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Abstract

We present a simple new Monte Carlo algorithm for evaluating probabilities of
observations in complex latent variable models, such as Deep Belief Networks.
While the method is based on Markov chains, estimates based on short runs are
formally unbiased. In expectation, the log probability of a test set will be under-
estimated, and this could form the basis of a probabilistic bound. The method is
much cheaper than gold-standard annealing-based methods and only slightly more
expensive than the cheapest Monte Carlo methods. We give examples of the new
method substantially improving simple variational bounds at modest extra cost.

1 Introduction

Latent variable models capture underlying structure in data by explaining observations as part of a
more complex, partially observed system. A large number of probabilistic latent variable models
have been developed, most of which express a joint distribution P (v,h) over observed quantities v
and their unobserved counterparts h. Although it is by no means the only way to evaluate a model,
a natural question to ask is “what probability P (v) is assigned to a test observation?”.

In some models the latent variables associated with a test input can be easily summed out: P (v)=∑
h P (v,h). As an example, standard mixture models have a single discrete mixture component

indicator for each data point; the joint probability P (v,h) can be explicitly evaluated for each setting
of the latent variable.

More complex graphical models explain data through the combination of many latent variables.
This provides richer representations, but provides greater computational challenges. In particular,
marginalizing out many latent variables can require complex integrals or exponentially large sums.
One popular latent variable model, the Restricted Boltzmann Machine (RBM), is unusual in that
the posterior over hiddens P (h|v) is fully-factored, which allows efficient evaluation of P (v) up
to a constant. Almost all other latent variable models have posterior dependencies amongst latent
variables, even if they are independent a priori.

Our current work is motivated by recent work on evaluating RBMs and their generalization to Deep
Belief Networks (DBNs) [1]. For both types of models, a single constant was accurately approxi-
mated so that P (v,h) could be evaluated point-wise. For RBMs, the remaining sum over hidden
variables was performed analytically. For DBNs, test probabilities were lower-bounded through
a variational technique. Perhaps surprisingly, the bound was unable to reveal any significant im-
provement over RBMs in an experiment on MNIST digits. It was unclear whether this was due to
looseness of the bound, or to there being no difference in performance.

A more accurate method for summing over latent variables would enable better and broader evalua-
tion of DBNs. In section 2 we consider existing Monte Carlo methods. Some of them are certainly



more accurate, but prohibitively expensive for evaluating large test sets. We then develop a new
cheap Monte Carlo procedure for evaluating latent variable models in section 3. Like the variational
method used previously, our method is unlikely to spuriously over-state test-set performance. Our
presentation is for general latent variable models, however for a running example, we use DBNs
(see section 4 and [2]). The benefits of our new approach are demonstrated in section 5.

2 Probability of observations as a normalizing constant

The probability of a data vector, P (v), is the normalizing constant relating the posterior over hidden
variables to the joint distribution in Bayes rule, P (h|v) = P (h,v)/P (v). A large literature on
computing normalizing constants exists in physics, statistics and computer science. In principle,
there are many methods that could be applied to evaluating the probability assigned to data by a
latent variable model. We review a subset of these methods, with notation and intuitions that will
help motivate and explain our new algorithm.

In what follows, all auxiliary distributions Q and transition operators T are conditioned on the
current test case v, this is not shown in the notation to reduce clutter. Further, all of these methods
assume that we can evaluate P (h,v). Graphical models with undirected connections will require
the separate estimation of a single constant as in [1].

2.1 Importance sampling

Importance sampling can in principle find the normalizing constant of any distribution. The algo-
rithm involves averaging a simple ratio under samples from some convenient tractable distribution
over the hidden variables, Q(h). Provided Q(h) 6= 0 whenever P (h,v) 6= 0, we obtain:

P (v) =
∑
h

P (h,v)
Q(h)

Q(h) ≈ 1
S

S∑
s=1

P
(
h(s),v

)
Q

(
h(s)

) , h(s) ∼ Q
(
h(s)

)
. (1)

Importance sampling relies on the sampling distribution Q(h) being similar to the target distribution
P (h|v). Specifically, the variance of the estimator is an α-divergence between the distributions [3].
Finding a tractable Q(h) with small divergence is difficult in high-dimensional problems.

