
Advances in Markov chain

Monte Carlo methods

Iain Murray
M.A., M.Sci., Natural Sciences (Physics), University of Cambridge, UK (2002)

Gatsby Computational Neuroscience Unit

University College London

17 Queen Square

London WC1N 3AR, United Kingdom

THESIS

Submitted for the degree of

Doctor of Philosophy, University of London

2007

2

I, Iain Murray, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated
in the thesis.

3

Abstract

Probability distributions over many variables occur frequently in Bayesian inference,
statistical physics and simulation studies. Samples from distributions give insight into
their typical behavior and can allow approximation of any quantity of interest, such
as expectations or normalizing constants. Markov chain Monte Carlo (MCMC), intro-
duced by Metropolis et al. (1953), allows sampling from distributions with intractable
normalization, and remains one of most important tools for approximate computation
with probability distributions.

While not needed by MCMC, normalizers are key quantities: in Bayesian statistics
marginal likelihoods are needed for model comparison; in statistical physics many phys-
ical quantities relate to the partition function. In this thesis we propose and investigate
several new Monte Carlo algorithms, both for evaluating normalizing constants and for
improved sampling of distributions.

Many MCMC correctness proofs rely on using reversible transition operators; often
these operators lead to slow diffusive motion resembling a random walk. After reviewing
existing MCMC algorithms, we develop a new framework for constructing non-reversible
transition operators that allow more persistent motion.

Next we explore and extend MCMC-based algorithms for computing normalizing con-
stants. We compare annealing, multicanonical and nested sampling, giving recommen-
dations for their use. We also develop a new MCMC operator and Nested Sampling
approach for the Potts model. This demonstrates that nested sampling is sometimes
better than annealing methods at computing normalizing constants and drawing pos-
terior samples.

Finally we consider “doubly-intractable” distributions with extra unknown normalizer
terms that do not cancel in standard MCMC algorithms. We propose using several
deterministic approximations for the unknown terms, and investigate their interaction
with sampling algorithms. We then develop novel exact-sampling-based MCMC meth-
ods, the Exchange Algorithm and Latent Histories. For the first time these algorithms
do not require separate approximation before sampling begins. Moreover, the Exchange
Algorithm outperforms the only alternative sampling algorithm for doubly intractable
distributions.

4

Acknowledgments

I feel very fortunate to have been supervised by Zoubin Ghahramani. My training
has benefited greatly from his expertise, enthusiasm and encouragement. I have been
equally fortunate to receive regular advice and ideas from David MacKay. Much of this
research would never have happened without these mentors and friends.

This work was carried out at the Gatsby computational neuroscience unit at University
College London. This is a first-class environment in which to conduct research, both
intellectually and socially. Peter Dayan, the director, is owed a lot of credit for this,
as are all of Gatsby’s members and visitors, past and present. Several individuals have
offered me their constant support, advice and good humor, in particular Angela Yu, Ed
Snelson, Katherine Heller and members of the Inference group in Cambridge. I’d also
like to extend a special thanks to Alex Boss whose administrative help often extended
beyond the call of duty.

Some of chapter 4 is a review of John Skilling’s nested sampling algorithm. John has
been generous with his advice and encouragement, which enabled me to pursue a study
based on his work. Thanks also to Radford Neal for comments on aspects of chapters 3
and 5, Hyun-Chul Kim for mean-field code used in chapter 5 and Matthew Stephens
for encouraging me to work out the non-infinite explanation of the exchange algorithm.
Thanks to my examiners Peter Green and Lorenz Wernisch for reviewing this work and
catching some mistakes. Of course I am solely responsible for any errors that remain.

I am enormously grateful to the Gatsby charitable foundation for funding my research
and providing travel money. Further travel monies were received from the PASCAL
network of excellence, AUAI, the NIPS foundation and the Valencia Bayesian meeting.

Various items of free software have played a vital role in conducting this research: gcc,
GNU/Linux, gnuplot, LATEX, METAPOST (Hobby, 1992), Octave, Valgrind (Seward
and Nethercote, 2005), Vim and many more. Projects in the public interest such as
these deserve considerable support.

Finally I would like to thank my family and friends for all their support and patience.

Contents

Front matter

Abstract . 3
Acknowledgments . 4
Contents . 5
List of algorithms . 9
List of figures . 10
List of tables . 12
Notes on notation . 13

1 Introduction 14

1.1 Graphical models . 14
1.1.1 Directed graphical models . 15
1.1.2 Undirected graphical models . 16
1.1.3 The Potts model . 17
1.1.4 Computations with graphs . 17

1.2 The role of summation . 18
1.3 Simple Monte Carlo . 20

1.3.1 Sampling from distributions . 21
1.3.2 Importance sampling . 23

1.4 Markov chain Monte Carlo (MCMC) . 24
1.5 Choice of method . 26

2 Markov chain Monte Carlo 27

2.1 Metropolis methods . 27
2.1.1 Generality of Metropolis–Hastings 28
2.1.2 Gibbs sampling . 30
2.1.3 A two stage acceptance rule . 30

2.2 Construction of estimators . 31
2.2.1 Conditional estimators (“Rao-Blackwellization”) 32
2.2.2 Waste recycling . 34

2.3 Convergence . 35
2.4 Auxiliary variable methods . 36

2.4.1 Swendsen–Wang . 36

CONTENTS 6

2.4.2 Slice Sampling . 39
2.4.3 Hamiltonian Monte Carlo . 41

2.5 Annealing methods . 42
2.5.1 Simulated tempering / Expanded Ensembles 43
2.5.2 Parallel tempering . 44
2.5.3 Annealed importance sampling (AIS) 45
2.5.4 Tempered transitions . 46

