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Abstract

We present the Gaussian Process Density Sampler (GPDS{;lsarngeable gen-
erative model for use in nonparametric Bayesian densitynabn. Samples
drawn from the GPDS are consistent with exact, independenpkes from a fixed
density function that is a transformation of a function dndwom a Gaussian pro-
cess prior. Our formulation allows us to infer an unknownsigrfrom data using
Markov chain Monte Carlo, which gives samples from the pastealistribution
over density functions and from the predictive distribotan data space. We can
also infer the hyperparameters of the Gaussian processolvpare this density
modeling technique to several existing techniques on a tolglem and a skull-
reconstruction task.

1 Introduction

We present the Gaussian Process Density Sampler (GPDS)eeatjee model for probability den-
sity functions, based on a Gaussian process. We are ablavoestact and exchangeable data from
a fixed density drawn from the prior. Given data, this gemezairior allows us to perform infer-
ence of the unnormalized density. We perform this inferdaycexpressing the generative process in
terms of a latent history, then constructing a Markov chaonké Carlo algorithm on that latent his-
tory. The central idea of the GPDS is to allow nonparametagdsian density estimation where the
prior is specified via a Gaussian process covariance funtti@t encodes the intuition that “similar
data should have similar probabilities.”

One way to perform Bayesian nonparametric density estimat to use a Dirichlet process to
define a distribution over the weights of the components iimfémite mixture model, using a simple
parametric form for each component. Alternatively, Nedljéneralizes the Dirichlet process itself,
introducing a spatial component to achieve an exchanggaioleon discrete or continuous density
functions with hierarchical characteristics. Another waydefine a nonparametric density is to
transform a simple latent distribution through a nonlineep, as in the Density Network [2] and
the Gaussian Process Latent Variable Model [3]. Here wehes&aussian process to define a prior
on the density function itself.

2 Theprior on densities

We consider densities on an input spacéhat we will call thedata spaceln this paper, we assume
without loss of generality that’ is thed-dimensional real spadg?. We first construct a Gaussian
process prior with the data spadgas its input and the one-dimensional real sgiass its output.
The Gaussian process defines a distribution over functrons X’ to R. We define a mean function
m(-) : X — R and a positive definite covariance functidf(-,-) : X x X — R. We
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Figure 1:Four samples from the GPDS prior are shown, with 200 data samplesoftaur lines show the ap-
proximate unnormalized densities. In each case the base measuredsotmeean spherical Gaussian with unit
variance. The covariance function was the squared exponehtial;z’) = « exp(—3 >, 02z — 2})?),
with parameters varied as labeled in each subgh¢t) is the logistic function in these plots.

assume that these functions are together parameterizeddtyod hyperparametefs Given these
two functions and their hyperparameters, for any finite stib§ X with cardinality IV there is a
multivariate Gaussian distribution @& [4]. We will take the mean function to be zero.

Probability density functions must be everywhere nonnegaind must integrate to unity. We define
a map from a functiog(x) : X — R, x € X, to a proper density(z) via

P(g(x)) 7 (x) 1)

wherer(x) is an arbitrary base probability measuretnand®(-) : R — (0, 1) is a nonnegative
function with upper bound. We take®(-) to be a sigmoid, e.g. the logistic function or cumulative
normal distribution function. We use the bold notatigro refer to the functiory(x) compactly
as a vector of (infinite) length, versus its value at a paldicu. The normalization constant is a
functional ofg(z):

Z.lg] = / da’ B(g(a")) (). )

Through the map defined by Equation 1, a Gaussian procesdpidomes a prior distribution over
normalized probability density functions oYl. Figure 2 shows several sample densities from this
prior, along with sample data.

3 Generating exact samplesfrom theprior

We can use rejection sampling to generate samples from a oandensity drawn from the the
prior described in Section 2. A rejection sampler requirpsoposal density that provides an upper
bound for the unnormalized density of interest. In this c#éise proposal density is(x) and the
unnormalized density of interestdsg(x))r(x).

