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Abstract

We describe a new approach for modeling the
distribution of high-dimensional vectors of dis-
crete variables. This model is inspired by the
restricted Boltzmann machine (RBM), which
has been shown to be a powerful model of
such distributions. However, an RBM typi-
cally does not provide a tractable distribution
estimator, since evaluating the probability it
assigns to some given observation requires the
computation of the so-called partition func-
tion, which itself is intractable for RBMs of
even moderate size. Our model circumvents
this difficulty by decomposing the joint dis-
tribution of observations into tractable condi-
tional distributions and modeling each condi-
tional using a non-linear function similar to a
conditional of an RBM. Our model can also
be interpreted as an autoencoder wired such
that its output can be used to assign valid
probabilities to observations. We show that
this new model outperforms other multivari-
ate binary distribution estimators on several
datasets and performs similarly to a large (but
intractable) RBM.

1 Introduction

The problem of estimating the distribution of multi-
variate data is perhaps the most general problem ad-
dressed by machine learning. Indeed, given the joint
distribution of all variables we are interested in, we
can potentially answer any question (though possibly
only approximately) about the relationship between
these variables, e.g. what is the most likely value of a
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subset of the observations given others, a question that
covers any supervised learning problem. Alternatively,
one could be interested in learning the distribution
of observations to extract features derived from the
statistical regularities exhibited by those observations.

In recent years, the restricted Boltzmann machine
(RBM) (Smolensky, 1986; Freund & Haussler, 1992;
Hinton, 2002) has frequently been used as a feature ex-
tractor. RBMs model the distribution of observations
using binary hidden variables. By training an RBM to
learn the distribution of observations, it is then possible
to use the posterior over these hidden variables given
some observation as learned features, which can be
composed into several layers and fine-tuned for some
given task (Hinton et al., 2006; Bengio et al., 2007).
If the observations can be decomposed into an input
x and a target y, then an RBM trained on such pairs
can also be used to predict the missing target for new
inputs (Larochelle & Bengio, 2008; Tieleman, 2008).

One problem an RBM isn’t suited for is, oddly enough,
estimating the joint probability of a given observation.
Evaluating joint probabilities under the model requires
computing the so-called partition function or normal-
ization constant of the RBM which, even for models
of moderate size and observations of moderate dimen-
sionality, is intractable. This is unfortunate, as it can
make it difficult to use the RBM as a generic modeling
tool for larger probabilistic systems. Even for a sim-
ple probabilistic clustering model or a Bayes classifier,
some approximations need to be made.

In this paper, we describe the Neural Autoregressive
Distribution Estimator (NADE), which is inspired by
the RBM but is a tractable distribution estimator.
Indeed, computing probabilities of observations or sam-
pling new observations from the model can be done
exactly and efficiently under NADE. Focusing on the
problem of estimating the distribution of binary multi-
variate observations, we show on several datasets that
NADE outperforms other tractable distribution estima-
tors. We also show that its performance is very close
to that of a large but intractable RBM whose partition
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function has been approximated.

2 The Restricted Boltzmann Machine

An RBM is a Markov random field with bipartite struc-
ture, where a set of weights W connect observation
variables v (with bias parameters b) to hidden vari-
ables h (with bias c). More specifically, from the energy
function

E(v,h) = −h>Wv − b>v − c>h (1)

probabilities are assigned to any observation v as fol-
lows:

p(v) =
∑
h

exp(−E(v,h))/Z , (2)

where Z is known as the partition function and en-
sures that p(v) is a valid distribution and sums to 1.
Unfortunately, for RBMs with even just a few hidden
variables (i.e. more than 30), computing this parti-
tion function becomes intractable. For this reason,
training under an RBM requires approximating the log-
likelihood gradient on the parameters, with contrastive
divergence (Hinton, 2002) being the most popular ap-
proach.

The RBM’s intractable partition function reduces its
use as a modeling tool that can be incorporated into
some other larger probabilistic system. Even in a sim-
ple Bayes classifier where one RBM would need to be
trained for each class, they cannot be used directly.
However, in this particular case the relative partition
functions of the RBMs have successfully been approxi-
mated to build a classifier (Hinton, 2002; Schmah et al.,
2009).