2.2 The Harmonic mean method

Using Q(h)=P (h|v) in (1) gives an “estimator” that requires knowing P (v). As an alternative, the
harmonic mean method, also called the reciprocal method, gives an unbiased estimate of 1/P (v):

1
P (v)

=
∑
h

P (h)
P (v)

=
∑
h

P (h|v)
P (v|h)

≈ 1
S

S∑
s=1

1
P

(
v|h(s)

) , h(s) ∼ P
(
h(s)|v). (2)

In practice correlated samples from MCMC are used; then the estimator is asymptotically unbiased.

It was clear from the original paper and its discussion that the harmonic mean estimator can behave
very poorly [4]. Samples in the tails of the posterior have large weights, which makes it easy to
construct distributions where the estimator has infinite variance. A finite set of samples will rarely
include any extremely large weights, so the estimator’s empirical variance can be misleadingly low.
In many problems, the estimate of 1/P (v) will be an underestimate with high probability. That is,
the method will overestimate P (v) and often give no indication that it has done so.

Sometimes the estimator will have manageable variance. Also, more expensive versions of the
estimator exist with lower variance. However, it is still prone to overestimate test probabili-
ties: If 1/P̂HME(v) is the Harmonic Mean Estimator in (2), Jensen’s inequality gives P (v) =
1
/
E

[
1/P̂HME(v)

]
≤ E

[
P̂HME(v)

]
. Similarly log P (v) will be overestimated in expectation.

Hence the average of a large number of test log probabilities is highly likely to be an overestimate.

Despite these problems the estimator has received significant attention in statistics, and has been
used for evaluating latent variable models in recent machine learning literature [5, 6]. This is under-
standable: all of the existing, more accurate methods are harder to implement and take considerably
longer to run. In this paper we propose a method that is nearly as easy to use as the harmonic mean
method, but with better properties.



2.3 Importance sampling based on Markov chains

Paradoxically, introducing auxiliary variables and making a distribution much higher-dimensional
than it was before, can help find an approximating Q distribution that closely matches the target
distribution. As an example we give a partial review of Annealed Importance Sampling (AIS) [7], a
special case of a larger family of Sequential Monte Carlo (SMC) methods (see, e.g., [8]). Some of
this theory will be needed in the new method we present in section 3.

Annealing algorithms start with a sample from some tractable distribution P1. Steps are taken with
a series of operators T2, T3, . . . , TS , whose stationary distributions, Ps, are “cooled” towards the
distribution of interest. The probability over the resulting sequence H = {h(1),h(2), . . .h(S)} is:

QAIS(H) = P1

(
h(1)

) S∏
s=2

Ts

(
h(s)←h(s−1)

)
. (3)

To compute importance weights, we need to define a “target” distribution on the same state-space:

PAIS(H) = P
(
h(S)|v

) S∏
s=2

T̃s

(
h(s−1)←h(s)

)
. (4)

Because h(S) has marginal P (h|v) = P (h,v)/P (v), PAIS(H) has our target, P (v), as its normal-
izing constant. The T̃ operators are the reverse operators, of those used to define QAIS.

For any transition operator T that leaves a distribution P (h|v) stationary, there is a unique corre-
sponding “reverse operator” T̃ , which is defined for any point h′ in the support of P :

T̃ (h←h′) =
T (h′←h) P (h|v)∑
h T (h′←h) P (h|v)

=
T (h′←h) P (h|v)

P (h′|v)
. (5)

The sum in the denominator is known because T leaves the posterior stationary. Operators that
are their own reverse operator are said to satisfy “detailed balance” and are also known as “re-
versible”. Many transition operators used in practice, such as Metropolis–Hastings, are reversible.
Non-reversible operators are usually composed from a sequence of reversible operations, such as the
component updates in a Gibbs sampler. The reverse of these (so-called) non-reversible operators is
constructed from the same reversible base operations, but applied in reverse order.

The definitions above allow us to write:

QAIS(H) = PAIS(H)
QAIS(H)
PAIS(H)

= PAIS(H)
P1

(
h(1)

)
P

(
h(S)|v

) · S∏
s=2

Ts

(
h(s)←h(s−1)

)
T̃s

(
h(s−1)←h(s)

)
= PAIS(H) P (v)

[
P1

(
h(1)

)
P

(
h(S),v

) · S∏
s=2

P ∗
s (h(s))

P ∗
s (h(s−1))

]
≡ PAIS(H) P (v)

w(H)
.

