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The use of Deep Belief Networks (DBN) to pretrain Deep
Neural Networks (DNN) has recently led to a resurgence in
the use of Artificial Neural Network - Hidden Markov Model
(ANN/HMM) hybrid systems for Automatic Speech Recog-
nition (ASR). In this paper we report results of a DBN-
pretrained context-dependent ‘DNN/HMM’ system trained
on two datasets that are much larger than any reported
previously with DBN-pretrained ANN/HMM systems - 5870
hours of Voice Search and 1400 hours of YouTube data.
On the first dataset, the pretrained ANN/HMM system
outperforms the best Gaussian Mixture Model - Hidden
Markov Model (GMM/HMM) baseline, built with a much
larger dataset by 3.7% absolute WER, while on the second
dataset, it outperforms the GMM/HMM baseline by 4.7% ab-
solute. Maximum Mutual Information (MMI) fine tuning and
model combination using Segmental Conditional Random
Fields (SCARF) give additional gains of 0.1% and 0.4% on
the first dataset and 0.5% and 0.9% absolute on the second
dataset.

Introduction

Recent advances in Machine Learning have led to
the development of algorithms which can be used to
train deep models. One of these approaches is the
Deep Belief Network (DBN), a multi-layered genera-
tive model which can be trained greedily, layer by layer,
using a model known as a Restricted Boltzmann Ma-
chine at each layer [1]. It has been empirically ob-
served that using the parameters of a Deep Belief
Network to initialize (a.k.a “pretrain”) a deep neural
network before fine tuning with backpropagation leads
to improved performance of the deep neural network
on discriminative tasks. The successful training of
deep neural networks (DNN) on several tasks (with or
without pretraining) has led to its widespread adop-
tion in speech recognition systems where DNN/HMM
hybrid systems have demonstrated tremendous gains
[2, 4,5, 3].

In this paper we report our results on experiments
with DNN/HMM hybrids on Google’s datasets and lan-
guage models that are much larger than datasets and
language models previously reported in the literature
in this area.

Datasets and Baselines

Voice Search The training data for the Voice Search
system consisted of approximately 5780 hours of data
from mobile Voice Search and Android Voice Input.
The baseline model used was a triphone HMM with
decision-tree clustered states. The acoustic data was
contiguous frames of PLP features that were trans-
formed by Linear Discriminant Analysis (LDA). Semi-
Tied Covariances (STC) were used in the GMMs to
model the LDA transformed features. Boosted-MMI
was used to train the model discriminatively. This gen-
erated a CD model with 7969 states.

You-tube The training data for the YouTube sys-
tem consisted of approximately 1400 hours of data
from YouTube. The system used 9-frame MFCCs that
were transformed by LDA and SAT was performed.
Decision-tree clustering was used to obtain 17552 tri-
phone states, and STCs were used in the GMMs to
model the features. The acoustic models were further
improved with BMMI. During decoding, Constrained
Maximum Likelihood Linear Regression (CMLLR) and
Maximum Likelihood Linear Regression (MLLR) trans-
forms were applied.

Name # of hours CMLLR? WER
Voice Search >6K No 16.0
YouTube >1400 Yes 52.3

Table 1: Baselines used for study.
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Figure 1. Pipeline for training ANN/HMM hybrid system

The ANN/HMM hybrid models were trained in three stages as shown in figure 1. First, a baseline GMM/HMM
system was trained and forced alignment was used to associate each frame of data with a target HMM state. Then,
a DBN was trained on the acoustic data (which may be MFCC vectors, log filterbanks, or speaker adapted features
stacked together) and the weights of the DBN were used to initialize a neural network, which was then trained to

predict the HMM state from the acoustic data, using back-propagation.

Further discriminative training of the learnt neural network was then performed using MMI. Lastly, SCARF

was used for model combination of DNN/HMM results with the GMM/HMM system.

Name Model

WER(%)

GMM-HMM baseline

DBN pretrained ANN/HMM with sparsity
+ MMI
+ system combination with SCARF

Voice Search

16.0
12.3
12.2
11.8

GMM-HMM baseline

DBN pretrained ANN/HMM with sparsity
+ MMI
+ system combination with SCARF

YouTube

52.3
47.6
471
46.2

Table 2: Summary of Results

Neural Network Architecture Based on exploratory
experiments with the Broadcast news database, we
chose to use four hidden layers with 2560 units per
layers as the architecture of choice for Voice Search.
For You-tube we also used a neural network with 4 hid-
den layers. However, we chose to use 1000 units at all
layers but the lowest layer (where we used 2000 units),
because of computational considerations - the targets
had a very high output dimensionality of 17552.
Neural Network Training The models were trained
on a dual CPU Intel Xeon DP Quad Core E5640
machine with Ubuntu OS equipped with four NVIDIA
Tesla C2070 Graphics Processing Units. Each job
was performed on a single CPU with a single GPU
board. Data were loaded on to CPU memory in big
mini-batches of 20 hours for Voice Search, and 17.5
hours for YouTube. These were then loaded into the
GPU, and randomly permuted. Mini-batches of size
200 for Voice Search and 500 for YouTube were built
by cycling through these permuted vectors. Model pa-
rameters were all kept and updated on GPU memory
itself. Average gradients were computed on the mini-
batches and parameters were updated with a learning
rate of .04 for the top two layers of the network and
0.02 for the others, with a momentum of 0.9. Each
DBN layer was pre-trained for one epoch as an RBM
and then the resulting ANN was discriminatively fine-
tuned for one epoch. Weights with magnitudes below
a threshold were then permanently set to zero before
a further quarter epoch of training. All the computa-
tions involved in training the DBN (matrix multiplica-
tions, sampling etc) and the Neural Network (matrix
multiplications, etc) were performed on the GPU us-
ing the Cudamat library [8].

Discriminative training with MMI Discriminative
training of the DNN/HMM model was performed using
a gradient update rule similar to that described in [6].
Gradient descent learning with momentum was per-
formed over large mini-batches of size equal to 1/20t"
of the entire training data set.

Model Combination with GMM/HMMs using
SCARF SCARF was used to combine results from
the GMM/HMM model with the results from the
DNN/HMM model[7].
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