend existing techniques from the data management liter-
ature to address the above-mentioned challenges.
• We report the results of applying our proposed framework
to transforming several real-world data sets from different
domains into rich Linked Data. The results include a bibli-
ographic data source generated from online user-generated
BibTeX files, and a data source of clinical trials generated
from thousands of online XML descriptions. Part of the re-
sults have been made available on the Web as a part of the
Linked Open Data cloud.

In the following section, we present the architecture of
our framework and a brief overview of related work for each
component of the framework. Section 3 presents a detailed
description of the entity type extraction process. We report
the results of using our system in several real-world scenarios
in Section 4. Section 5 concludes the paper and presents a
few interesting future directions.

2. FRAMEWORK
Figure 2 shows the xCurator framework. The input to this

framework is a semistructured data source, with no restric-
tion on the characteristics of the data. For example, the data
could be a single huge XML file stored locally containing all
the DBLP publications, or can be URLs of millions of small
online BibTeX files, each file containing one or more pub-
lication entries. The data could be static or dynamic, i.e.,
the data and its structure could change at any time. The
output of the system is high-quality Linked Data, meaning:
(i) objects that are identified by unique HTTP URIs; (ii)
when objects are looked up, RDF statements are returned
describing the object; (iii) the RDF statements link related
source objects using predicates from existing or custom vo-
cabularies; (iv) duplicate objects, i.e., objects that refer to
the same real-world entity, are identified and merged1; and
(v) source objects are linked to objects in external online
repositories that refer to the same or related real-world en-
tities. In addition, the output data can be queried efficiently
online using the standard SPARQL query language.

In what follows, we present an overview of different com-
ponents of our framework. Almost all the problems dis-
cussed in this paper have been studied in the past to some
extent. We present a brief overview of related work in the lit-
erature as we explain different components of our framework,
although a full discussion of all the related work is beyond
the scope of this paper. In terms of the overall framework,
our work is related to systems that perform ontology learn-
ing and mapping (e.g., The OntoEdit ontology engineering
workbench [17], Janus [5], and the work of An et al. [4]),
where the goal is semi-automatic or automatic construction
of (or mapping to) an ontology from a given set of relational
or XML sources and their schemas. In this context, our work
can be seen as way of populating several existing ontologies
(or creating an ontology) using instances from semistruc-
tured sources, in a light-weight approach geared towards cre-
ating a high-quality data source following the Linked Data
principles. This is similar to what some RDB2RDF systems
such as D2R Server [8] perform for relational data (where
unlike in semi-structured data the entity types are defined
and fixed). Also related to our work is the Haystack system
[16] that provides a powerful framework for management of
semistructured data in the context of personal information
management, without our focus on cleaning, deduplicating,
and linking data to the LOD cloud.

2.1 Entity Type Extractor
This component is responsible for extracting entity types

and their attributes and relationships from the input data
source(s) in a (semi-)automatic manner. The final output of
this component is a mapping definition for each entity type.
Most semistructured data formats convey an implicit struc-
ture that one can leverage to identify the entities and their
types in the data. Apart from the implicit structure, there

1In certain cases, duplicate objects may be created, but linked
with sameAs predicates.

DataData
Entity Type
Extractor

Transformer

Integrated
Data

Sampled
Data

Provenance

Transformed
Triples

Mapping
Definition

Triplestore

External
Repositories

and Web
APIs

D
at

a
In

st
an

ce

Pr
oc

es
so

rDuplicate
Detector

Linker
Linked
Triples

Cleansed
Triples

Data browser &
Feedback Interface

Feedback

Admin

Users

Data

Triples

Figure 2: The xCurator Framework

are also several languages designed specifically to describe
schemas, such as the widely used DTD, XSD, or RELAX
NG schema languages for XML, or the more recent JSON
Schema designed for JSON data. In the absence of such
schema descriptions, the problem of understanding and ex-
tracting a schema for unstructured and semistructured data
has been studied extensively in the database literature. Re-
fer to Abiteboul et al. [1] for an overview of early work, and
to Bex et al. [6] for a comparison of more recent work.

In our work, unlike the work on schema inference, we are
not concerned about deriving a schema that can be used to
validate new instances and assist querying the data. Instead,
we are interested in discovering the entity types, attributes
and relationships, that can be used to generate high-quality
Linked Data. Even if explicit schema definitions are given,
we need to further process the schema as shown in the ex-
ample in Section 1. In Section 3, we present the details and
challenges of the entity type extraction process, which in-
cludes an initial structure extraction phase similar to the
above-mentioned inference techniques, followed by refine-
ment steps that enhance the quality of derived entity types.