2.5.4.1 Generalization to only forward transitions 48
2.5.4.2 Generalization to a single pass 49

2.6 Multicanonical ensemble . 50
2.7 Exact sampling . 52

2.7.1 Exact sampling example: the Ising model 54
2.8 Discussion and Outlook . 55

3 Multiple proposals and non-reversible Markov chains 57

3.1 “Population Monte Carlo” . 58
3.2 Multiple-Try Metropolis . 60

3.2.1 Efficiency of MTM . 62
3.2.2 Multiple-Importance Try . 65
3.2.3 Waste-recycled MTM . 66

3.3 Ordered overrelaxation . 68
3.3.1 Adapting K automatically . 69

3.4 Pivot-based transitions . 70
3.4.1 Ordered overrelaxation with pivot-based transitions 72
3.4.2 Persistence with pivot states . 73

3.5 Pivot-based Metropolis . 77
3.6 Summary . 78
3.7 Related and future work . 79

4 Normalizing constants and nested sampling 81

4.1 Starting at the prior . 83
4.2 Bridging to the posterior . 85

4.2.1 Aside on the ‘prior’ factorization 86
4.2.2 Thermodynamic integration . 86

4.3 Multicanonical sampling . 88
4.4 Nested sampling . 88

4.4.1 A change of variables . 89
4.4.2 Computations in the new representation 91
4.4.3 Nested sampling algorithms . 92
4.4.4 MCMC approximations . 94
4.4.5 Integrating out x . 95
4.4.6 Degenerate likelihoods . 95

CONTENTS 7

4.5 Efficiency of the algorithms . 98
4.5.1 Nested sampling . 99
4.5.2 Multicanonical sampling . 100
4.5.3 Importance sampling . 102

4.6 Constructing annealing schedules . 103
4.7 Markov chains for normalizing constants 105

4.7.1 Randomize operator orderings 105
4.7.2 Changes in length-scale and energy 106
4.7.3 A new version of Swendsen–Wang 107

4.8 Experiments . 109
4.8.1 Description of slice sampling experiments 109
4.8.2 Discussion of slice sampling results 111
4.8.3 The Potts model . 116

4.9 Discussion and conclusions . 118
4.9.1 Summary . 118
4.9.2 Related work . 119
4.9.3 Philosophy . 120

5 Doubly-intractable distributions 122

5.1 Bayesian learning of undirected models 123
5.1.1 Do we need Z(θ) for MCMC? . 125

5.2 Approximation Schemes . 127
5.2.1 Targets for MCMC approximation 128
5.2.2 Approximation algorithms . 129
5.2.3 Extension to hidden variables . 131
5.2.4 Experiments involving fully observed models 132
5.2.5 Experiment involving hidden variables 134
5.2.6 Discussion . 136

5.3 The Exchange Algorithm . 137
5.3.1 Product space interpretation . 139
5.3.2 Bridging Exchange Algorithm . 140
5.3.3 Details for proof of correctness 143

5.4 The Single Auxiliary Variable Method 144
5.4.1 Reinterpreting SAVM . 146

5.5 MAVM: a tempered-transitions refinement 146
5.6 Comparison of the exchange algorithm and MAVM 149

5.6.1 Ising model comparison . 150
5.6.2 Discussion . 152

5.7 Latent History methods . 153
5.7.1 Metropolis–Hastings algorithm 154
5.7.2 Performance . 155

5.8 Slice sampling doubly-intractable distributions 157

CONTENTS 8

5.8.1 Latent histories . 158
5.8.2 MAVM . 158

5.9 Discussion . 159

6 Summary and future work 162

References 164

List of algorithms

1.1 Rejection sampling . 23
2.1 Metropolis–Hastings . 27
2.2 A two stage acceptance rule . 31
3.1 “Population Monte Carlo” as in Cappé et al. (2004) 59
3.2 A single step of the Multiple-Try Metropolis Markov chain 62
3.3 Self size-adjusting population for ordered overrelaxation 70
3.4 The pivot-based transition . 71
3.5 The pivot-based Metropolis operator . 77
4.1 Single particle nested sampling . 92
4.2 Multiple particle nested sampling . 92
4.3 Construction of an annealing schedule from nested sampling 105
4.4 Swendsen–Wang for weighted bond configurations 108
5.1 Standard (but infeasible) Metropolis–Hastings 125
5.2 Exchange algorithm . 138
5.3 Exchange algorithm with bridging . 142
5.4 Multiple auxiliary variable method (MAVM) 147
5.5 Simple rejection sampling algorithm for θ ∼ p(θ|y) 153
5.6 Template for a latent history sampler . 154
5.7 Metropolis–Hastings latent history sampler 156

List of figures

1.1 A selection of directed graphical models 15
1.2 Some graphical models over three variables 16
1.3 A grid of 100 binary variables . 18
1.4 An intractable undirected graphical model? 19
1.5 Drawing samples from low-dimensional distributions 22

2.1 Challenges for Markov chain exploration 35
2.2 The Swendsen–Wang algorithm . 38
2.3 Slice sampling . 39
2.4 The effect of annealing . 43
2.5 Parallel tempering . 44
2.6 Annealed importance sampling (AIS) . 46
2.7 Tempered transitions . 48
2.8 Multicanonical ensemble example . 51
2.9 Coupling from the past (CFTP) overview 53

3.1 Metropolis and Population Monte Carlo on the “funnel” distribution . . 61
3.2 Multiple-Try Metropolis (MTM) . 63
3.3 Performance of Multiple-Try Metropolis 64
3.4 The idea behind successive overrelaxation 68
3.5 Illustration of the pivot-based transitions operator. 71
3.6 Ordered overrelaxation schemes applied to a bivariate Gaussian 74
3.7 Using pivot states for persistent motion. 76
3.8 Example of persistent motion . 76
3.9 Reflect move for discrete distributions. 78

