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Abstract

We present the Gaussian Process Density Sampler (GPDS), an exchangeable gen-
erative model for use in nonparametric Bayesian density estimation. Samples
drawn from the GPDS are consistent with exact, independent samples from a fixed
density function that is a transformation of a function drawn from a Gaussian pro-
cess prior. Our formulation allows us to infer an unknown density from data using
Markov chain Monte Carlo, which gives samples from the posterior distribution
over density functions and from the predictive distribution on data space. We can
also infer the hyperparameters of the Gaussian process. We compare this density
modeling technique to several existing techniques on a toy problem and a skull-
reconstruction task.

1 Introduction

We present the Gaussian Process Density Sampler (GPDS), a generative model for probability den-
sity functions, based on a Gaussian process. We are able to draw exact and exchangeable data from
a fixed density drawn from the prior. Given data, this generative prior allows us to perform infer-
ence of the unnormalized density. We perform this inferenceby expressing the generative process in
terms of a latent history, then constructing a Markov chain Monte Carlo algorithm on that latent his-
tory. The central idea of the GPDS is to allow nonparametric Bayesian density estimation where the
prior is specified via a Gaussian process covariance function that encodes the intuition that “similar
data should have similar probabilities.”

One way to perform Bayesian nonparametric density estimation is to use a Dirichlet process to
define a distribution over the weights of the components in aninfinite mixture model, using a simple
parametric form for each component. Alternatively, Neal [1] generalizes the Dirichlet process itself,
introducing a spatial component to achieve an exchangeableprior on discrete or continuous density
functions with hierarchical characteristics. Another wayto define a nonparametric density is to
transform a simple latent distribution through a nonlinearmap, as in the Density Network [2] and
the Gaussian Process Latent Variable Model [3]. Here we use the Gaussian process to define a prior
on the density function itself.

2 The prior on densities

We consider densities on an input spaceX that we will call thedata space. In this paper, we assume
without loss of generality thatX is thed-dimensional real spaceRd. We first construct a Gaussian
process prior with the data spaceX as its input and the one-dimensional real spaceR as its output.
The Gaussian process defines a distribution over functions fromX to R. We define a mean function
m(·) : X → R and a positive definite covariance functionK(·, ·) : X × X → R. We
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(c) ℓx =0.2, ℓy =0.2, α=5
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(d) ℓx =0.1, ℓy =2, α=5

Figure 1:Four samples from the GPDS prior are shown, with 200 data samples. Thecontour lines show the ap-
proximate unnormalized densities. In each case the base measure is the zero-mean spherical Gaussian with unit
variance. The covariance function was the squared exponential:K(x, x′) = α exp(− 1

2

∑

i
ℓ−2

i (xi − x′

i)
2),

with parameters varied as labeled in each subplot.Φ(·) is the logistic function in these plots.

assume that these functions are together parameterized by aset of hyperparametersθ. Given these
two functions and their hyperparameters, for any finite subset of X with cardinalityN there is a
multivariate Gaussian distribution onRN [4]. We will take the mean function to be zero.

Probability density functions must be everywhere nonnegative and must integrate to unity. We define
a map from a functiong(x) : X → R, x ∈ X , to a proper densityf(x) via

f(x) =
1

Zπ[g]
Φ(g(x))π(x) (1)

whereπ(x) is an arbitrary base probability measure onX , andΦ(·) : R → (0, 1) is a nonnegative
function with upper bound1. We takeΦ(·) to be a sigmoid, e.g. the logistic function or cumulative
normal distribution function. We use the bold notationg to refer to the functiong(x) compactly
as a vector of (infinite) length, versus its value at a particular x. The normalization constant is a
functional ofg(x):

Zπ[g] =

∫

dx′ Φ(g(x′))π(x′). (2)

Through the map defined by Equation 1, a Gaussian process prior becomes a prior distribution over
normalized probability density functions onX . Figure 2 shows several sample densities from this
prior, along with sample data.