2.2 Transformer
This component is responsible for transforming the source

data into RDF triples based on the mapping definitions gen-
erated by the entity type extractor component. The map-
ping itself is represented and stored in XML with references
to source data in XPath, which requires a simple data for-
mat transformation layer for sources with non-XML formats.
There are several existing tools that transform XML or other
semistructured data formats into RDF. Some of these tools
are only data format converters, e.g., they convert BibTeX
or XML to RDF/XML without properly discovering entity
types and their associations. Recently, the XSPARQL lan-
guage has been proposed as a more concise and intuitive
way of defining the mapping between XML and RDF [2].
There are also systems designed to perform transformation
of XML data to Linked Data and RDF in domain-specific
frameworks that are only capable of handling a fixed XML
schema in a domain such as e-government [3] or bibliographic
data [9]. One of the main goals of our work is to reduce the
burden of having to manually define the mappings or hard-
code the transformation procedure.

2.3 Provenance
Since data sources evolve, the entities and their types, re-

lationships and attributes will evolve over time. The Prove-
nance component is responsible for maintaining information
about the origins of the data, mapping definitions, and the
data life cycle. In our framework, other components can only
access the triple store through this component. It is impor-
tant to note that for all the entities in our framework, we add

provenance information as attributes of entities. The chal-
lenges involved in handling dynamic semistructured data
such as provenance management and the evolution of struc-
ture are very similar to those of curated databases (refer to
Buneman et al. [11] for an excellent overview of related work
in this area).

2.4 Data Instance Processor
After generating triples, this component cleans the data

and links the entities to the related entities in both internal
and external Web repositories. Basically, this component
searches for similar entities in source and external reposito-
ries. Then it eliminates duplicates by merging source enti-
ties of the same type that refer to the same real-world entity,
and links similar entities of different types. The problem of
finding duplicate records that refer to the same real-world
entity has been extensively studied in the literature [12].
More recently, discovering semantic links in the context of
relational databases has also been studied [14]. We use and
extend several such existing techniques to enhance the data
instance processing component of our framework. Briefly,
we take advantage of the entity types extracted in the en-
tity type extraction component and their links to external
repositories to enhance the accuracy and efficiency of dupli-
cate detection and link discovery processes. We omit the
details in this paper due to space constraints.

2.5 Data Browse and Feedback Interface
As mentioned earlier, our goal is to publish data following

the principles of Linked Data, and allow users to directly
query the data by providing a public SPARQL endpoint. In
the case of XML input data, we can alternatively (or addi-
tionally) embed the RDF data in XML using the standard
GRDDL markup format.2

In addition to existing RDF and Linked Data browsers
that can be used to query and explore the data, we provide
a custom data browser mainly with the goal of receiving
feedback from users. User feedback is a critical requirement
in our system. Entity type identification, duplicate instance
detection, and data instance linkage are all problems for
which we have only imperfect solutions. No matter how
well they are performed, there may still be inaccuracies and
inconsistencies in the data that can only be identified and
removed using human intelligence. Our goal is to collect and
incorporate feedback from users in an efficient and effective
way. The data browser interface allows users to log in to our
system using their existing OpenID (an open standard for
user authentication), provide feedback on the quality of ex-
isting data and links, and report missing or erroneous values,
duplicate instances, and new external links.

3. ENTITY TYPE EXTRACTION
One of our main goals in xCurator is to provide a

generic framework capable of transforming almost any type
of semistructured data into rich Linked Data. To achieve
genericity, we make no assumption on the availability of a
predefined structure (or schema) for the input data. Even
when such information is available, e.g., through XSD (XML
Schema Definition) for XML sources, previous work has
shown that for a considerable portion of the XML sources
on the Web, either the XML documents are not valid based
on the given schema definitions, or the schema definitions