4.1 Views of the integral Z=
∫

L(θ) π(θ)dθ 90
4.2 Nested sampling illustrations . 91
4.3 The arithmetic and geometric means of nested sampling’s progress . . . 94
4.4 Errors in nested sampling approximations 96
4.5 Empirical average behavior of AIS and nested sampling 115
4.6 Potts model states accessible by MCMC and nested sampling 118

LIST OF FIGURES 11

5.1 A simple illustration of the global nature of Z 126
5.2 Histograms of approximate samples for heart disease risk model 133
5.3 Quality of marginals from approximate MCMC methods 133
5.4 Toy semi-supervised problem with results from approximate samplers . 135
5.5 The exchange algorithm’s augmented model 137
5.6 A product space model motivating the exchange algorithm 139
5.7 The proposed change in joint distribution under a bridged exchange . . 142
5.8 Augmented model used by SAVM . 145
5.9 Joint model for MAVM . 148
5.10 Comparison of MAVM and the exchange algorithm learning a precision 151
5.11 Performance comparison of exchange and MAVM on an Ising model . . 152
5.12 The latent history representation . 154

List of tables

3.1 Equilibrium efficiency of MTM and Metropolis 64
3.2 Accuracy on t-distribution after 1000 proposals 67

4.1 A rough interpretation of the evidence scale 82
4.2 Nested sampling, AIS and multicanonical behavior with slice-sampling . 112
4.3 Estimates of the deceptive distribution 116
4.4 Partition function results for 16×16 Potts systems 117

13

Notes on notation

Probability distributions

We have chosen to follow a fairly loose, but commonly-used notation for probabilities.

Occasionally we use P (X =x) to denote the probability that a random variable X takes
on the value x. But as long as the meaning can be inferred from context we simply
write P (x).

Often there is more than one probability distribution over the same variable. We simply
write q(x) for the probability under distribution q and p(x) for the probability under p.

We never mention the space in which X lives, nor any measure theory unless it is
actually used. We rarely need to distinguish between probability densities and discrete
probabilities. This loose notation is imprecise, but hopefully its simplicity will be
appreciated by some readers.

Probability of a “given” b

We use several notations for distributions over variables that depend on other quantities:

• P (a|b) — This is the conditional probability of a given b. Bayes rule can be
applied to infer b from a: P (b|a) = P (a|b)P (b)/P (a).

• P (a; b) — The probability of a is a function depending on some parameter b. One
should not necessarily assume that Bayes rule holds for a and b.

• T (a←b) — T is a transition operator which gives a probability distribution over
a new position a given a starting position b. One could also write T (a; b), the
arrow is to provide a more obvious distinction from authors that use T (a, b) for
the probability of the transition a→ b. Transition operators do not necessarily
satisfy Bayes rule, known as “detailed balance”, so the notation T (a|b) is avoided.

• T (a←b; c) — This specifies parameters c in addition to starting location b.

Expectations

We use Ep(x)[f(x)] ≡
∑

x p(x)f(x) for the expectation or average of f(x) under the
distribution p(x). A sum with no specified range should be taken to mean “over all
values”. The variance of a quantity is given by varp[f] ≡ Ep(x)

[
f(x)2

]
− Ep(x)[f(x)]2.

Chapter 1

Introduction

Probability distributions over many variables occur frequently in Bayesian inference,
statistical physics and simulation studies. Computational methods for dealing with
these large and complex distributions remains an active area of research.

Graphical models (section 1.1) provide a powerful framework for representing these
distributions. We use these to explain challenging probability distributions, and some-
times the algorithms to deal with them. A surprising number of statistical problems
result in the computation of averages, which we explain in section 1.2. Monte Carlo
techniques (section 1.3) approximate these summations using random samples. Many
of these methods rely on the use of Markov chains (section 1.4). Extending Markov
chain Monte Carlo (MCMC) techniques is the subject of this thesis.

1.1 Graphical models

Compact representations of high-dimensional probability distributions are essential for
their interpretation, feasibility of learning and computational reasons. As a concrete
example consider a distribution over a vector of D binary variables x. For small D, e.g.
two or three, an explicit table of counts for all possible joint settings could be maintained
and used for frequency-based estimates of the settings’ probabilities. Explicitly storing
such a table becomes exponentially more costly as D grows. Even if the table is stored
in a sparse data structure, the representation is not useful for learning probabilities:
most cells will contain zero observations. Enforcing some structure is essential when
learning from large multivariate distributions.

The simplest multivariate distributions assume that all of their component variables xd

are independent:

p(x) =
D∏

d=1

p(xd). (1.1)

Graphical models 15

x1 x2 x3 x4 x5

c

(a) Näıve Bayes

x1 x2 x3 x4 x5

y

(b) Hidden causes

θ y

(c) Simple parametric model

Figure 1.1: A selection of directed graphical models.

This assumption is generally inappropriate as it means that no relationships between
any of the variables can ever be learned. The graphical model for equation (1.1) has a
node for each xd, with no edges between any of the nodes. Graphs with more structure
provide a convenient representation for different factorizations of p(x).

Two classes of graphical model are used in this thesis. Directed graphs offer a natural
representation of causal relationships or the result of a sequence of operations. While
useful in modeling we mainly use directed graphs for explanations of algorithms. Undi-
rected graphical models are a more natural representation for constraints and mutual
interactions. These are an important motivation for chapter 5. This section offers a
brief review of the required concepts.