If g(x) were known, rejection sampling would proceed as followsstRjenerate proposa{g, }

from the base measurgx). The proposak, would be accepted if a variaig drawn uniformly

from (0,1) was less tha®(g(z,)). These samples would be exact in the sense that they were not
biased by the starting state of a finite Markov chain. Howenghe GPDSg(x) is not known: it is

a random function drawn from a Gaussian process prior. Waeeagrtheless use rejection sampling
by “discovering”¢g(z) as we proceed at just the places we need to know it, by samfpbngthe

prior distribution of the latent function. As it is necessanly to knowg(z) at the{xz,} to accept

or reject these proposals, the samples are still exact. réhisspective sampling trick has been
used in a variety of other MCMC algorithms for infinite-dinséonal models [5, 6]. The generative
procedure is shown graphically in Figure 2.

In practice, we generate the samples sequentially, as iorifdtgn 1, so that we may be assured
of having as many accepted samples as we require. In eachdoamposal is drawn from the
base measure(z) and the functiory(z) is sampled from the Gaussian process at this proposed
coordinate, conditional on all the function values alreadynpled. We will call these data the
conditioning sefor the functiong(x) and will denote the conditioning inputsand the conditioning
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Figure 2: These figures show the procedure for generating samples from la sieigsity drawn from the
GP-based prior. (a): Dra) samples{i,}< from the base measure(z), which in this case is uniform on

[0, 1]. (b): Sample the functiop(x) at the randomly chosen locations, generating thd &et= g(i,)}<. The
squashed functio®(g(z)) is shown. (c): Draw a set of variatés, }“ uniformly beneath the bound in the
vertical coordinate. (d): Accept only the points whose uniform drawsaneath the squashed function value,
i.e.rqy < ®(gq). (e): The accepted pointg,, r,) are uniformly drawn from the shaded area beneath the curve
and the marginal distribution of the acceptegis proportional to? (g(z))n ().

function valuess. After the function is sampled, a uniform variate is drawanfrbeneath the bound
and compared to thé-squashed function at the proposal location.

The sequential procedure is exchangeable, which meanththatobability of the data is identical
under reordering. First, the base measure draws are i$€cond, conditioned on the proposals
from the base measure, the Gaussian process is a simpleariate Gaussian distribution, which
is exchangeable in its components. Finally, conditionedhendraw from the Gaussian process,
the acceptance/rejection steps are independent Bersautiples, and the overall procedure is ex-
changeable. This property is important because it enshetdtie sequential procedure generates
data from the same distribution as the simultaneous proeatkscribed above. More broadly, ex-
changeable priors are useful in Bayesian modeling becaasuaay consider the data conditionally
independent, given the latent density.

Algorithm 1 Generate” exact samples from the prior

Purpose: Draw P exact samples from a common density&rdrawn from the prior in Equation 1
Inputs: GP hyperparametefls number of samples to generdte
1: Initialize empty conditioning sets for the Gaussian prociss: ) andG = ()
2: repeat
Draw a proposal from the base measures 7(x)
Sample the function from the Gaussian process gt~ GP(g| X, G, Z, 6)
Draw a uniform variate of0, 1]: = ~ 2(0, 1)
if r < ®(g) (Acceptance rulejhen
Acceptz
else
Rejectz
10:  endif
11:  Addz andg to the conditioning setsX = XUz andG =G U g
12: until P samples have been accepted

4 |Inference

We haveN dataD = {z, }_, which we model as having been drawn independently from an un-
known densityf (). We use the GPDS prior from Section 2 to specify our belietaialf(x), and

we wish to generate samples from the posterior distribuii@n the latent function(x) correspond-

ing to the unknown density. We may also wish to generate ssyfpdm the predictive distribution

or perform hierarchical inference of the prior hyperpartere

By using the GPDS prior to model the data, we are assertinghbadata can be explained as the
result of the procedure described in Section 3. We do notekiewknow what rejections were made
en route to accepting the observed data. These rejectierwitical to defining the latent function
g(z). One might think of defining a density as analogous to puttipg tent: pinning the canvas
down with pegs is just as important as putting up poles. Irsifgmodeling, defining regions with
little probability mass is just as important as defining theaa with significant mass.



Although the rejections are not known, the generative o provides a probabilistic model that
allows us to traverse the posterior distribution over gaedatent historieghat resulted in the data.