2
Gleaning Resource Descriptions from Dialects of Languages

(GRDDL) http://www.w3.org/TR/grddl/

address
Attributes:
 1) country
 2) city

facility

address

location

facility

clinical_study

lo
ca
tio
n

sponsors

lead_sponsor co
lla
bo
ra
to
r

sponsors

id_info
Attributes:
 1) org_study_id
 2) secondary_id
 3) nct_id

id_info

lead_sponsor
Attributes:
 1) agent
 2) agent_class

collaborator
Attributes:
 1) agent
 2) agent_class

(a) Basic Type Extraction

Precision Enhancement

Merging Duplicate Types

Leaf Prom
otion

address

facility

address

location

facility clinical_study
Attributes:
 1) org_study_id
 2) secondary_id
 3) nct_id

lo
ca

tio
n

sponsors

collaborator_or_
lead_sponsor

Attributes:
 1) agent
 2) agent_class

lead_sponsor collaborator

sponsors

co
u
n
try

Attributes:
 1) name

city
Attributes:
 1) name

citycountry

C
andidate

for rem
oval

(b) Final Entity Types

Figure 3: Entity type extraction for the example
shown in Figure 1

are not valid with respect to W3C standard definitions [7].
This calls for an automatic way of inferring the structure in
the data, after which an initial set of entity types can be
derived based on the inferred structure.

3.1 Basic Entity Type Extraction
As the first step towards extracting entity types, we can

take advantage of the given hierarchy in the data. We do
so by first building a structure graph from (a sample of) the
input data. This graph is similar to the schema graph as
defined by Abiteboul et al. [1], except that we do not create
Schema nodes Root, Any or type nodes such as string. This
graph is basically a concise representation of all the possible
paths in the input data graph. The structure graph for the
example XML data tree in Figure 1 can be derived by simply
removing all its leaf nodes (literals). We then consider any
non-leaf node in the structure graph as an entity type and
the leaf nodes under each non-leaf node as the attributes
of its corresponding entity type. Figure 3(a) portrays the
result of applying this strategy to extract entity types for
the structure shown in Figure 1. As shown in the figure,
all the leaf elements (e.g., <country/> and <agent/>), are
mapped to attributes while non-leaf elements (e.g., <spon-
sors/> and <collaborator/>) are mapped to entity types.
This approach is similar to finding Approximate DataGuides
(ADGs) using suffix matching [13] or 1-Representative Ob-
jects [18]. Note that this can also be derived from an accu-
rate DTD or XSD for XML data, if available.

In basic entity type extraction, we also find key attributes
of the entity types. We do so using a simple map between
attribute values and entities in the sample. We omit the
details due to lack of space.

3.2 Entity Type Extraction Enhancement
Enhancing the quality of the entity types discovered us-

ing the basic approach is quite challenging. Our approach
is motivated by the goal of publishing high quality Linked
Data. First, we identify and remove duplicate entity types.
Next, we identify accidental entity types that are likely not
useful in linking. Finally, we use external sources to under-
stand if any attributes (leaf nodes) should be promoted to
entity types to enable linking.

3.2.1 Duplicate Type Removal
A common problem with the basic entity type identifi-

cation is that it could result in duplicate types, i.e., dif-
ferent entity types that represent the same real-world en-
tity type, such as <lead_sponsor/> and <collaborator/>

in Figure 3(a). To address this problem, we use a simi-
larity function f(t1, t2) for two entity types t1 and t2 that
returns a similarity value ranging from 0 for no similarity
to 1 for highest similarity. We then merge the two entity
types t1 and t2 if f(t1, t2) ≥ θ where θ is a user-defined
threshold. This similarity function can be a simple set sim-
ilarity measure such as the Jaccard coefficient between the
sets of attributes and relationships of the two entity types.
In Figure 3(a), the Jaccard coefficient between entity types
<lead_sponsor/> and <collaborator/> is 1 and therefore
they are merged.

3.2.2 Precision Enhancement
Another problem with the basic type extraction is that

there could be non-leaf nodes that do not represent an en-
tity type. Such nodes are usually created for readability or
to group entities of the same type. The <id_info/> node in
Figure 1 is an example of such a node, which is created to
group the identifiers of a trial. We detect such nodes based
on the cardinality of the relationship of their parent node
with them. If the relationship is injective (or one-to-one),
it implies that removing the node and moving its attributes
to its parent is possible, and lossless, meaning that we will
not lose any semantic information as a result. For exam-
ple, the <id_info/> type can be removed since there is at
most one <id_info/> for a trial, but removing the <collab-
orator/> type can result in losing the relationship between
the <agency/> and <agency_class/> attributes of a <col-
laborator/> since there could be several collaborators for
each trial. Using this approach, it is also possible to re-
move the <sponsors/> type since each trial has at most one
<sponsors/> associated with it. However, as our experi-
ments on real data (described in Section 4) show, users may
want to keep such type since, for example, the <sponsors/>
node may actually refer to an entity type that represents
“sponsor groups” as opposed to a basic set of sponsors. Our
system identifies such nodes based on the frequency of oc-
currence of each entity for each entity type in the data. In
the above example, we keep <sponsors/> as an entity type
due to the fact that several groups of sponsors frequently
occur together.