Not knowing the exact value of Z also makes it hard
to quantitatively evaluate how well the distribution
estimated by the RBM fits the true distribution of our
observations, e.g. by computing the average negative
log-likelihood of test observations and comparing it
to that of other methods. However, Salakhutdinov
and Murray (2008) showed that using annealed impor-
tance sampling, it is possible to obtain a reasonable
approximation to Z. By assuming this approximation
corresponds to the true value of Z, we can then make
such quantitative comparisons, with the caveat that
there are no strong guarantees on the quality of the
estimate of Z. Still, the experiments they report do
suggest that the RBM is a very powerful model, outper-
forming a (tractable) mixture of multivariate Bernoullis
by a large margin.

Hence the question: can we design a model which,
much like an RBM, is a powerful model of multivariate
discrete data but can also provide a tractable distri-
bution estimator? In this paper, we describe such a
model.

3 Converting an RBM into a Bayesian
Network

Another type of model which has also been shown to
provide a powerful framework for deriving tractable
distribution estimators is the family of fully visible
Bayesian networks (e.g. Frey et al., 1996; Bengio and
Bengio, 2000), which decompose the observation’s prob-
ability distribution as follows:

p(v) =
D∏

i=1

p(vi|vparents(i)) , (3)

where all observation variables vi are arranged into a
directed acyclic graph and vparents(i) corresponds to
all the variables in v that are parents of vi into that
graph. The main advantage of such a model is that if all
conditional distributions p(vi|vparents(i)) are tractable
then so is the whole distribution p(v).

One such model which has been shown to be a good
model of multivariate discrete distributions is the fully
visible sigmoid belief network (FVSBN) (Neal, 1992;
Frey et al., 1996). In the FVSBN, the acyclic graph is
obtained by defining the parents of vi as all variables
that are to its left1, or vparents(i) = v<i, where v<i

refers to the subvector containing all variables vj such
that j < i (see Figure 1 for an illustration). As for the
conditionals p(vi|vparents(i)), they each correspond to
a log-linear model or logistic regressor:

p(vi|vparents(i)) = sigm
(
bi +

∑
j<i

Wijvj

)
, (4)

where sigm(x) = 1/ (1 + exp(−x)).

Of course, the distribution of an RBM could also be
written in the form of Equation 3,

p(v) =
D∏

i=1

p(vi|v<i)

=
D∏

i=1

p(vi,v<i)/p(v<i)

=
D∏

i=1

∑
v>i

∑
h exp(−E(v,h))∑

vj≥i

∑
h exp(−E(v,h))

, (5)

but unfortunately most of the conditionals are them-
selves intractable. However, if they could each be
approximated, perhaps the associated distribution es-
timator would still be powerful enough to yield good
estimations.

1Before building the graph, the variables are usually
randomly reordered. In our notation, we’ll assume that this
operation has already been performed on v.
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To achieve this, one could consider the follow-
ing approach. To approximate the conditional
p(vi|v<i) under an RBM, we first find an approxima-
tion q(vi,v>i,h|v<i) for p(vi,v>i,h|v<i), such that
q(vi|v<i) can be easily obtained. Such a choice for
q(vi,v>i,h|v<i) and a popular approach for RBMs in
general is the mean-field distribution, where a factorial
decomposition is assumed:

q(vi,v>i,h|v<i) = µi(i)vi(1− µi(i))1−vi∏
j>i

µj(i)vj (1− µj(i))1−vj

∏
k

τk(i)hk(1− τk(i))1−hk , (6)

where µj(i) is the marginal probability of observation
vj being equal to 1, given v<i. Similarly, τk(i) is the
marginal probability of hidden variable hk being equal
to 1. The dependence on i comes from conditioning on
v<i, i.e. for each value of i. The mean-field approxi-
mation then proceeds by finding the parameters µj(i)
for j ≥ i and τk(i) which minimize the KL divergence
between q(vi,v>i,h|v<i) and p(vi,v>i,h|v<i). The
most frequently used approach for doing this consists
in setting the derivatives of the KL to 0, yielding the
following equations (see Appendix for a derivation):

τk(i) = sigm

ck +
∑
j≥i

Wkjµj(i) +
∑
j<i

Wkjvj

 (7)

µj(i) = sigm

(
bj +

∑
k

Wkjτk(i)

)
∀j ≥ i . (8)

The fixed point satisfying these equations is found
by initializing µj(i) and τk(i) to 0 and alternating
between applying Equations 7 and 8 from right to left.
This procedure is guaranteed to converge to a fixed
point, which might not be a global optimum. Still,
the general principle of mean-field has been shown to
work well in practice for RBMs (Welling & Hinton,
2002; Salakhutdinov & Hinton, 2009). In the setting of
converting an RBM into a Bayesian network, the value
of µj(i) would be used as an estimate of p(vi = 1|v<i).