3 Generating exact samples from the prior

We can use rejection sampling to generate samples from a common density drawn from the the
prior described in Section 2. A rejection sampler requires aproposal density that provides an upper
bound for the unnormalized density of interest. In this case, the proposal density isπ(x) and the
unnormalized density of interest isΦ(g(x))π(x).

If g(x) were known, rejection sampling would proceed as follows: First generate proposals{x̃q}
from the base measureπ(x). The proposal̃xq would be accepted if a variaterq drawn uniformly
from (0, 1) was less thanΦ(g(x̃q)). These samples would be exact in the sense that they were not
biased by the starting state of a finite Markov chain. However, in the GPDS,g(x) is not known: it is
a random function drawn from a Gaussian process prior. We cannevertheless use rejection sampling
by “discovering”g(x) as we proceed at just the places we need to know it, by samplingfrom the
prior distribution of the latent function. As it is necessary only to knowg(x) at the{xq} to accept
or reject these proposals, the samples are still exact. Thisretrospective sampling trick has been
used in a variety of other MCMC algorithms for infinite-dimensional models [5, 6]. The generative
procedure is shown graphically in Figure 2.

In practice, we generate the samples sequentially, as in Algorithm 1, so that we may be assured
of having as many accepted samples as we require. In each loop, a proposal is drawn from the
base measureπ(x) and the functiong(x) is sampled from the Gaussian process at this proposed
coordinate, conditional on all the function values alreadysampled. We will call these data the
conditioning setfor the functiong(x) and will denote the conditioning inputsX and the conditioning
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Figure 2: These figures show the procedure for generating samples from a single density drawn from the
GP-based prior. (a): DrawQ samples{x̃q}

Q from the base measureπ(x), which in this case is uniform on
[0, 1]. (b): Sample the functiong(x) at the randomly chosen locations, generating the set{g̃q = g(x̃q)}

Q. The
squashed functionΦ(g(x)) is shown. (c): Draw a set of variates{rq}

Q uniformly beneath the bound in the
vertical coordinate. (d): Accept only the points whose uniform draws are beneath the squashed function value,
i.e.rq < Φ(g̃q). (e): The accepted points(x̃q, rq) are uniformly drawn from the shaded area beneath the curve
and the marginal distribution of the acceptedx̃q is proportional toΦ(g(x))π(x).

function valuesG. After the function is sampled, a uniform variate is drawn from beneath the bound
and compared to theΦ-squashed function at the proposal location.

The sequential procedure is exchangeable, which means thatthe probability of the data is identical
under reordering. First, the base measure draws are i.i.d..Second, conditioned on the proposals
from the base measure, the Gaussian process is a simple multivariate Gaussian distribution, which
is exchangeable in its components. Finally, conditioned onthe draw from the Gaussian process,
the acceptance/rejection steps are independent Bernoullisamples, and the overall procedure is ex-
changeable. This property is important because it ensures that the sequential procedure generates
data from the same distribution as the simultaneous procedure described above. More broadly, ex-
changeable priors are useful in Bayesian modeling because we may consider the data conditionally
independent, given the latent density.

Algorithm 1 GenerateP exact samples from the prior
Purpose: DrawP exact samples from a common density onX drawn from the prior in Equation 1
Inputs: GP hyperparametersθ, number of samples to generateP
1: Initialize empty conditioning sets for the Gaussian process:X = ∅ andG = ∅
2: repeat
3: Draw a proposal from the base measure:x̃ ∼ π(x)
4: Sample the function from the Gaussian process atx̃: g̃ ∼ GP(g |X, G, x̃, θ)
5: Draw a uniform variate on[0, 1]: r ∼ U(0, 1)
6: if r < Φ(g̃) (Acceptance rule)then
7: Acceptx̃
8: else
9: Rejectx̃

10: end if
11: Addx̃ andg̃ to the conditioning sets:X = X ∪ x̃ andG = G ∪ g̃
12: until P samples have been accepted

4 Inference

We haveN dataD = {xn}
N
n=1 which we model as having been drawn independently from an un-

known densityf(x). We use the GPDS prior from Section 2 to specify our beliefs about f(x), and
we wish to generate samples from the posterior distributionover the latent functiong(x) correspond-
ing to the unknown density. We may also wish to generate samples from the predictive distribution
or perform hierarchical inference of the prior hyperparameters.