3.2.3 Recall Enhancement
Another limitation of the basic type extraction method is

that many leaf nodes need to be identified as entity types
in order to facilitate querying, grouping, deduplication, and
linkage. Our approach in xCurator is to identify such types
using the power of external knowledge repositories. Our
goal is to promote attributes as entity types only if we are
able to add additional links from the instances of the entity
type to external sources. This general rule has an exception.
There are attributes with a very few distinct values (e.g.,
“Yes”/“No”, or “Male”/“Female”) for which creating entity
types and linking instances may not be appropriate. For
such cases, it is reasonable to provide only links between the
attribute and the matching entity types, not their instances.

As shown in Algorithm 1, to find linkable attributes, we
search a set of knowledge repositories for all distinct values
of an attribute. This approach requires using a similarity
measure denoted by M to compare the entities. This mea-
sure should be symmetric, and preferably translatable to a
SPARQL filter.3 External types which match at least θL

3These characteristics can significantly improve the performance
of recall enhancement in our system.

(linking threshold) fraction of distinct values are considered
appropriate links. If we find such links, and the attribute
is a key we add the links to the entity type containing the
attribute since a key is a representative of the containing
entity type. If the attribute is not a key, we promote it to
an entity type if it has many distinct values, otherwise we
do not promote the attribute.

Algorithm 1: Recall Enhancement Algorithm

Input : a (The attribute), S (Triple repositories), M (The
similarity measure), θM (The matching threshold),
θL (The linking threshold), θV (The promotion
threshold)

/* V (a) is the set of distinct values for attribute a, L
is the set of links for an attribute or an entity type,
K(t), A(t), and R(t) are the set of keys, attributes,
and relationships for type t, respectively. */

T ′ ← ∅;1
for v ∈ V (a) do2

for r ∈ S do3
for (?s label ?o) ∈ r do4

if M(v, ?o) ≥ θM then5
T ′[?t|(?s type ?t)]← T ′[?t] + 1;6

end7
end8

end9

if T ′ = ∅ and this is the first time for spell checking10
then

v ← spell check(v);11
goto line 3;12

end13
end14

T ← {t ∈ T ′|T ′[t] ≥ θL};15
if T 6= ∅ then16

t← The entity type containing a;17
if a ∈ K(t) or |V (a)| ≤ θV then18

L(t)← T ;19
else20

ta ← create a new entity type based on a;21
A(t)← A(t)− {a}; R(t)← R(t) ∪ ta; L(ta)← T ;22

end23
end24

Another common problem, especially in user-generated
data, is the existence of misspellings and alternative rep-
resentations in attribute values (e.g., misspelled city names
in trial locations). To have a better data link quality, if we
do not find any type for a value, we check for misspellings
and look for alternative representations. This can be done
using an internal dictionary depending on the domain. In
xCurator, we use an alternative strategy by querying the
Google spell checker API for an alternative representation,
and then querying the knowledge repositories using the re-
turned value. This has proven to be more effective in our
experiments as our source data also comes from the Web.

Algorithm 2: Self Linking Algorithm

Input : a (The attribute), T (The set of entity types),
θL (The linking threshold)

Output: L (set of entity types which the attribute matches)
/* f(a, b) is a set similarity function such as the Jaccard

coefficient */
for t ∈ T do1

for k ∈ K(t) do2
if f(V (a), V (k)) ≥ θL then3

L← L ∪ {t};4
end5

end6
end7
return L;8

A well-known limitation of XML and hierarchical data
models is in expressing relationships, a limitation RDF at-
tempts to address. Detecting a comprehensive set of rela-
tionships is crucial for generating richly linked data. There
are two main styles for expressing relationships in XML
and XML-based formats: (i) making the data self-contained

(e.g., copying/repeating the whole proceedings data for each
publication) which increases data redundancy, and (ii) im-
plicit referencing where implicit identifiers are used for refer-
encing other elements (e.g., using the ISBN of the proceed-
ings for each publication). Relationships expressed using the
first style are detected by the basic type identification while
the latter (implicit referencing) cannot be detected without
semantics. However, xCurator is capable of extracting those
implicitly denoted relationships using Algorithm 2. This al-
gorithm matches an attribute to all the keys of other entity
types in order to find implicit references within a document.
Note that efficient set-similarity join techniques can be used
to make this algorithm scalable to very large data sets.