However, this mean-field procedure can be quite slow,
with convergence often taking around 20 iterations.
Each iteration can be quite costly for large dimension-
alities of observations v or hidden vectors h. Moreover,
the same procedure would need to be followed for each
observation vi, making it impractical.

4 The Neural Autoregressive
Distribution Estimator

While not directly applicable, the mean-field procedure
of the last section can serve as an inspiration for coming

v1 v2 v3 v4

v1 v2 v3 v4ˆˆˆˆ

NADE

v1 v2 v3 v4

v1 v2 v3 v4ˆˆˆˆ h2 h3h1 h4

FVSBN

Figure 1: (Left) Illustration of a fully visible sigmoid
belief network. (Right) Illustration of a neural au-
toregressive distribution estimator. v̂i is used as a
shorthand for p(vi = 1|v<i). Arrows connected by a
blue line correspond to connections with shared or tied
parameters.

up with powerful functions to use in a Bayesian network
and model the conditionals p(vi = 1|v<i).

For instance, consider the application of the afore-
mentioned mean-field procedure for only one iteration.
With µj(i) initialized to 0 for j ≥ i, we can rewrite
this procedure as follows:

p(vi = 1|v<i) = sigm
(
bi + (W>)i,·hi

)
(9)

hi = sigm (c + W·,<iv<i) , (10)

which corresponds to a feed-forward neural network
with a single hidden layer, and tied weighted connec-
tions going in and out of the hidden layer. Moreover,
since there is one neural network for each conditional
p(vi = 1|v<i), connections are also tied across these
neural networks.

The tied connections can be leveraged to speed up
the computations of each conditional by sharing cal-
culations across neural networks. Indeed, the ith and
(i+1)th hidden layer activations passed into the sig-
moid in Equation (10) are almost exactly the same.
The difference between the two is simply

(c + W·,<i+1v<i+1)− (c + W·,<iv<i) = W·,i+1vi+1

which can be computed in O(H), where H is the num-
ber of hidden units. Hence, the complete cost of com-
puting p(v) is O(HD), instead of the O(HD2) cost of
a naive procedure that doesn’t take advantage of the
weight sharing across conditionals.

We call the proposed new Bayesian network for distribu-
tion estimation the Neural Autoregressive Distribution
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Algorithm 1 Computation of p(v) and learning gra-
dients for NADE

Input: training observation vector v
Output: p(v) and gradients of − log p(v) on param-
eters

# Computing p(v)
a← c
p(v)← 1
for i from 1 to D do

hi ← sigm(a)
p(vi = 1|v<i)← sigm(bi + Vi,·hi)
p(v)← p(v) (p(vi = 1|v<i)vi

(1− p(vi = 1|v<i))1−vi
)

a← a + W·,ivi

end for

# Computing gradients of − log p(v)
δa← 0
δc← 0
for i from D to 1 do

δbi ← (p(vi = 1|v<i)− vi)
δVi,· ← (p(vi = 1|v<i)− vi)h>i
δhi ← (p(vi = 1|v<i)− vi)V >

i,·
δc← δc + (δhi)hi(1− hi)
δW·,i ← (δa)vi

δa← δa + (δhi)hi(1− hi)
end for

return p(v), δb, δV, δc, δW

Estimator (NADE). Training under NADE is done by
minimizing the average negative log-likelihood of the
parameters given the training set:

1
T

T∑
t=1

− log p(vt) =
1
T

T∑
t=1

D∑
i=1

− log p(vi|v<i) , (11)

where the dependence on the model parameters is given
in (9) and (10). This minimization can be done using
any non-linear optimization method, such as stochastic
gradient descent.