If we define a Markov chain whose equilibrium distributiorthe posterior distribution over latent
histories, then we may simulate plausible explanationsvefyestep taken to arrive at the data.
Such samples capture all the information available abaittiknown density, and with them we
may ask additional questions abaytr) or run the generative procedure further to draw predictive
samples. This approach is related to that described by M{irtawho performed inference on an
exactly-coalesced Markov chain [8], and by Beskos et al. [5]

We model the data as having been generated exactly as inithlgod, with P = N, i.e.

run until exactly N proposals were accepted. The state space of the Markov clmalatent
histories in the GPDS consists of: 1) the values of the lafenttion g(x) at the data, de-
notedGy = {g,}2_,, 2) the number of rejection®/, 3) the locations of th@/ rejected proposals,
denotedM = {x,,},,_;,and 4) the values of the latent functigx) at the)M rejected proposals,
denotediys = {gm = g(xm)}_,. We will address hyperparameter inference in Section 4.3.

We perform Gibbs-like samplmg of the latent history by aitging between modification of the
number of rejections/ and block updating of the rejection locationd and latent function val-
uesG,, andGy. We will maintain an explicit ordering of the latent rejexts for reasons of clarity,
although this is not necessary due to exchangeability. Vileaisb assume thab(-) is the logistic
function, i.e.®(z) = (1 + exp{—z})~!

4.1 Modifying the number of latent rejections

We propose a new number of latent rejectial¥s by drawing it from a proposal distribution

(M — M). If M is greater than\/, we must also propose new rejections to add to the la-
tent state. We take advantage of the exchangeability ofriheeps to generate the new rejections:
we imagine these proposals were maidier the last observed datum was accepted, and our pro-

posal is to call them rejections and move thieaforethe last datum. I8/ is less than\/, we do the
opposite by proposing to move some rejections to after stealeceptance.

When proposing additional rejections, we must also propwsest for them among the current
latent history. There aréM TN 1 such ways to insert these additional rejections into thstiexj
latent history, such that the sampler terminates afteMttieacceptance. When removing rejections,

we must choose which ones to place after the data, and thergwéfﬂ) possible sets. Upon
simplification, the proposal ratios for both addition anchowal of rejections are identical:

M>M N <M

oM — MDY a0 — 3D (M)  g(M — S)MIT + N — 1))

g — M) (M) a = M) (M~ MMM + N — 1)1

When inserting rejections, we propose the locations of tliitiadal proposals, denoteti™, and
the corresponding values of the latent function, dengtgd We generate\ ™ by makingM — M
independent draws from the base measure. We digwointly from the Gaussian process prior,
conditioned on all of the current latent state, {84, Gy, D, Gy). The joint probability of this
state is

N M M
p(D, M, M, Gn, G, Giy) = [H Tr(xn)@(gn)] [H T(@m) (1 = 2(gm)) 11 =)

n=1 m=1 m=M-+1

X gP(QM,QNag]-&‘DvaM+) (3)

The joint in Equation 3 expresses the probability of all tixsd measure draws, the values of the
function draws from the Gaussian process, and the acceptairejection probabilities of the pro-
posalsexcludingthe newly generated points. When we make an insertion propo&dangeability
allows us to shuffle the ordering without changing the prdiigbthe only change is that now we
must account for labeling the new points as rejections. énaitceptance ratio, all terms except for
the “labeling probability” cancel. The reverse proposadiimilar, however we denote the removed



proposal locations ag1~ and the corresponding function values@g. The overall acceptance
ratios for insertions or removals are
q(M—DNI) M! (M+N—1)! _ s
a0 v (aipn—ny Lgegy, 1 —2(9))  if M >M
a= 4)

q(M—M) M! (M+N—1)! _ 1
q(M—M) M! (M+N-1)! ngg;,(l ®(9)) F M < M.

4.2 Modifying rejection locations and function values

Given the number of latent rejections, we propose modifying their locatiou'st, their latent func-
tion valuesG,,, and the values of the latent function at the data We will denote these proposals
asM = {&m}h_1, Gar = {Gm = §(@m) ¥y @Gy = {gn = §(zn)}) 1, respectively. We
make simple perturbative proposals/ef via a proposal density(M — M). For the latent func-
tion values, however, perturbative proposals will be pasrthe Gaussian process typically defines
a narrow mass. To avoid this, we propose modifications todtent function that leave the prior
invariant.