1.1.1 Directed graphical models

A directed graphical model is represented by a directed acyclic graph (DAG). Generally
the joint distribution factorizes into a product of terms for each node conditioned on
all of its parents. Figure 1.1a is a directed graphical model for the joint distribution
found in the “näıve Bayes” model with class variable c and feature vector x={xd},

p(c,x) = p(c)p(x|c) = p(c)
D∏

d=1

p(xd|c). (1.2)

Figure 1.1a and equation (1.2) contain exactly the same information. From either form
it is readily apparent, to those familiar with the representations, that the features x

are dependent, but independent conditioned on the class variable c. As more variables
and more complicated structure are introduced, the graphical model is often easier to
interpret at a glance than an equation giving the factorization of the joint distribution.
Several graphical model figures have been included throughout this thesis for those that
might find them useful.

Graphical models 16

x1 x2

x3

(a)

x1 x2

x3

fi

x1 x2

x3

(b)

x1 x2

x3

(c)

x1 x2x1

x3

x2

x3

x1 x2

x3

(d)

Figure 1.2: Some graphical models over three variables.

Figure 1.1c demonstrates another piece of directed graphical model notation. Some-
times shading or a double-outline is used to indicate that a node represents an observed
variable. Here y are the data being modeled, which are assumed to come from a dis-
tribution parameterized by θ. Strictly this graph says nothing else about the distribu-
tion. Any joint distribution over two variables can be written as p(y, θ)=p(y|θ)p(θ)=
p(θ|y)p(y), so the arrow could equally be drawn the other way. The implication is that
generating y from θ is a natural operation.

The arrow directions make a big difference in figure 1.1b. The x variables are inde-
pendent in the generative process. After observing y our knowledge about x forms a
potentially complex joint distribution: we do not expect direct sampling from p(x|y)
to be easy. Methods based on Markov chains will offer a solution to this problem.

1.1.2 Undirected graphical models

A probability distribution must be normalized, so one representation, used frequently
in chapter 5, is

p(x) = f(x; θ)/Z(θ), Z(θ) =
∑

x

f(x; θ), (1.3)

where f(x; θ) is any positive function for which the normalization sum (or integral)
exists. However, without detailed analysis of f , this representation says nothing about
the structure of the distribution. Undirected graphical models represent f as a product
of terms, but do not identify some nodes as ‘children’ and others as ‘parents’. This is
appropriate for representing mutual interactions.

Modern undirected models use bipartite ‘factor graphs’. Figure 1.2b shows three vari-
ables which all interact through a central factor node. Traditionally this distribution
would be represented as in figure 1.2c, where the three nodes all take part in a common
interaction as they form a fully connected clique. The factor representation is more
powerful: the traditional representation cannot represent the distribution in figure 1.2d,
which contains three factors: p(x1, x2, x3)=f(x1, x2)f(x1, x3)f(x2, x2)/Z.

Graphical models 17

1.1.3 The Potts model

The Potts model is a widespread example of an undirected graphical model. Its prob-
ability distribution is defined over discrete variables s, each taking on one of q distinct
settings or “colors”:

p(s|J, q) =
1

ZP(J, q)
exp
(∑

(ij)∈E

Jij(δsisj − 1)
)

. (1.4)

The variables exist as nodes on a graph where (ij)∈ E means that nodes i and j are
linked by an edge. The Kronecker delta, δsisj is one when si and sj are the same color
and zero otherwise. Neighboring nodes pay an “energy penalty” of Jij when they are
different colors. Often a single common coupling Jij =J is used. A common extension
allows biases to be put on the colors: an additional term

∑
i hi(si) is put inside the

exponential. The Potts model with bias terms and q = 2 has several different names:
the Boltzmann machine, the Ising model, binary Markov random fields or autologistic
models.

1.1.4 Computations with graphs

Imagine a problem that involves summing over the settings of a binary Potts model
with 100 variables. In general this seems impossible: there are 2100 possible states.
For comparison the age of the universe is usually estimated to be about 298 picosec-
onds, while most current processors take about 210 picoseconds to perform a single
instruction.

If the model’s graph forms a chain, s1—s2—s3 · · · sN , the distribution can be factored
into a product of functions involving each adjacent pair:

p(s|J) =
1
Z(J)

N∏
n=2

fn(sn, sn−1;J). (1.5)

Now certain sums, such as the normalizer Z(J)=
∑

s

∏
fn(sn, sn−1;J) and expectations

of functions of variables Ep(s)[g(si)] are tractable. An example showing how the sums
can be decomposed is as follows:

∑
s

g(si)
N∏

n=2

fn(sn, sn−1) =
∑

s1

∑
s2

f2(s2, s1)
∑

s3
f3(s3, s2) · · ·∑

si
fi(si, si−1)g(si)

∑
si+1

fi+1(si+1, si) · · ·∑
sN−1

fN−1(sN−1, sN−2)
∑

sN
fN (sN , sN−1).

(1.6)

Performing the sums right to left makes the computation O(qN) rather than O(qN),
where q=2 for binary variables.

The role of summation 18

(a) (b)

Figure 1.3: A “small” state space of 100 binary variables represented as (a) pixels
and (b) an undirected graphical model.

The above technique easily generalizes to tree-structured graphs, but other topologies
are common in applications. Figure 1.3 shows a grid of 100 binary variables. Arrays like
this are common in computer vision, spatial statistics and statistical physics. Treating
each row of 10 pixels as a single variable makes a chain-structured graph with N =10
variables each taking on 210 = 1024 states. Summing has changed from an operation
that takes orders of magnitude longer than the age of the universe to being almost
instantaneous. Advanced versions of this procedure exist for general graphical models,
notably the junction tree algorithm (Lauritzen and Spiegelhalter, 1988). The cost of
the algorithm is determined by the tree-width of a graph, which indicates the largest
number of variables that need to be joined in order to form a tree structure.