In practice, we have found that untying the connections
going in and out of the hidden units gives better dis-
tribution estimation performance. In other words, we
learn a separate set of weights V (a D×H matrix) for
the connections from the hidden units to the outputs,
replacing W> in (9). Notice that NADE was not gain-
ing computationally from sharing these connections,
hence untying them does not make it slower. Also, us-
ing a separate set of weights means that we can invoke
the universal approximation theorems for neural net-
works for each conditional, since V could be such that
each hidden unit only has non-zero connections to one

of the conditional outputs. This is of course unlikely
to be learned in practice, but conceptually speaking
it is good to know that by increasing the number of
hidden units, we can cover a family of distributions
whose best distribution is increasingly close to the true
distribution.

Figure 1 illustrates this new model and Algorithm 1
gives the pseudocode for computing p(v) and the pa-
rameter derivatives of − log p(v) under NADE.

5 Related Work

Several models for tractably estimating the distribution
of multivariate discrete or binary data have previously
been proposed. The most common is probably a mix-
ture model with multivariate Bernoullis as components
for binary data. Lowd and Domingos (2005) argued
that it improves over a Bayesian network with proba-
bilistic decision trees for each conditional.

Better Bayesian networks can be obtained by using
log-linear logistic regressors for the conditionals, also
known as fully visible sigmoid belief networks or logistic
autoregressive Bayesian networks (Frey, 1998). While
the choice of log-linear conditionals probably yields
a misspecified model in most cases, these networks
do tend to perform better than mixture models (Frey
et al., 1996).

While RBMs of moderate size are intractable as dis-
tribution estimators, they can be made small enough
to be tractable. Even small RBMs are equivalent to
very large mixture models with constrained param-
eters. Indeed, Larochelle et al. (2010) have shown
that small, tractable RBMs can outperform standard
mixture models.

In this paper, we show that NADE outperforms all
of the aforementioned models. Though this compari-
son excludes intractable models such as factor models
in general or models based on orthogonal expansions
of Walsh bases (Ott & Kronmal, 1976; Chen et al.,
1989), we also provide a comparison with a large and
intractable RBM which suggests that NADE has com-
parable modeling power.

Bengio and Bengio (2000) also proposed using neural
networks for the conditionals of a Bayesian network.
While there was some amount of parameter sharing
across conditionals, computing p(v) under their model
costs O(HD2) instead of the O(HD) cost of NADE,
though it should be noted that the optimal H (in terms
of generalization) might be smaller for their model than
in NADE. The lack of parameter sharing in their pro-
posal also seems to have made the model more suscepti-
ble to overfitting: pruning heuristics based on pairwise
statistical tests had to be used on some datasets. In
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contrast, we did not have to use any pruning for NADE,
presumably because of the particular choice of parame-
ter sharing that it implements.

Part of the motivation behind this work is that the
mean-field approximation in an RBM is too slow to be
practical in estimating the RBM conditionals. Recent
work by Salakhutdinov and Larochelle (2010) proposed
a neural net training procedure that found weights
whereby one mean-field iteration would give an output
close to the result of running the mean-field procedure
to convergence. In the setting of estimating condi-
tionals p(vi|v<i), their procedure would be similar to
training NADE on the output of mean-field instead of
on the training observations, which is much less direct
and would also require that an RBM be trained first.

NADE is also closely related to autoencoders, i.e. neu-
ral networks trained to reproduce their inputs at their
outputs. In particular, the denoising autoencoder (Vin-
cent et al., 2008) is a variation where a proportion of
the inputs are “destroyed” (i.e. set to 0) but must be
reconstructed at the output based on the other inputs.
An alternative view of NADE is as an autoencoder that
has been wired such that its output can be used to
assign probabilities to observations in a valid way. It
also has all of the flexibility of normal autoencoders in
the choice of hidden layer activation function, which
need not be the sigmoid function in order to be a valid
distribution estimator.

Finally, the general approach of decomposing the prob-
ability of an intractable model and approximating
the conditionals was previously explored by Li and
Stephens (2003) for a model of linkage disequilibrium
in genetic data.