(6)

We can usually evaluate the P ∗
s , which are unnormalized versions of the stationary distributions of

the Markov chain operators. Therefore the AIS importance weight w(H) = 1/ [· · · ] is tractable as
long as we can evaluate P (h,v). The AIS importance weight provides an unbiased estimate:

EQAIS(H)

[
w(H)

]
= P (v)

∑
H

PAIS(H) = P (v). (7)

As with standard importance sampling, the variance of the estimator depends on a divergence be-
tween PAIS and QAIS. This can be made small, at large computational expense, by using hundreds
or thousands of steps S, allowing the neighboring intermediate distributions Ps(h) to be close.

2.4 Chib-style estimators

Bayes rule implies that for any special hidden state h∗, P (v) = P (h∗,v)/P (h∗|v). (8)

This trivial identity suggests a family of estimators introduced by Chib [9]. First, we choose a
particular hidden state h∗, usually one with high posterior probability, and then estimate P (h∗|v).

We would like to obtain an estimator that is based on a sequence of states H ={h(1),h(2), . . . ,h(S)}
generated by a Markov chain that explores the posterior distribution P (h|v). The most naive esti-
mate of P (h∗|v) is the fraction of states in H that are equal to the special state

∑
s I(h(s) =h∗)/S.



Obviously this estimator is impractical as it equals zero with high probability when applied to high-
dimensional problems. A “Rao–Blackwellized” version of this estimator, p̂(H), replaces the indi-
cator function with the probability of transitioning from h(s) to the special state under a Markov
chain transition operator that leaves the posterior stationary. This can be derived directly from the
operator’s stationary condition:

P (h∗|v) =
∑
h

T (h∗←h)P (h|v) ≈ p̂(H) ≡ 1
S

S∑
s=1

T (h∗←h(s)), {h(s)} ∼ P(H), (9)

where P(H) is the joint distribution arising from S steps of a Markov chain. If the chain has
stationary distribution P (h|v) and could be initialized at equilibrium so that

P(H) = P
(
h(1)

∣∣v) S∏
s=2

T
(
h(s)←h(s−1)

)
, (10)

then p̂(H) would be an unbiased estimate of P (h∗|v). For ergodic chains the stationary distribution
is achieved asymptotically and the estimator is consistent regardless of how it is initialized.

If T is a Gibbs sampling transition operator, the only way of moving from h to h∗ is to draw each
element of h∗ in turn. If updates are made in index order from 1 to M , the move has probability:

T (h∗←h) =
M∏

j=1

P
(
h∗j

∣∣h∗1:(j−1), h(j+1):M

)
. (11)

Equations (9, 11) have been used in schemes for monitoring the convergence of Gibbs samplers [10].

It is worth emphasizing that we have only outlined the simplest possible scheme inspired by Chib’s
general approach. For some Markov chains, there are technical problems with the above construc-
tion, which require an extension explained in the appendix. Moreover the approach above is not what
Chib recommended. In fact, [11] explicitly favors a more elaborate procedure involving sampling
from a sequence of distributions. This opens up the possibility of many sophisticated developments,
e.g. [12, 13]. However, our focus in this work is on obtaining more useful results from simple cheap
methods. There are also well-known problems with the Chib approach [14], to which we will return.

3 A new estimator for evaluating latent-variable models

We start with the simplest Chib-inspired estimator based on equations (8,9,11). Like many Markov
chain Monte Carlo algorithms, (9) provides only (asymptotic) unbiasedness. For our purposes this
is not sufficient. Jensen’s inequality tells us

P (v) =
P (h∗,v)
P (h∗|v)

=
P (h∗,v)
E[p̂(H)]

≤ E
[
P (h∗,v)

p̂(H)

]
. (12)

That is, we will overestimate the probability of a visible vector in expectation. Jensen’s inequality
also says that we will overestimate log P (v) in expectation.