By using the GPDS prior to model the data, we are asserting that the data can be explained as the
result of the procedure described in Section 3. We do not, however, know what rejections were made
en route to accepting the observed data. These rejections are critical to defining the latent function
g(x). One might think of defining a density as analogous to puttingup a tent: pinning the canvas
down with pegs is just as important as putting up poles. In density modeling, defining regions with
little probability mass is just as important as defining the areas with significant mass.



Although the rejections are not known, the generative procedure provides a probabilistic model that
allows us to traverse the posterior distribution over possible latent historiesthat resulted in the data.
If we define a Markov chain whose equilibrium distribution isthe posterior distribution over latent
histories, then we may simulate plausible explanations of every step taken to arrive at the data.
Such samples capture all the information available about the unknown density, and with them we
may ask additional questions aboutg(x) or run the generative procedure further to draw predictive
samples. This approach is related to that described by Murray [7], who performed inference on an
exactly-coalesced Markov chain [8], and by Beskos et al. [5].

We model the data as having been generated exactly as in Algorithm 1, with P = N , i.e.
run until exactlyN proposals were accepted. The state space of the Markov chainon latent
histories in the GPDS consists of: 1) the values of the latentfunction g(x) at the data, de-
notedGN = {gn}

N
n=1, 2) the number of rejectionsM , 3) the locations of theM rejected proposals,

denotedM = {xm}
M
m=1, and 4) the values of the latent functiong(x) at theM rejected proposals,

denotedGM = {gm = g(xm)}Mm=1. We will address hyperparameter inference in Section 4.3.

We perform Gibbs-like sampling of the latent history by alternating between modification of the
number of rejectionsM and block updating of the rejection locationsM and latent function val-
uesGM andGN . We will maintain an explicit ordering of the latent rejections for reasons of clarity,
although this is not necessary due to exchangeability. We will also assume thatΦ(·) is the logistic
function, i.e.Φ(z) = (1 + exp{−z})−1.

4.1 Modifying the number of latent rejections

We propose a new number of latent rejectionsM̂ by drawing it from a proposal distribution
q(M̂ ← M). If M̂ is greater thanM , we must also propose new rejections to add to the la-
tent state. We take advantage of the exchangeability of the process to generate the new rejections:
we imagine these proposals were madeafter the last observed datum was accepted, and our pro-
posal is to call them rejections and move thembeforethe last datum. IfM̂ is less thanM , we do the
opposite by proposing to move some rejections to after the last acceptance.

When proposing additional rejections, we must also propose times for them among the current

latent history. There are
(
M̂+N−1
M̂−M

)
such ways to insert these additional rejections into the existing

latent history, such that the sampler terminates after theN th acceptance. When removing rejections,
we must choose which ones to place after the data, and there are

(
M

M−M̂

)
possible sets. Upon

simplification, the proposal ratios for both addition and removal of rejections are identical:

M̂>M
︷ ︸︸ ︷

q(M ← M̂)
(
M̂+N−1
M̂−M

)

q(M̂ ←M)
(

M̂
M̂−M

) =

M̂<M
︷ ︸︸ ︷

q(M ← M̂)
(

M
M−M̂

)

q(M̂ ←M)
(
M+N−1
M−M̂

) =
q(M ← M̂)M !(M̂ + N − 1)!

q(M̂ ←M)M̂ !(M + N − 1)!
.