Figure 1.4 shows a genuinely intractable graphical model. Or does it? Even if the
variables are only binary then summing over all 50× 50 states with a graph-based
exact inference algorithm is infeasible. Forming a tractable tree will require making
at least one node with 250 joint settings of 50 variables1. The topology of the graph
isn’t everything however. If the variables were continuous and Gaussian distributed
then the model is quite tractable. Almost everything one might want to know about
a Gaussian distribution can be found easily from a Cholesky decomposition of the
covariance matrix. This matrix factorization is flexible, numerically stable and costs
O(N3) for a N×N covariance matrix (Seeger, 2005). When N =50×50=2500 a current
mid-range workstation can perform the required computation in a couple of seconds.

1.2 The role of summation

Summing over all the configurations of a multivariate distribution turns out to be the
dominant computational task in many fields. One of the goals of statistical physics is to
capture the collective behavior of systems that, like the Potts model, involve enormous
numbers of interacting parts. Many physical quantities relate to simple statistics of

1Summing in diagonal stripes means this need only happen once rather than 50 times.

The role of summation 19

Figure 1.4: An intractable undirected graphical model? A grid of 50×50 variables
with pairwise interactions.

these parts averaged over the entire system. Other key quantities can be derived from
Z, the Zustandssumme or sum over states.

Bayesian inference, the use of probability theory to deal with uncertainty, is also domi-
nated by the computation of averages. As a canonical example we consider a statistical
model θ → x for data x generated using parameters θ. The predictive distribution
over new data x(N+1) given observations of N previous settings {x(n)}Nn=1 is an average
under the “posterior distribution” p(θ|{x(n)}Nn=1),

p(x(N+1)|{x(n)}Nn=1) =
∫

p(x(N+1)|θ) p(θ|{x(n)}Nn=1) dθ

= Ep(θ|{x(n)}Nn=1)

[
p(x(N+1)|θ)

]
.

(1.7)

The posterior distribution is given by Bayes’ rule

p(θ|{x(n)}Nn=1) =
p({x(n)}Nn=1|θ)p(θ)∫

p({x(n)}Nn=1|θ′)p(θ′) dθ′
, (1.8)

which involves another sum over θ. In general any time a quantity is unknown we
must consider all of its possible settings, which tends to involve an average under a
probability distribution.

This thesis concentrates on computational methods, rather than their application.

Simple Monte Carlo 20

However, modeling and learning from data are a key motivation for this work, so
we briefly mention some more general references. “Bayesian inference” is named after
Bayes (1763), although many of the ideas that currently fall under this banner came
much later. For more on the philosophy a good start is a beautifully written paper
by Cox (1946)2. Recent textbooks offer a broader view of probabilistic modeling and
are available from the viewpoints of various communities, including statistics (Gelman
et al., 2003), machine learning (MacKay, 2003; Bishop, 2006) and the physical sciences
(Sivia and Skilling, 2006).

1.3 Simple Monte Carlo

Many of the alleged difficulties with finding averages are unduly pessimistic. Imagine
we were interested in the average salary x of people p in the set of statisticians S.
Formally this is a large, “intractable” sum over all of the |S| statisticians in the world:

Ep∈S [x(p)] ≡ 1
|S|
∑
p∈S

x(p). (1.9)

But to claim that the question is unanswerable is absurd. We can clearly get a reason-
able estimate of the answer by measuring just some statisticians,

Ep∈S [x(p)] ≈ 1
S

S∑
s=1

x
(
p(s)
)
, for random survey of S people {p(s)} ∈ S. (1.10)

No reasonable application needs the exact answer, which in any case is constantly
fluctuating as individual statisticians are hired, promoted and retire. So for all practical
purposes the problem is solved. Nearly. Conducting surveys that obtain a fair sample
from a target population is difficult. But the technique is so useful we are prepared to
invest effort into good sampling methods.

This statistical sampling technique is directly relevant to solving difficult integrals in
statistical inference. For example, what is the distribution over an unknown quantity
x after observing data D from a distribution with unknown parameters θ?

p(x|D) =
∫

p(x|θ,D)p(θ|D) dθ = Ep(θ|D)[p(x|θ,D)]

≈ 1
S

S∑
s=1

p(x|θ(s),D), θ(s) ∼ p(θ|D).
(1.11)

We draw samples from the target distribution, which rather than the set of statisticians
is now p(θ|D). Approximating general averages by statistical sampling is known as
“simple Monte Carlo”. The estimates are unbiased, which if not clear now is shown

2Cox’s work has been subject to some technical objections which are countered by Horn (2003).

Simple Monte Carlo 21

more generally in section 2.2. As long as variances are bounded appropriately the sum
of independent terms will obey a central limit theorem; the estimator’s variance will
scale like 1/S.

Having an estimator’s variance shrink only linearly with computational effort is often
considered poor. Sokal (1996) begins a lecture course on Monte Carlo with the warning

“Monte Carlo is an extremely bad method; it should be used only when all
alternative methods are worse.”

However, as Sokal goes on to acknowledge, Monte Carlo is also an extremely important
method. On some problems it might be the only way to obtain accurate answers.
Metropolis (1987) describes how the physicist Enrico Fermi (1901–1954) used Monte
Carlo before the development of electronic computers. When insomnia struck he would
spend his nights predicting the results of complex neutron scattering experiments by
performing statistical sampling calculations with a mechanical adding machine. As
analytically deriving the behavior of many neutrons seemed intractable, Fermi’s ability
to make accurate predictions astonished his colleagues.