We make joint proposals of1, Gy, andGy in three steps. First, we draw new rejection locations
from ¢(M — M). Second, we draw a set 8f intermediate function values from the Gaussian
process aiM, conditioned on the current rejection locations and theircfion values, as well as

the function values at the data. Third, we propose new fanctalues atM and the dat& via an
underrelaxation proposal of the form

gx)=aglx)+V1—a?h(x

whereh(x) is a sample from the Gaussian process prlorzamslln [0,1). This is a variant of the
overrelaxed MCMC method discussed by Neal [9]. This prooetkaves the Gaussian process prior
invariant, but makes conservative proposals i§ near one. After making a proposal, we accept or
reject via the ratio of the joint distributions:

a(M = M) [T 7 (@) (1= @(30))] [T, (30|
a(M = M) [TT5/-, 7)1 = @(g))] [T @(90)|

a =

4.3 Hyperparameter inference

Given a sample from the posterior on the latent history, weatso perform a Metropolis—Hasting
step in the space of hyperparameters. Paramé@fegsverning the covariance function and mean
function of the Gaussian process provide common examplegparparameters, but we might also
introduce parametesthat control the behavior of the base meast(te). We denote the proposal
distributions for these parametersq;(é — 0)and q(q@ — ¢), respectively. With priors(0)
andp(¢), the acceptance ratio for a Metropolis—Hastings step is

_ 2(0=0) a(6—6) p(6) p(9) N({Gr, G} | M. D, ) [ﬁ w@] [ﬁ w(xm&)] |
a(0—0) a(6 ) p(6) p(6) N({Gar, G} [ M. D.6) |12, 7( &N

4.4 Prediction

The predictive distribution is the one that arises on thespa when the posterior on the latent
functiong(x) (and perhaps hyperparameters) is integrated out. It istbected distribution of the
next datum, given the ones we have seen and taking into acoounncertainty. In the GPDS we
sample from the predictive distribution by running the gatiee process of Section 3, initialized to
the current latent history sample from the Metropolis—ast procedure described above.

It may also be desirable to estimate the actual value of tbéigtive density. We use the method of
Chib and Jeliazkov [10], and observe by detailed balancedimopolis—Hastings move:

p(@|g,6, ¢)n(=') min (1, m) = p(a’| 9,0, @) () min (1, m) |
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Figure 3:These figures show the sequence of proposing new rejection locatems$yunction values at those
locations, and new function values at the data. (a): The current stititerejections labeledM = {z.,} on
the left, along with the values of the latent functi@n;, = {g}. On the right side are the dafa = {z,}
and the corresponding values of the latent function = {g.}. (b): New rejections\{ = {i.,} are
proposed viaq(M — M), and the latent function is sampled at these points. (c): The latent furistion
perturbed at the new rejection locations and at the data via an unded glamosal.

We find the expectation of each side under the posterigranfd the hyperparametetsand:

J16 [a60(6.617) [ag p(a16.7) [as’ o g.0, 017 mim (1 GEN )

= [a6 fa6.16.61D) [ag ta10.D) [as' e’ | .0, 0)mx) i (1, G120
This gives an expression for the predictive density:
B Jdo [d¢ [dg [dz’ p(#,¢,g,2" | D) n(x) min (1, g((;’((f,)))))
Jdo [d¢ [dg [dz’ p(6, ¢, g |z, D) w(z') min (1, (I;((gg(&')))))
Both the numerator and the denominator in Equation 5 areotapens that can be estimated by

averaging over the output from the GPDS Metropolis—Hastmgpler. The denominator requires
sampling from the posterior distribution with the data aegted by:.

(®)

p(z|D

5 Reaults

We examined the GPDS prior and the latent history inferemoequure on a toy data set and on
a skull reconstruction task. We compared the approach ibescin this paper to a kernel density
estimate (Parzen windows), an infinite mixture of Gauss{@ieG), and Dirichlet diffusion trees
(DFT). The kernel density estimator used a spherical Ganssith the bandwidth set via ten-fold
cross validation. Neal's Flexible Bayesian Modeling (FBSYftware [1] was used for the imple-
mentation of both iMoG and DFT.