4. EXPERIENCE
In this section, we briefly report our experience using the

xCurator framework in transforming several data sets into
rich Linked Data.

4.1 Clinical Trials Data
ClinicalTrials.gov is a large repository of clinical trials

from all around the world, published by the U.S. National
Library of Medicine (NLM). Currently, the data consists of
more than 100, 000 trials from 174 countries, and is updated
regularly. Each trial’s data can be retrieved online as a single
XML file. In 2008, we manually transformed the data into
Linked Data, and have been updating it on average every 6
months. Manually transforming and updating the data has
been extremely tedious and time-consuming [15], and one of
the main motivations behind the xCurator project. We now
have transformed and published the data on the Web using
xCurator. The size of the data has grown from around 7
million triples (in the manually transformed data) to more
than 24 million triples (using xCurator). Several new entity
types have been identified and a few of the entity types have
been merged. The automatic linkage has linked instances of
entity types that were not identified as linkable during the
manual transformation. The data has a very complex struc-
ture, which makes it particularly suitable for evaluation of
our entity type detection techniques.

Figure 4(a) shows the effect of sample size on the qual-
ity of the detected entity types. We start with a randomly
selected sample of size 5 (five trials) and incrementally add
new trials to the sample in order to have comparable sam-
ples of different sizes. As depicted in Figure 4(a), xCurator
generates almost flat structures (a few entity types having
many attributes) when using small sample sizes since many
relationships are found to be one-to-one and therefore many
entity types are removed. Moreover, a very small sample size
introduces many inaccurate external links since the number
of distinct values for each entity type is limited. As we in-
crease the sample size, more entities are extracted with each
with fewer attributes, as more precise one-to-one relation-
ships are detected. Interestingly, we observe that less than
one percent of the data can be used to identify entity types
very accurately and that even with only 0.1 percent of the
data as a sample, xCurator produces a mapping of much
higher quality than our tedious manual mapping. (The ac-
curacy was determined by an expert who has maintained
the data for the last three years.) Figure 4(b) portrays the
final structure generated by xCurator using the largest sam-
ple. The central node is the clinical_study entity type,
and bold border edges are external links. Similar figures for
different sample size and data sets along with more detailed
experimental results can be found on our project page [20].

Props Promoted Linked Entities

5 7.6 4 18 10

10 6.5 2 12 12

20 5.1875 3 9 16

40 4.3 3 9 20

50 4.1428571429 3 9 21

100 3.6363636364 3 10 22

125 3.6818181818 3 10 22

250 3.375 3 10 24

500 3.24 3 9 25

0

5

10

15

20

25

0 125 250 375 500

Avg. No. of Attributes
No. of Promoted Literals
No. of Linked Entities
No. of Entities

(a) General Statistics (b) LinkedCT Structure Graph

Figure 4: Effects of Sample Size

4.2 Bibliographic Data
DBLP. DBLP data set has been published as Linked

Data by multiple sources. DBLP’s XML data has a sim-
ple, flat structure and therefore is amenable even for manual
extraction of entity types. Despite such a straight forward
structure, it has two implicit internal links which can be used
to evaluate our system: (i) cross references to published col-
lections (e.g., books and proceedings) and (ii) citations to
other DBLP-indexed publications. We have performed ex-
periments on identifying entity types which are internally
linked together. The results of our experiments show that
all publication entity types are properly linked to the entity
type for respective collection(s) without manual interven-
tion. Moreover, our system is able to interlink DBLP data
with the related topics in Freebase adding value and seman-
tics to even such a heavily curated dataset as DBLP.

BibBase. BibBase started in 2005 at the University of
Toronto as a Web service that transforms the BibTeX files
of scientists and research groups into good-looking HTML
pages with several features such as the ability to use custom
style files, group publications based on different attributes,
and provide RSS feeds. Recently, we transformed these same
BibTeX files into high-quality Linked Data using the capa-
bilities of the xCurator framework. The main application
of the xCurator framework for this data source is the data
instance processing and the data browse interface. User-
generated BibTeX files have various types of quality issues,
such as abbreviating author names and using alternative au-
thor and conference names. Our Linked Data source cur-
rently provides automatic duplicate detection and linkage
to external sources. In addition, a group of users are pro-
vided with access to the feedback mechanism and are able to
report duplicates and external links, and provide feedback
on the quality of automatic deduplication and linkage. The
results are available online at http://data.bibbase.org.