Many problems in physics and statistics are complex and involve many variables. Nu-
merical methods that scale exponentially with the dimensionality of the problem will
not work at all. In contrast, Monte Carlo is usually simple and its 1/

√
S scaling of error

bars “independent of dimensionality” may be good enough. Even when more advanced
deterministic methods are available, Monte Carlo can be appropriate if today’s com-
puters can return useful answers with less implementation effort than more complex
methods.

1.3.1 Sampling from distributions

Just as finding a fair sample from a population is difficult in surveys, sampling correctly
from arbitrary probability distributions is also hard. ‘Simple’ Monte Carlo is only as
easy to implement as the random variate generator for the entire joint distribution
involved.

A graphical description of sampling from a probability distribution is given by fig-
ure 1.5a. Points are drawn uniformly from the unit area underneath the probability
density function and their corresponding value recorded. This correctly assigns each
element of the input space dx with probability p(x)dx.

The probability mass to the left of each point, u(x), is distributed as Uniform[0, 1].
To implement a sampler we can first draw u and then compute x(u) from the inverse
cumulative distribution. That is x(u) = Φ−1(u), where Φ(x) =

∫ x
−∞ p(x′) dx′. Now the

difficulty of sampling from distributions with this general method becomes apparent.
It is often infeasible to even normalize p, a single integral over the entire state space,
whereas Φ(x) is a whole continuum of such integrals.

Simple Monte Carlo 22

p(x)

x
x

(2)
x

(3)
x

(1)
x

(4)

(a) Direct sampling

coptq
∗(x)

p
∗(x)

c q
∗(x)

x
x

(1)

(xj , hj)

(xi, hi)

(b) Rejection sampling

Figure 1.5: Drawing samples from low-dimensional distributions. (a) Sample
locations can be taken from points drawn uniformly under the density curve.
(b) Rejection sampling provides a way to implement this. Samples are drawn
uniformly underneath a simpler curve cq∗(x) as in algorithm 1.1. Points above
p∗(x)∝ p(x) such as (xi, hi) are rejected. The remaining points come uniformly
from underneath p∗ and are valid samples from p. The constant c is chosen such
that cq∗ is always above p∗. The best setting is shown as copt, but finding this
value is not always possible.

While Φ−1 is tractable for some standard distributions, random number generators
must generally use less direct techniques. Rejection sampling is a method for drawing
samples from a distribution p(x) by using another distribution q(x) from which we can
already sample. The method requires an ability to evaluate the probability density
of points under both distributions up to a constant: p∗(x) ∝ p(x) and q∗(x) ∝ q(x).
Further we must be able to find a constant c such that cq∗(x)≥p∗(x).

Sampling underneath a p∗(x) ∝ p(x) curve gives the correct probability distribution.
We can sample under p∗(x) by drawing samples from the tractable q(x) distribution
and applying algorithm 1.1, figure 1.5b.

The more closely q matches p the lower the rejection rate can be made. Providing that
c is adjusted to maintain a valid bound, we can improve q after each step 5 of the
algorithm. Ideally q would be updated automatically as points from p are evaluated.
In general this could be difficult, but for log-concave distributions there are at least
two techniques (Gilks and Wild, 1992; Gilks, 1992).

For applications of rejection sampling to standard distributions and several more tech-
niques for non-uniform random variate generation see Devroye (1986).

Simple Monte Carlo 23

Algorithm 1.1 Rejection sampling
Inputs: target distribution p(x) ∝ p∗(x),

simple distribution q(x) ∝ q∗(x),
and number of samples S.

Outputs: {x(s)}Ss=1, samples from p(x)

1. Find a constant c such that cq∗(x) ≥ p∗(x) for all x
(ideally minimize c within the constraint)

2. for s = 1 . . . S

3. Draw candidate x ∼ q

4. Draw height h ∼ Uniform[0, cq∗(x)]

5. if (x, h) is below p∗, i.e., h < p∗(x), then x(s)←x else go to 3.

6. end for

1.3.2 Importance sampling

Computing p∗(x) and q∗(x), then throwing x away along with all the associated com-
putations seems wasteful. Yet discarding samples is a key part of rejection sampling’s
correct operation. Importance sampling avoids such rejections by rewriting the integral
as an expectation under any distribution q that has the same support as p:∫

f(x)p(x) dx =
∫

f(x)
p(x)
q(x)

q(x) dx, if q(x) > 0 wherever p(x) > 0

=
∫

f(x)w(x) q(x) dx, w(x) = p(x)/q(x)

≈ 1
S

S∑
s=1

f(x(s)) w(x(s)), x(s) ∼ q(x).

(1.12)

One interpretation is that the weights w(x(s)) make some samples from q more impor-
tant than others, rather than assigning harsh weights of zero and one as in rejection
sampling. The simplest view is that equation (1.12) is is just simple Monte Carlo in-
tegration of an expectation under q(x). We immediately know that the estimator is
unbiased and might obey a central limit theorem as before.

If q(x) is much smaller than p(x) in some regions of the state space then the effective
function f(x)p(x)/q(x) will have very high or even infinite variance under q(x). States
with extreme importance weights are rare events under q and might not be observed
within a moderate number of samples. This means that error bars based on the empiri-
cal variance of the importance weights can be very misleading. For a practical example
of this problem, along with the associated recommendation to use broad distributions
with heavy tails see MacKay (2003, section 29.2).

Interestingly the ideal q distribution is not equal to p. If f(x) is a positive function
then q(x) ∝ f(x)p(x) would give a zero variance estimator. This optimal distribution is

Markov chain Monte Carlo (MCMC) 24

unobtainable as evaluating q(x) requires the normalization Zq =
∫

f(x)p(x) dx, the tar-
get integral. But sometimes deliberate matches between q and p are useful in practice.
For example when interested in gathering statistics about the tails of p.