The toy data problem consisted of 100 uniform draws from adimeensional ring with radius 1.5,
and zero-mean Gaussian noise added with- 0.2. The test data were 50 additional samples,
and comparison used mean log probability of the test set.h Bathe three Bayesian methods
improved on the Parzen window estimate by two or more nat the DFT approach being the
most successful. A bar plot of these results is shown in Eigur

We also compared the methods on a real-data task. We modeléuktjoint density of ten measure-
ments of linear distances between anatomical landmark28mizsus macaqu&lécaca mulatta
skulls. These linear distances were generated from tHreergional coordinate data of anatomical
landmarks taken by a single observer from dried skulls uaidggitizer [11]. Linear distances are
commonly used in morphological studies as they are invatinder rotation and translation of the
objects being compared [12]. Figure 5 shows a computed toapbyg (CT) scan reconstruction of
a macaque skull, along with the ten linear distances usech Beaull was measured three times in
different trials, and these were modeled separately. 200omaly-selected skulls were used as a
training set and 28 were used as a test set. To be as fair ablpptise data was logarithmically
transformed and whitened as a preprocessing step, to hewea®mple mean and spherical sample
covariance. Each of the Bayesian approaches outperforimeeilarzen window technique in mean
log probability of the test set, with comparable resultsdach. This result is not surprising, as
flexible nonparametric Bayesian models should have rougjmijlar expressive capabilities. These
results are shown in Figure 5.
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Figure 4: The macaque skull data are linear dis- Figure 5: This bar plot shows the improvement of
tances calculated between three-dimensional coorthe GPDS, infinite mixture of Gaussians (iMoG),
dinates of anatomical landmarks. These are superioand Dirichlet diffusion trees (DFT) in mean log
and inferior views of a computed tomography (CT) probability (basee) of the test set over cross-
scan of a male macaque skull, with the ten linearvalidated Parzen windows on the toy ring data and
distances superimposed. The anatomical landmarkthe macaque data. The baseline log probability of
are based on biological relevance and repeatabilitythe Parzen method for the ring data wa%.253 and
across individuals. for the macaque data wasl15.443, —15.742, and
—15.254 for each of three trials.

6 Discussion

Valid MCMC algorithms for fully Bayesian kernel regressiorethods are well-established. This
work introduces the first such prior that enables tractablesily estimation, complementing alter-
natives such as Dirichlet Diffusion Trees [1] and infinitextnre models.

Although the GPDS has similar motivation to the logistic &sian process [13, 14, 15, 16], it differs
significantly in its applicability and practicality. All lawn treatments of the logistic GP require a
finite-dimensional proxy distribution. This proxy distuition is necessary both for tractability of
inference and for estimation of the normalization constBue to the complexity constraints of both
the basis-function approach of Lenk [15] and the latticeelokapproach of [16], these have only been
implemented on single-dimensional toy problems. The GP@tstruction we have presented here
not only avoids numerical estimation of the normalizationstant, but allows infinite-dimensional
inference both in theory and in practice.

6.1 Computational complexity

The inference method for the GPDS prior is “practical” in #ense that it can be implemented
without approximations, but it has potentially-steep catagional costs. To compare two latent
histories in a Metropolis—Hastings step we must evaluagentarginal likelihood of the Gaussian
process. This requires a matrix decomposition whose c@3t(i8’ + M )?). The model explicitly
allows M to be any nonnegative integer and so this cost is unboundbd.eXdpectedcost of an
M-H step is determined by the expected number of rejectidnsFor a giveng(z), the expected
M is N(Z.[g]~* —1). This expression is derived from the observation tHat) provides an upper
bound on the functio®(g(x))7 () and the ratio of acceptances to rejections is determinetidy t
proportion of the mass of(x) contained by®(g(z))m(z).



We are optimistic that more sophisticated Markov chain Mo@arlo techniques may realize
constant-factor performance gains over the basic Meti®gdhasting scheme presented here, with-
out compromising the correctness of the equilibrium disttion. Sparse approaches to Gaussian
process regression that improve the asymptotically cudti@bior may also be relevant to the GPDS,
but it is unclear that these will be an improvement over otipgsroximate GP-based schemes for
density modeling.

6.2 Alternative inference methods

In developing inference methods for the GPDS prior, we hdse explored the use afxchange
sampling[17, 7]. Exchange sampling is an MCMC technique explicitiweloped for the situation
where there is an intractable normalization constant thatemts exact likelihood evaluation, but
exact samples may be generated for any particular parasetterg. Undirected graphical models
such as the Ising and Potts models provide common examplesses where exchange sampling
is applicable via coupling from the past [8]. Using the exsainpling procedure of Section 3,
it is applicable to the GPDS as well. Exchange sampling fer@PDS, however, requires more
evaluations of the functiog(z) than the latent history approach. In practice the latertbhis
approach of Section 4 does perform better.
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