Ideally we would like an accurate estimate of log P (v). However, if we must suffer some bias,
then a lower bound that does not overstate performance will usually be preferred. An underestimate
of P (v) would result from overestimating P (h∗|v). The probability of the special state h∗ will
often be overestimated in practice if we initialize our Markov chain at h∗. There are, however,
simple counter-examples where this does not happen. Instead we describe a construction based on a
sequence of Markov steps starting at h∗ that does have the desired effect. We draw a state sequence
from the following carefully designed distribution, using the algorithm in figure 1:

Q(H) =
1
S

S∑
s=1

T̃
(
h(s)←h∗

) S∏
s′=s+1

T
(
h(s′)←h(s′−1)

) s−1∏
s′=1

T̃
(
h(s′)←h(s′+1)

)
. (13)

If the initial state were drawn from P (h|v) instead of T̃
(
h(s)←h∗

)
, then the algorithm would give

a sample from an equilibrium sequence with distribution P(H) defined in (10). This can be checked
by repeated substitution of (5). This allows us to express Q in terms of P , as we did for AIS:

Q(H) =
1
S

S∑
s=1

T̃
(
h(s)←h∗

)
P

(
h(s)|v

) P(H) =
1

P (h∗|v)

[
1
S

S∑
s=1

T
(
h∗←h(s)

)]
P(H). (14)



Inputs: v, observed test vector
h∗, a (preferably high posterior probability) hidden state
S, number of Markov chain steps
T , Markov chain operator that leaves P (h|v) stationary

1. Draw s ∼ Uniform({1, . . . S})
2. Draw h(s) ∼ T̃

(
h(s)←h∗

)
3. for s′ = (s + 1) : S

4. Draw h(s′) ∼ T
(
h(s′)←h(s′−1)

)
5. for s′ = (s− 1) : −1 : 1

6. Draw h(s′) ∼ T̃
(
h(s′)←h(s′+1)

)
7. P (v) ≈ P (v,h∗)

/ 1
S

S∑
s′=1

T (h∗←h(s′))

h
∗

h
(1)

h
(2)

h
(3)

h
(4)

h
∗

T

h
∗

T

h
∗

T

h
∗

T

T̃

T̃

T̃

T

Figure 1: Algorithm for the proposed method. The graphical model shows Q(H|s = 3) for S = 4. At
each generated state T (h∗←h(s′)) is evaluated (step 7), roughly doubling the cost of sampling. The reverse
operator, eT , was defined in section 2.3.

The quantity in square brackets is the estimator for P (h∗|v) given in (9). The expectation of the
reciprocal of this quantity under draws fromQ(H) is exactly the quantity needed to compute P (v):

EQ(H)

[
1

/
1
S

S∑
s=1

T
(
h∗←h(s)

)]
=

1
P (h∗|v)

∑
H

P(H) =
1

P (h∗|v)
. (15)

Although we are using the simple estimator from (9), by drawing H from a carefully constructed
Markov chain procedure, the estimator is now unbiased in P (v). This is not an asymptotic result. As
long as no division by zero has occurred in the above equations, the estimator is unbiased in P (v)
for finite runs of the Markov chain. Jensen’s implies that log P (v) is underestimated in expectation.

Neal noted that Chibs method will return incorrect answers in cases where the Markov chain does not
mix well amongst modes [14]. Our new proposed method will suffer from the same problem. Even
if no transition probabilities are exactly zero, unbiasedness does not exclude being on a particular
side of the correct answer with very high probability. Poor mixing may cause P (h∗|v) to be over-
estimated with high probability, which would result in an underestimate of P (v), i.e., an overly
conservative estimate of test performance.

The variance of the estimator is generally unknown, as it depends on the (generally unavailable)
auto-covariance structure of the Markov chain. We can note one positive property: for the ideal
Markov chain operator that mixes in one step, the estimator has zero variance and gives the correct
answer immediately. Although this extreme will not actually occur, it does indicate that on easy
problems, good answers can be returned more quickly than by AIS.

4 Deep Belief Networks
In this section we provide a brief overview of Deep Belief Networks (DBNs), recently introduced
by [2]. DBNs are probabilistic generative models, that can contain many layers of hidden variables.
Each layer captures strong high-order correlations between the activities of hidden features in the
layer below. The top two layers of the DBN model form a Restricted Boltzmann Machine (RBM)
which is an undirected graphical model, but the lower layers form a directed generative model. The
original paper introduced a greedy, layer-by-layer unsupervised learning algorithm that consists of
learning a stack of RBMs one layer at a time.