6 Experiments

We conducted experiments on eight datasets of mul-
tivariate binary observations from several application
domains, including biological, image and text data.
All datasets were separated into training, validation
and test portions. The same datasets were used in
Larochelle et al. (2010), which also provided results
for some of the baselines. The performance of NADE
was compared to that of the following models:

• MoB: a mixture of multivariate Bernoullis,
trained using the EM algorithm;

• RBM: a restricted Boltzmann machine made
tractable by using only 23 hidden units, trained
by contrastive divergence with up to 25 steps of
Gibbs sampling;

• RBM mult.: an RBM with groups of multinomial
hidden units, i.e. with a hidden layer where units

have been segmented into groups within which
only one unit can be active (i.e. equal to 1). It was
proposed by Larochelle et al. (2010) to allow the
number of parameters of the RBM to grow while
maintaining tractability;

• RBForest: an RBM where the activation of hid-
den units within a group obey tree constraints (see
Larochelle et al. (2010) for more details);

• FVSBN: a fully visible sigmoid belief network.

Both FVSBN and NADE were trained by stochastic
gradient descent. The initial learning rate was set
to a value in {0.05, 0.005, 0.0005} and the decrease
constant2 chosen from {0, 0.001, 0.000001} based on
performance on a validation set. Early stopping with
a look ahead of 10 iterations was used to control for
overfitting, with a maximum number of iterations of
500. No other regularization technique (e.g. priors
on the parameters) were used for either FVSBN or
NADE. A single random ordering of the observation
variables was used to decompose p(v) into conditionals,
and the same ordering was used for both FVSBN and
NADE. In all experiments, we used 500 hidden units
for NADE. Code for NADE and for collecting the
datasets is available here: http://www.cs.toronto.
edu/∼larocheh/code/nade.tgz. The results for MoB
and the RBM models where taken from Larochelle et al.
(2010). For MoB, the number of mixture components
was chosen among {32, 64, 128, 256, 512, 1024} based
on the validation set performance and early stopping
was used to determine the number of EM iterations
(no other regularization technique or prior were used).
See Larochelle et al. (2010) for more details.

The test average log-likelihood for the different datasets
are given in Table 1. NADE is the sole best performing
model on 6 of the datasets, with FVSBN outperforming
NADE on only 1 dataset. On the remaining dataset,
both NADE and FVSBN are the best performing mod-
els with statistically indistinguishable results. NADE
also beats the other models on all datasets by a large
margin.

6.1 Sensitivity to ordering of observations

As mentioned earlier, NADE requires that the observa-
tion variables be put in some order to decompose the
joint likelihood into conditionals. In our experiments,
the ordering was determined by simply randomly shuf-
fling the observations, but one could wonder whether
this has a significant impact on the performance of
NADE.

2The learning rate λt for the tth parameter update is
obtained from the decrease constant γ and initial learning
rate λ by combining them as follows: λt = λ

1+γt
.
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Table 1: Distribution estimation results. To normalize the results, the average test log-likelihood (ALL) for each
model on a given dataset was subtracted by the ALL of MoB (which is given in the last row under “Normalization”).
95% confidence intervals are also given. The best result as well as any other result with an overlapping confidence
interval is shown in bold.

Model adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web

MoB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
± 0.10 ± 0.04 ± 0.53 ± 0.10 ± 1.12 ± 0.32 ± 0.11 ± 0.23

RBM 4.18 0.75 1.29 -0.69 12.65 -2.49 -1.29 0.78
± 0.06 ± 0.02 ± 0.48 ± 0.09 ± 1.07 ± 0.30 ± 0.11 ± 0.20

RBM 4.15 -1.72 1.45 -0.69 11.25 0.99 -0.04 0.02
mult. ± 0.06 ± 0.03 ± 0.40 ± 0.05 ± 1.06 ± 0.29 ± 0.11 ± 0.21
RBForest 4.12 0.59 1.39 0.04 12.61 3.78 0.56 -0.15