When inserting rejections, we propose the locations of the additional proposals, denotedM+, and
the corresponding values of the latent function, denotedG+

M . We generateM+ by makingM̂ − M

independent draws from the base measure. We drawG+
M jointly from the Gaussian process prior,

conditioned on all of the current latent state, i.e.(M, GM , D, GN ). The joint probability of this
state is

p(D,M,M+,GN ,GM ,G+
M ) =

[
N∏

n=1

π(xn)Φ(gn)

] [
M∏

m=1

π(xm)(1− Φ(gm))

] 



M̂∏

m=M+1

π(xm)





× GP(GM ,GN ,G+
M | D,M,M+). (3)

The joint in Equation 3 expresses the probability of all the base measure draws, the values of the
function draws from the Gaussian process, and the acceptance or rejection probabilities of the pro-
posalsexcludingthe newly generated points. When we make an insertion proposal, exchangeability
allows us to shuffle the ordering without changing the probability; the only change is that now we
must account for labeling the new points as rejections. In the acceptance ratio, all terms except for
the “labeling probability” cancel. The reverse proposal issimilar, however we denote the removed



proposal locations asM− and the corresponding function values asG−M . The overall acceptance
ratios for insertions or removals are

a =







q(M←M̂) M ! (M̂+N−1)!

q(M̂←M) M̂ ! (M+N−1)!

∏

g∈G
+

M

(1− Φ(g)) if M̂ > M

q(M←M̂) M ! (M̂+N−1)!

q(M̂←M) M̂ ! (M+N−1)!

∏

g∈G
−

M

(1− Φ(g))−1 if M̂ < M.

(4)

4.2 Modifying rejection locations and function values

Given the number of latent rejectionsM , we propose modifying their locationsM, their latent func-
tion valuesGM , and the values of the latent function at the dataGN . We will denote these proposals
asM̂ = {x̂m}

M
m=1, ĜM = {ĝm = ĝ(x̂m)}Mm=1 and ĜN = {ĝn = ĝ(xn)}Nn=1, respectively. We

make simple perturbative proposals ofM via a proposal densityq(M̂ ← M). For the latent func-
tion values, however, perturbative proposals will be poor,as the Gaussian process typically defines
a narrow mass. To avoid this, we propose modifications to the latent function that leave the prior
invariant.

We make joint proposals of̂M, ĜM andĜN in three steps. First, we draw new rejection locations
from q(M̂ ← M). Second, we draw a set ofM intermediate function values from the Gaussian
process atM̂, conditioned on the current rejection locations and their function values, as well as
the function values at the data. Third, we propose new function values atM̂ and the dataD via an
underrelaxation proposal of the form

ĝ(x) = α g(x) +
√

1− α2 h(x)

whereh(x) is a sample from the Gaussian process prior andα is in [0, 1). This is a variant of the
overrelaxed MCMC method discussed by Neal [9]. This procedure leaves the Gaussian process prior
invariant, but makes conservative proposals ifα is near one. After making a proposal, we accept or
reject via the ratio of the joint distributions:

a =
q(M← M̂)

[
∏M

m=1 π(x̂m)(1− Φ(ĝm))
] [

∏N

n=1 Φ(ĝn)
]

q(M̂ ←M)
[
∏M

m=1 π(xm)(1− Φ(gm))
] [

∏N

n=1 Φ(gn)
] .

4.3 Hyperparameter inference

Given a sample from the posterior on the latent history, we can also perform a Metropolis–Hasting
step in the space of hyperparameters. Parametersθ, governing the covariance function and mean
function of the Gaussian process provide common examples ofhyperparameters, but we might also
introduce parametersφ that control the behavior of the base measureπ(x). We denote the proposal
distributions for these parameters asq(θ̂ ← θ) andq(φ̂ ← φ), respectively. With priorsp(θ)
andp(φ), the acceptance ratio for a Metropolis–Hastings step is

a =
q(θ← θ̂) q(φ← φ̂) p(θ̂) p(φ̂) N ({GM ,GN} |M,D, θ̂)

q(θ̂←θ) q(φ̂←φ) p(θ) p(φ) N ({GM ,GN} |M,D, θ)

[
M∏

m=1

π(xm | φ̂)

π(xm |φ)

][
N∏

n=1

π(xn | φ̂)

π(xn |φ)

]

.