Consider a DBN model with two layers of hidden features. The model’s joint distribution is:

P (v,h1,h2) = P (v|h1) P (h2,h1), (16)

where P (v|h1) represents a sigmoid belief network, and P (h1,h2) is the joint distribution defined
by the second layer RBM. By explicitly summing out h2, we can easily evaluate an unnormalized
probability P ∗(v,h1)=ZP (v,h1). Using an approximating factorial posterior distribution Q(h|v),
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Figure 2: AIS, our proposed estimator and a variational method were used to sum over the hidden states for
each of 50 randomly sampled test cases to estimate their average log probability. The three methods shared the
same AIS estimate of a single global normalization constant Z.

obtained as a byproduct of the greedy learning procedure, and an AIS estimate of the model’s parti-
tion function Z, [1] proposed obtaining an estimate of a variational lower bound:

log P (v) ≥
∑
h1

Q(h1|v) log P ∗(v,h1)− log Z +H(Q(h1|v)). (17)

The entropy term H(·) can be computed analytically, since Q is factorial, and the expectation term
was estimated by a simple Monte Carlo approximation:∑

h1

Q(h1|v) log P ∗(v,h1) ≈ 1
S

∑
s=1..S

log P ∗(v,h1(s)), where h1(s) ∼ Q(h1|v). (18)

Instead of the variational approach, we could also adopt AIS to estimate
∑

h1 P ∗(v,h1). This
would be computationally very expensive, since we would need to run AIS for each test case.

In the next section we show that variational lower bounds can be quite loose. Running AIS on the
entire test set, containing many thousands of test cases, is computationally too demanding. Our
proposed estimator requires the same single AIS estimate of Z as the variational method, so that
we can evaluate P (v,h1). It then provides better estimates of log P (v) by approximately summing
over h1 for each test case in a reasonable amount of computer time.

5 Experimental Results
We present experimental results on two datasets: the MNIST digits and a dataset of image
patches, extracted from images of natural scenes taken from the collection of Van Hateren
(http://hlab.phys.rug.nl/imlib/). The MNIST dataset contains 60,000 training and 10,000 test im-
ages of ten handwritten digits (0 to 9), with 28×28 pixels. The image dataset consisted of 130,000
training and 20,000 test 20×20 patches. The raw image intensities were preprocessed and whitened
as described in [15]. Gibbs sampling was used as a Markov chain transition operator throughout.
All log probabilities quoted use natural logarithms, giving values in nats.

5.1 MNIST digits

In our first experiment we used a deep belief network (DBN) taken from [1]. The network had two
hidden layers with 500 and 2000 hidden units, and was greedily trained by learning a stack of two
RBMs one layer at a time. Each RBM was trained using the Contrastive Divergence (CD) learning
rule. The estimate of the lower bound on the average test log probability, using (17), was −86.22.

To estimate how loose the variational bound is, we randomly sampled 50 test cases, 5 of each class,
and ran AIS for each test case to estimate the true test log probability. Computationally, this is
equivalent to estimating 50 additional partition functions. Figure 2, left panel, shows the results.
The estimate of the variational bound was −87.05 per test case, whereas the estimate of the true test
log probability using AIS was −85.20. Our proposed estimator, averaged over 10 runs, provided
an answer of −85.22. The special state h∗ for each test example v was obtained by first sampling
from the approximating distribution Q(h|v), and then performing deterministic hill-climbing in
log p(v,h) to get to a local mode.



AIS used a hand-tuned temperature schedule designed to equalize the variance of the intermediate
log weights [7]. We needed 10,000 intermediate distributions to get stable results, which took about
3.6 days on a Pentium Xeon 3.00GHz machine, whereas for our proposed estimator we only used
S =40, which took about 50 minutes. For a more direct comparison we tried giving AIS 50 minutes,
which allows 100 temperatures. This run gave an estimate of −89.59, which is lower than the lower
bound and tells us nothing. Giving AIS ten times more time, 1000 temperatures, gave −86.05. This
is higher than the lower bound, but still worse than our estimator at S = 40, or even S = 5.

Finally, using our proposed estimator, the average test log probability on the entire MNIST test data
was −84.55. The difference of about 2 nats shows that the variational bound in [1] was rather tight,
although a very small improvement of the DBN over the RBM is now revealed.