± 0.06 ± 0.02 ± 0.49 ± 0.07 ± 1.07 ± 0.28 ± 0.11 ± 0.21
FVSBN 7.27 11.02 14.55 4.19 13.14 1.26 -2.24 0.81

± 0.04 ± 0.01 ± 0.50 ± 0.05 ± 0.98 ± 0.23 ± 0.11 ± 0.20
NADE 7.25 11.42 13.38 4.65 16.94 13.34 0.93 1.77

± 0.05 ± 0.01 ± 0.57 ± 0.04 ± 1.11 ± 0.21 ± 0.11 ± 0.20
Normalization -20.44 -23.41 -98.19 -14.46 -290.02 -40.56 -47.59 -30.16

To measure the sensitivity of NADE to the ordering of
the observations we trained a dozen separate models for
the mushrooms, dna and nips-0-12 datasets using
different random shufflings. We then computed the
standard deviation of the twelve associated test log-
likelihood averages, for each of the datasets. Standard
deviations of 0.045, 0.050 and 0.150 were observed on
mushrooms, dna and nips-0-12 respectively, which
is quite reasonable when compared to the intrinsic
uncertainty associated with using a finite test set (see
the confidence intervals of Table 1). Hence, it does
not seem necessary to optimize the ordering of the
observation variables.

One could try to reduce the variance of the learned so-
lution by training an ensemble of several NADE models
on different observation orderings, while sharing the
weight matrix W across those models but using differ-
ent output matrices V. While we haven’t extensively
experimented with this variant, we have found such
sharing to produce better filters when used on the
binarized MNIST dataset (see next section).

6.2 NADE vs. an intractable RBM

While NADE was inspired by the RBM, does its per-
formance come close to that of the RBM in its most
typical regime, i.e. with hundreds of hidden units? In
other words, was tractability gained with a loss in
performance?

To answer these questions, we trained NADE on a
binarized version of the MNIST dataset. This ver-
sion was used by Salakhutdinov and Murray (2008) to

train RBMs with different versions of contrastive di-
vergence and evaluate them as distribution estimators.
Since the partition function cannot be computed ex-
actly, it was approximated using annealed importance
sampling. This method estimates the mean of some
unbounded positive weights by an empirical mean of
samples. It isn’t possible to meaningfully upper-bound
the partition function from these results: the true test
log-likelihood averages could be much smaller than the
values and error bars reported by Salakhutdinov and
Murray (2008), although their approximations were
shown to be accurate in a tractable case.

RBMs with 500 hidden units were reported to ob-
tain −125.53, −105.50 and −86.34 in average test log-
likelihood when trained using contrastive divergence
with 1, 3 and 25 steps of Gibbs sampling, respectively.
In comparison, NADE with 500 hidden units, a learn-
ing rate of 0.0005 and a decrease constant of 0 obtained
−88.86. This is almost as good as the best RBM claim
and much better than RBMs trained with just a few
steps of Gibbs sampling. Again, it also improves over
mixtures of Bernoullis which, with 10, 100 and 500 com-
ponents obtain −168.95, −142.63 and −137.64 average
test log-likelihoods respectively (taken from Salakhut-
dinov and Murray (2008)). Finally, FVSBN trained
by stochastic gradient descent achieves −97.45 and
improves on the mixture models but not on NADE.

It then appears that tractability was gained at almost
no cost in terms of performance. We are also confident
that even better performance could have been achieved
with a better optimization method than stochastic gra-
dient descent. Indeed, the log-likelihood on the training
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set for NADE was −84.07, which is quite close to its
test log-likelihood. Moreover NADE will be able to take
advantage of future non-linear optimization methods,
currently an active area research (e.g. Martens, 2010).
In contrast, training an RBM, for which gradients must
be approximated with sampling, is largely restricted to
simple optimization methods.

We also generated samples from NADE after training
on binarized MNIST. This is done by sequentially
sampling each vi according to p(vi|vi) as estimated
by the model. The samples are displayed in Figure 2,
along with the probabilities p(vi|vi) used to obtain
these samples. While some are noisy, several of them
are clear images of a distinguishable digit. Notice that
those are exact samples under NADE. In contrast,
samples from an RBM result from a Markov chain
which can mix slowly and whose convergence is hard
to establish.

7 Conclusion and Future Work

We have proposed NADE, a new model for estimating
the distribution of high-dimensional discrete observa-
tions. NADE can be seen as a method for converting
an RBM into a tractable distribution estimator. It can
also be understood as a special kind of autoencoder
whose output assigns valid probabilities to observations
and hence is a proper generative model. On several
datasets, NADE outperforms other common baselines
for tractable distribution estimation and performs sim-
ilarly to a large intractable RBM.