Nothing about the importance sampling trick in equation (1.12) actually requires the
original integral to be an expectation. We can divide and multiply any integrand by a
convenient distribution to make it an expectation. Thus importance sampling allows
any integral to be approximated by Monte Carlo. As most of the integrals in dominant
applications are expectations, we still maintain p(x) in the equations throughout.

Evaluating the importance weights w(x) requires evaluating p(x) = p∗(x)/Zp, but of-
ten Zp is unknown. In these cases the normalizing constant must be approximated
separately as follows:

Zp

Zq
=

1
Zq

∫
p∗(x) dx =

∫
p∗(x)
q∗(x)

q(x) dx

=
∫

w∗(x) q(x) dx, w∗(x) = p∗(x)/q∗(x)

≈ 1
S

S∑
s=1

w∗(x(s)), x(s) ∼ q(x)

(1.13)

This gives an approximation for the importance weights

w(x) =
p(x)
q(x)

=
Zq

Zp

p∗(x)
q∗(x)

≈ w∗(x)
1
S

∑S
s=1 w∗(x(s))

,

(1.14)

which can be used within equation (1.12). The resulting estimator is biased but con-
sistent when both estimators (1.12) and (1.13) have bounded variance.

1.4 Markov chain Monte Carlo (MCMC)

Both rejection sampling and importance sampling require a tractable surrogate distri-
bution q(x). Neither method will perform well if maxx p(x)/q(x) is large: rejection
sampling will rarely return samples and importance sampling will have large variance.
Markov chain Monte Carlo methods can be used to sample from p(x) distributions
that are complex and have unknown normalization. This is achieved by relaxing the
requirement that the samples should be independent.

A Markov chain generates a correlated sequence of states. Each step in the sequence
is drawn from a transition operator T (x′← x), which gives the probability of moving
from state x to state x′. According to the Markov property, the transition probabilities
depend only on the current state, x. In particular, any free parameters σ, e.g. step

Markov chain Monte Carlo (MCMC) 25

sizes, in a family of transition operators, T (x′←x;σ), cannot be chosen based on the
history of the chain.

A basic requirement for T is that given a sample from p(x), the marginal distribution
over the next state in the chain is also the target distribution of interest p:

p(x′) =
∑

x

T (x′←x) p(x) for all x′. (1.15)

By induction all subsequent steps of the chain will have the same marginal distribution.
The transition operator is said to leave the target distribution p stationary. MCMC
algorithms often require operators that ensure the marginal distribution over a state
of the chain tends to p(x) regardless of starting state. This requires irreducibility : the
ability to reach any x where p(x) > 0 in a finite number of steps, and aperiodicity :
no states are only accessible at certain regularly spaced times. For more details see
Tierney (1994). For now we note that as long as a T satisfies equation (1.15) it can be
useful as the other conditions can be met through combinations with other operators.

Given that p(x) is a complicated distribution, it might seem unreasonable to expect
that we could find a transition operator T leaving it stationary. However, it is often
easy to construct a transition operator satisfying detailed balance:

T (x′←x) p(x) = T (x←x′) p(x′) for all x, x′. (1.16)

This states that a step starting at equilibrium and transitioning under T has the same
probability “forwards” x→ x′ or “backwards” x′→ x. Proving detailed balance only
requires considering each pair of states in isolation, there is no sum over all states
as in equation (1.15). Having shown equation (1.16), summing over x on both sides
immediately recovers the stationary distribution requirement (1.15). Thus detailed
balance is a useful property for deriving many MCMC methods; however it is not always
required or even desirable. Chapter 3 introduces some MCMC transition operators that
do not satisfy equation (1.16).

Given any transition operator T satisfying the stationary condition, equation (1.15),
we can construct a reverse operator T̃ defined by

T̃ (x←x′) ∝ T (x′←x) p(x) =
T (x′←x) p(x)∑
x T (x′←x) p(x)

=
T (x′←x) p(x)

p(x′)
. (1.17)

A symmetric form of this relationship shows that an operator satisfying detailed balance
is its own reverse transition operator:

T (x′←x) p(x) = T̃ (x←x′) p(x′) for all x, x′. (1.18)

Summing over x or x′ reveals that this mutual reversibility condition implies that the
stationary condition, equation (1.15), holds for both T and T̃ . Therefore constructing

Choice of method 26

a pair of mutually reversible transition distributions is an alternative strategy for con-
structing MCMC operators. Detailed balance is a restricted case where a transition
operator must be its own reverse operator.

1.5 Choice of method

In this introduction we described the importance of high-dimensional probability dis-
tributions. Samples from these distributions capture their typical properties, which is
the basis of the Monte Carlo estimation of expectations such as

∫
f(x)p(x) dx. We

assume or hope that extreme values under p(x) do not form a significant contribution
to the integral. For expectations in many physical and statistical applications this is a
reasonable assumption.

In high-dimensional problems sampling from an interesting target distribution p(x)
is often intractable. Methods such as rejection sampling fail because finding a close-
matching simple distribution q(x) is not possible. For the same reason importance
sampling estimators tend to have very high variance.

We described rejection sampling as it remains an important method when i.i.d. samples
from low-dimensional distributions are required. This occurs in some simulation work,
and as part of some MCMC methods. Similarly while simple importance sampling
has problems in high dimensions, it provides the basis of more advanced methods that
are useful on some high-dimensional problems. We neglect much of the importance
sampling literature, but will study some methods relating to Markov chains.

The focus of this thesis are methods that use Markov chains. These allow us to draw
(correlated) samples from complex distributions and to perform Monte Carlo integra-
tion in high-dimensional problems. The next chapter reviews several important algo-
rithms based on Markov chains together with some new contributions. After this we
will be in a position to outline the remainder of the thesis.