4.3 Mapping Transformation Interface
In addition to the above sources, we provide a light-weight

Web interface for users to create custom mappings from (a
sample of) their XML data, and transform their data into
RDF using the custom mapping. This web interface pub-
licly exposes many features of xCurator to interested users.
Users’ RDF data will be stored in the xCurator internal
triple repository while being accessible by the users.

5. CONCLUSION
In this paper, we presented a modular framework for

transforming a semistructured data source into high-quality
Linked Data. We described briefly different components
of the proposed framework, and the entity type extrac-

tion component in more detail. We showed how it can be
used for management of several real-world semistructured
sources. We are currently investigating several future di-
rections. First, we are planning to further investigate the
application of our framework on real-world data sets from
various domains. Some applications require additional data
format conversion and using more specialized Web reposi-
tories for type detection and linkage. We are also in the
process of experimentally evaluating the effect of input pa-
rameters on the quality and performance of each component
in our framework. Another interesting area we are investi-
gating is effective generation of representative samples from
a given data source that result in more efficient mapping
generation and could also assist users of the system in up-
dating the given mapping. The results of our evaluation and
the output data sources will be made available online [20].

6. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web: From Relations to Semistructured Data and XML.
Morgan Kaufmann, 1999.

[2] W. Akhtar, J. Kopecký, T. Krennwallner, and A. Polleres.
XSPARQL: Traveling between the XML and RDF Worlds
- and Avoiding the XSLT Pilgrimage. In ESWC 2008.

[3] F. Amato, A. Mazzeo, A. Penta, and A. Picariello.
Building RDF Ontologies from Semi-Structured Legal
Documents. In CISIS 2008.

[4] Yuan An, Alex Borgida, and John Mylopoulos.
Discovering and Maintaining Semantic Mappings between
XML Schemas and Ontologies. J. of Comp. Sci. & Eng.,
2(1):44–73, 2008.

[5] Ivan Bedini. Deriving Ontologies Automatically from
XML Schemas Applied to the B2B Domain. PhD thesis,
University of Versailles, France, 2010.

[6] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning Deterministic Regular Expressions for the
Inference of Schemas from XML Data. In WWW 2008.

[7] G. J. Bex, F. Neven, and J. V. den Bussche. DTDs versus
XML Schema: A Practical Study. In WebDB 2004.

[8] C. Bizer and R. Cyganiak. D2R Server - Publishing
Relational Databases on the Semantic Web. Poster at
ISWC 2006.

[9] C. Bizer, R. Cyganiak, and T. Gauss. The RDF Book
Mashup: From Web APIs to a Web of Data. In SFSW
2007.

[10] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data:
Principles and State of the Art. In WWW 2008.

[11] P. Buneman, J. Cheney, W. C. Tan, and S. Vansummeren.
Curated Databases. In PODS 2008.

[12] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate Record Detection: A Survey. IEEE TKDE,
19(1):1–16, 2007.

[13] R. Goldman, J. McHugh, and J. Widom. From
Semistructured Data to XML: Migrating the Lore Data
Model and Query Language. In WebDB 1999.

[14] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller,
and M. Wang. A Framework for Semantic Link Discovery
over Relational Data. In CIKM 2009.

[15] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller,
and M. Wang. LinkedCT: A Linked Data Space for
Clinical Trials. CoRR, abs/0908.0567, 2009.

[16] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and
V. Sinha. Haystack: A General-Purpose Information
Management Tool for End Users Based on Semistructured
Data. In CIDR 2005.

[17] A. Maedche and S. Staab. Ontology Learning for the
Semantic Web. IEEE Intell. Systems, 16(2):72–79, 2001.

[18] S. Nestorov, J. D. Ullman, J. L. Wiener, and S. S.
Chawathe. Representative Objects: Concise
Representations of Semistructured, Hierarchial Data. In
ICDE 1997.

[19] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen,
T. Thibodeau Jr, S. Auer, J. Sequeda, and A. Ezzat. A
Survey of Current Approaches for Mapping of Relational
Databases to RDF. Technical report, W3C RDB2RDF
incubator group, 2009.

[20] The xCurator Project Homepage.
http://dblab.cs.toronto.edu/project/xcurator.