While this work has focused on binary distributions,
one could model other distributions by adjusting the
output non-linearity accordingly: a linear output for
Gaussian distributions, a so-called softmax output for
multinomial distributions or an exponentiated output
to yield Exponential or Poisson distributions (Ranzato
& Szummer, 2008).

In future work, we would like to investigate the use
of NADE on problems other than distribution estima-
tion, in particular on problems for which RBMs and
autoencoders are often considered. We give prelimi-
nary results in two application areas: initialization of
deep neural networks and the unsupervised learning of
features.

In Figure 2, we give a visualization of the weights
learned by NADE on the binarized version of MNIST.
Many of the filters seem to act as edge detectors, which
is a sensible feature to extract from images of digits.
While the filters seem a bit noisy compared to those
learned by an RBM, they are a clear improvement
on those learned by a regular autoencoder (Larochelle
et al., 2009). We conjecture that the noisiness of the

filters is directly linked to having a fixed ordering of
the inputs when factoring p(v) into conditionals, which
implies that the weights on different pixels receive
gradients from a different number of sources (i.e. a
different number of conditionals). By using a better
optimization procedure taking into account second or-
der information of the optimization objective or by
normalizing the scale of the activations going into each
hi separately, we think it should be possible to improve
the quality of the features learned.

The weight matrix W learned by NADE can also be
used as an initial value for the hidden layer weights of
a neural network. In preliminary experiments where
a variant of NADE (in which a class label is included
in the observation vector) was used to initialize a two
hidden layer neural network gave around 1.3% classi-
fication error on MNIST. We are confident that this
result could be further improved in future work.
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Appendix

We give here a short derivation for the mean-field up-
dates of Equations 7 and 8. Equation 6 defines the
factorial distribution we wish to use as an approxima-
tion for the true marginals. To simplify the derivation,
we will extend the definition of µj(i) for j < i by
defining that µj(i) = vj in that special case.

Hence, we wish to minimize the KL-divergence be-
tween the approximating distribution q(vi,v>i,h|v<i)
of Equation 6 and the true conditional

p(vi,v>i,h|v<i) = exp(−E(v,h))/Z(v<i) (12)

where Z(v<i) =
∑

vi,v>i,h
exp(−E(v,h)). First, we

can develop the KL-divergence as follows:

KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

= −
∑

vi,v>i,h

q(vi,v>i,h|v<i) log p(vi,v>i,h|v<i)

+
∑

vi,v>i,h

q(vi,v>i,h|v<i) log q(vi,v>i,h|v<i)

= −τ(i)>Wµ(i)− b>µ(i)− c>τ(i) + log Z(v<i)

+
∑
j≥i

(µj(i) log µj(i) + (1− µj(i)) log(1− µj(i)))

+
∑

k

(τk(i) log τk(i) + (1− τk(i)) log(1− τk(i)))

Then, we take the derivative with respect to τk(i) and
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Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.

set it to 0, to obtain:

0 =
∂KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

∂τk(i)

0 = −ck −Wk,·µ(i) + log
(

τk(i)
1− τk(i)

)
τk(i)

1− τk(i)
= exp(ck + Wk,·µ(i))

τk(i) =
exp(ck + Wk,·µ(i))

1 + exp(ck + Wk,·µ(i))

τk(i) = sigm

ck +
∑
j≥i

Wkjµj(i) +
∑
j<i

Wkjvj


where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-
mation form and have used the fact that µj(i) = vj for
j < i.

Similarly, we set the derivative with respect to µj(i)
for j ≥ i to 0 and obtain:

0 =
∂KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

∂µj(i)

0 = −bj − τ(i)>W·,j + log
(

µj(i)
1− µj(i)

)
µj(i)

1− µj(i)
= exp(bj + τ(i)>W·,j)

µj(i) =
exp(bj + τ(i)>W·,j)

1 + exp(bj + τ(i)>W·,j)

µj(i) = sigm

(
bj +

∑
k

Wkjτk(i)

)

We then recover the mean-field updates of Equa-
tions 7 and 8.
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