5.2 Image Patches

In our second experiment we trained a two-layer DBN model on the image patches of natural scenes.
The first layer RBM had 2000 hidden units and 400 Gaussian visible units. The second layer repre-
sented a semi-restricted Boltzmann machine (SRBM) with 500 hidden and 2000 visible units. The
SRBM contained visible-to-visible connections, and was trained using Contrastive Divergence to-
gether with mean-field. Details of training can be found in [15]. The overall DBN model can be
viewed as a directed hierarchy of Markov random fields with hidden-to-hidden connections.

To estimate the model’s partition function, we used AIS with 15,000 intermediate distributions and
100 annealing runs. The estimated lower bound on the average test log probability (see Eq. 17),
using a factorial approximate posterior distribution Q(h1|v), which we also get as a byproduct of
the greedy learning algorithm, was −583.73. The estimate of the true test log probability, using our
proposed estimator, was−563.39. In contrast to the model trained on MNIST, the difference of over
20 nats shows that, for model comparison purposes, the variational lower bound is quite loose.

For comparison, we also trained square ICA and a mixture of factor analyzers (MFA) using code
from [16, 17]. Square ICA achieves a test log probability of −551.14, and MFA with 50 mixture
components and a 30-dimensional latent space achieves −502.30, clearly outperforming DBNs.

6 Discussion
Our new Monte Carlo procedure is formally unbiased in estimating P (v). In practice it is likely to
underestimate the (log-)probability of a test set. Although the algorithm involves Markov chains,
importance sampling underlies the estimator. Therefore the methods discussed in [18] could be used
to bound the probability of accidentally over-estimating a test set probability.

In principle our procedure is a general technique for estimating normalizing constants. It would not
always be appropriate however, as it would suffer the problems outlined in [14]. As an example our
method will not succeed in estimating the global normalizing constant of an RBM.

For our method to work well, a state drawn from T̃ (h(s)← h∗) should look like it could be part
of an equilibrium sequence H ∼ P(H). The details of the algorithm arose by developing existing
Monte Carlo estimators, but the starting state h(s) could be drawn from any arbitrary distribution:

Qvar(H) =
1
S

S∑
s=1

q(h(s))
P (h(s)|v)

P(H) = P (v)

[
1
S

S∑
s=1

q(h(s))
P (h(s),v)

]
P(H). (19)

As before the reciprocal of the quantity in square brackets would give an estimate of P (v). If an
approximation q(h) is available that captures more mass than T̃ (h←h∗), this generalized estimator
could perform better. We are hopeful that our method will be a natural next step in a variety of
situations where improvements are sought over a deterministic approximation.
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A Real-valued latents and Metropolis–Hastings

There are technical difficulties with the original Chib-style approach applied to Metropolis–Hastings
and continuous latent variables. The continuous version of equation (9),

P (h∗|v) =
∫

T (h∗←h)P (h|v) dh ≈ 1
S

∑S
s=1 T (h∗←h(s)), h(s) ∼ P(H), (20)

doesn’t work if T is the Metropolis–Hastings operator. The Dirac-delta function at h=h∗ contains
a significant part of the integral, which is ignored by samples from P (h|v) with probability one.

Following [11], the fix is to instead integrate over the generalized detailed balance relationship (5).
Chib and Jeliazkov implicitly took out the h∗=h point from all of their integrals. We do the same:

P (h∗|v) =
∫

dh T̃ (h∗←h)P (h|v)
/ ∫

dh T (h←h∗). (21)

The numerator can be estimated as before. As both integrals omit h = h∗, the denominator
is less than one when T contains a delta function. For Metropolis–Hastings: T (h ← h∗) =
q(h;h∗) min

(
1, a(h;h∗)

)
, where a(h;h∗) is an easy-to-compute acceptance ratio. Sampling from

q(h;h∗) and averaging min(1, a(h;h∗)) provides an estimate of the denominator.

In our importance sampling approach there is no need to separately approximate an additional quan-
tity. The algorithm in figure 1 still applies if the T ’s are interpreted as probability density functions.
If, due to a rejection, h∗ is drawn in step 2. then the sum in step 7. will contain an infinite term giving
a trivial underestimate P (v)=0. (Steps 3–6 need not be performed in this case.) On repeated runs,
the average estimate is still unbiased, or an underestimate for chains that can’t mix. Alternatively,
the variational approach (19) could be applied together with Metropolis–Hastings sampling.