4.4 Prediction

The predictive distribution is the one that arises on the spaceX when the posterior on the latent
functiong(x) (and perhaps hyperparameters) is integrated out. It is the expected distribution of the
next datum, given the ones we have seen and taking into account our uncertainty. In the GPDS we
sample from the predictive distribution by running the generative process of Section 3, initialized to
the current latent history sample from the Metropolis–Hastings procedure described above.

It may also be desirable to estimate the actual value of the predictive density. We use the method of
Chib and Jeliazkov [10], and observe by detailed balance of aMetropolis–Hastings move:

p(x | g, θ, φ)π(x′)min

(

1,
Φ(g(x′))

Φ(g(x))

)

= p(x′ | g, θ, φ)π(x)min

(

1,
Φ(g(x))

Φ(g(x′))

)

.



(c)(b)(a)

{g(x̂m)}

ĜM={ĝ(x̂m)} ĜN={ĝ(xn)}

D={xn}

M={xm} M̂={x̂m}

GM={g(xm)} GN={g(xn)}

Figure 3:These figures show the sequence of proposing new rejection locations,new function values at those
locations, and new function values at the data. (a): The current state, with rejections labeledM = {xm} on
the left, along with the values of the latent functionGM = {gm}. On the right side are the dataD = {xn}

and the corresponding values of the latent functionGN = {gn}. (b): New rejectionsM̂ = {x̂m} are
proposed viaq(M̂ ← M), and the latent function is sampled at these points. (c): The latent functionis
perturbed at the new rejection locations and at the data via an underrelaxed proposal.

We find the expectation of each side under the posterior ofg and the hyperparametersθ andφ:
∫

dθ

∫

dφ p(θ, φ | D)

∫

dg p(g | θ,D)

∫

dx′ p(x | g, θ, φ)π(x′)min

(

1,
Φ(g(x′))

Φ(g(x))

)

=

∫

dθ

∫

dφ p(θ, φ | D)

∫

dg p(g | θ,D)

∫

dx′ p(x′ | g, θ, φ)π(x)min

(

1,
Φ(g(x))

Φ(g(x′))

)

.

This gives an expression for the predictive density:

p(x | D) =

∫
dθ

∫
dφ

∫
dg

∫
dx′ p(θ, φ, g, x′ | D) π(x) min

(

1,
Φ(g(x))
Φ(g(x′))

)

∫
dθ

∫
dφ

∫
dg

∫
dx′ p(θ, φ, g |x,D) π(x′) min

(

1,
Φ(g(x′))
Φ(g(x))

) (5)

Both the numerator and the denominator in Equation 5 are expectations that can be estimated by
averaging over the output from the GPDS Metropolis–Hastingsampler. The denominator requires
sampling from the posterior distribution with the data augmented byx.

5 Results

We examined the GPDS prior and the latent history inference procedure on a toy data set and on
a skull reconstruction task. We compared the approach described in this paper to a kernel density
estimate (Parzen windows), an infinite mixture of Gaussians(iMoG), and Dirichlet diffusion trees
(DFT). The kernel density estimator used a spherical Gaussian with the bandwidth set via ten-fold
cross validation. Neal’s Flexible Bayesian Modeling (FBM)Software [1] was used for the imple-
mentation of both iMoG and DFT.

The toy data problem consisted of 100 uniform draws from a two-dimensional ring with radius 1.5,
and zero-mean Gaussian noise added withσ = 0.2. The test data were 50 additional samples,
and comparison used mean log probability of the test set. Each of the three Bayesian methods
improved on the Parzen window estimate by two or more nats, with the DFT approach being the
most successful. A bar plot of these results is shown in Figure 5.

We also compared the methods on a real-data task. We modeled the the joint density of ten measure-
ments of linear distances between anatomical landmarks on 228 rhesus macaque (Macaca mulatta)
skulls. These linear distances were generated from three-dimensional coordinate data of anatomical
landmarks taken by a single observer from dried skulls usinga digitizer [11]. Linear distances are
commonly used in morphological studies as they are invariant under rotation and translation of the
objects being compared [12]. Figure 5 shows a computed tomography (CT) scan reconstruction of
a macaque skull, along with the ten linear distances used. Each skull was measured three times in
different trials, and these were modeled separately. 200 randomly-selected skulls were used as a
training set and 28 were used as a test set. To be as fair as possible, the data was logarithmically
transformed and whitened as a preprocessing step, to have zero sample mean and spherical sample
covariance. Each of the Bayesian approaches outperformed the Parzen window technique in mean
log probability of the test set, with comparable results foreach. This result is not surprising, as
flexible nonparametric Bayesian models should have roughlysimilar expressive capabilities. These
results are shown in Figure 5.



Figure 4: The macaque skull data are linear dis-
tances calculated between three-dimensional coor-
dinates of anatomical landmarks. These are superior
and inferior views of a computed tomography (CT)
scan of a male macaque skull, with the ten linear
distances superimposed. The anatomical landmarks
are based on biological relevance and repeatability
across individuals.
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Figure 5:This bar plot shows the improvement of
the GPDS, infinite mixture of Gaussians (iMoG),
and Dirichlet diffusion trees (DFT) in mean log
probability (basee) of the test set over cross-
validated Parzen windows on the toy ring data and
the macaque data. The baseline log probability of
the Parzen method for the ring data was−2.253 and
for the macaque data was−15.443, −15.742, and
−15.254 for each of three trials.

6 Discussion

Valid MCMC algorithms for fully Bayesian kernel regressionmethods are well-established. This
work introduces the first such prior that enables tractable density estimation, complementing alter-
natives such as Dirichlet Diffusion Trees [1] and infinite mixture models.

Although the GPDS has similar motivation to the logistic Gaussian process [13, 14, 15, 16], it differs
significantly in its applicability and practicality. All known treatments of the logistic GP require a
finite-dimensional proxy distribution. This proxy distribution is necessary both for tractability of
inference and for estimation of the normalization constant. Due to the complexity constraints of both
the basis-function approach of Lenk [15] and the lattice-based approach of [16], these have only been
implemented on single-dimensional toy problems. The GPDS construction we have presented here
not only avoids numerical estimation of the normalization constant, but allows infinite-dimensional
inference both in theory and in practice.

6.1 Computational complexity

The inference method for the GPDS prior is “practical” in thesense that it can be implemented
without approximations, but it has potentially-steep computational costs. To compare two latent
histories in a Metropolis–Hastings step we must evaluate the marginal likelihood of the Gaussian
process. This requires a matrix decomposition whose cost isO((N + M)3). The model explicitly
allows M to be any nonnegative integer and so this cost is unbounded. The expectedcost of an
M–H step is determined by the expected number of rejectionsM . For a giveng(x), the expected
M is N(Zπ[g]−1 − 1). This expression is derived from the observation thatπ(x) provides an upper
bound on the functionΦ(g(x))π(x) and the ratio of acceptances to rejections is determined by the
proportion of the mass ofπ(x) contained byΦ(g(x))π(x).



We are optimistic that more sophisticated Markov chain Monte Carlo techniques may realize
constant-factor performance gains over the basic Metropolis–Hasting scheme presented here, with-
out compromising the correctness of the equilibrium distribution. Sparse approaches to Gaussian
process regression that improve the asymptotically cubic behavior may also be relevant to the GPDS,
but it is unclear that these will be an improvement over otherapproximate GP-based schemes for
density modeling.

6.2 Alternative inference methods

In developing inference methods for the GPDS prior, we have also explored the use ofexchange
sampling[17, 7]. Exchange sampling is an MCMC technique explicitly developed for the situation
where there is an intractable normalization constant that prevents exact likelihood evaluation, but
exact samples may be generated for any particular parametersetting. Undirected graphical models
such as the Ising and Potts models provide common examples ofcases where exchange sampling
is applicable via coupling from the past [8]. Using the exactsampling procedure of Section 3,
it is applicable to the GPDS as well. Exchange sampling for the GPDS, however, requires more
evaluations of the functiong(x) than the latent history approach. In practice the latent history
approach of Section 4 does perform better.
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