Chapter 2

Markov chain Monte Carlo

This chapter reviews some important Markov chain Monte Carlo (MCMC) algorithms.
Much of this material is standard and could be skipped by those already familiar with
the literature. However, some of the material in this chapter is, to the best of our
knowledge, novel. These contributions include generalizations of tempered transitions
in subsection 2.5.4 and the introduction of a slice-sampling version of the two stage
acceptance rule (see sections 2.1.3 and 2.4.2). We also present some results in an
unconventional way, which is designed to help with reading later chapters.

2.1 Metropolis methods

Algorithm 2.1 gives a procedure for simulating a Markov chain with stationary distri-
bution p(x) due to Hastings (1970).

Algorithm 2.1 Metropolis–Hastings
Input: initial setting x, number of iterations S

1. for s = 1 . . . S

2. Propose x′ ∼ q(x′←x)

3. Compute a =
p(x′) q(x←x′)
p(x) q(x′←x)

4. Set x = x′ with probability min(1, a), e.g.
(a) Draw r ∼ Uniform[0, 1]
(b) if (r < a) then set x←x′.

5. end for

The setting of x at the end of each iteration is considered as a sample from the target
probability distribution p(x). Adjacent samples are identical when the state is not
updated in step 4b), but every iteration must be recorded as part of the Markov chain.

Metropolis methods 28

It is straightforward to show that the Metropolis–Hastings algorithm satisfies detailed
balance:

T (x′←x) p(x) = min
(

1,
p(x′) q(x←x′)
p(x) q(x′←x)

)
q(x′←x) p(x)

= min
(
p(x) q(x′←x), p(x′) q(x←x′)

)
= min

(
1,

p(x) q(x′←x)
p(x′) q(x←x′)

)
q(x←x′) p(x′)

= T (x←x′) p(x′), as required.

(2.1)

Here the probability for a forwards transition x→ x′ was manipulated into the prob-
ability of the reverse transition x′→x. However it would have been sufficient to stop
after the second line and note that the expression is symmetric in x and x′.

The algorithm is valid for any proposal distribution q. Ideal proposals would be
constructed for rapid exploration of the distribution of interest p. We could write
q(x′←x;D) to emphasize choices of proposal that are based on observed data D. Us-
ing any fixed D is valid, but q cannot be based on the past history of the sampler as
such a chain would not be “Markov”.

Often proposals are not complicated data-based distributions. Simple perturbations
such as a Gaussian with mean x are commonly chosen. The accept/reject step 4. in
the algorithm, corrects for the mismatch between the proposal and target distributions.
When the proposal distribution is symmetric, i.e. q(x← x′) = q(x′← x) for all x, x′,
the acceptance ratio in step 3. simplifies to a ratio under the distribution of interest,
a = p(x′)/p(x). This is the original Metropolis algorithm (Metropolis et al., 1953).
Some authors, e.g. MacKay (2003), prefer to drop such distinctions and simply refer to
all Metropolis–Hastings algorithms as Metropolis methods. The next section suggests
another justification of this view.

2.1.1 Generality of Metropolis–Hastings

Consider a MCMC algorithm that proposes a state from a distribution q(x′←x) and
accepts with probability pa(x′←x). Restricting attention to transition operators sat-
isfying detailed balance,

pa(x′←x)q(x′←x) p(x) = pa(x←x′)q(x←x′) p(x′), for all x, x′, (2.2)

gives an equality constraint. We also have inequalities that must hold for probabilities:

0 ≤ pa(x′←x) ≤ 1 and 0 ≤ pa(x←x′) ≤ 1. (2.3)

Optimizing the average acceptance probability p(x)pa(x′← x)+p(x′)pa(x← x′) with
respect to a(x′←x) and a(x←x′) must saturate one or more of the inequalities (2.3), a

Metropolis methods 29

well known property of linear programming problems. Therefore, either pa(x′←x)=1
or pa(x←x′)=1 and pa(x′←x) is given by equation (2.2). This gives the Metropolis–
Hastings acceptance rule,

pa(x′←x) = min
(

1,
p(x′)q(x←x′)
p(x)q(x′←x)

)
. (2.4)

According to the constraint of equation (2.2), a pair of valid acceptance probabilities
must have the same ratio pa(x′ ← x)/pa(x← x′) as any other valid pair. Therefore
they can be obtained by multiplying the Metropolis–Hastings probabilities by a con-
stant less than one. This corresponds to mixing in some fraction of the “do nothing”
transition operator, which leaves the chain in the current state, at those two sites. It
also corresponds to adjusting the proposal distribution q to suggest staying still more
often. Staying still more often harms the asymptotic variance of the chain: in this sense
(although not by all measures) using equation (2.4) is optimal (Peskun, 1973).

Given this result it is unsurprising that Metropolis–Hastings has become almost syn-
onymous with MCMC. It is tempting to conclude that the only way to improve Markov
chains for Monte Carlo is by researching domain-specific proposal distributions such as
in the vision community’s “Data-driven MCMC” (Tu and Zhu, 2002). In fact a rich
variety of more generic MCMC-based algorithms exist and continue to be developed.
Many of these do satisfy detailed balance, but the corresponding M–H q(x′←x) distri-
bution is often defined implicitly and would not be a natural description of the method.

To illustrate the limitations of claiming “all (reversible) MCMC is just Metropolis–
Hastings” we show that “all (reversible) MCMC is just Metropolis”. This also demon-
strates a methodology used throughout the thesis. We construct a new target distribu-
tion p̈(x, x′)=q(x′←x) p(x), i.e. the joint distribution over a point x∼p and a point x′

proposed from that location. The marginal distribution over x is the original target p.
Now consider the symmetric Metropolis proposal that swaps the values of x and x′

such that putatively x′ comes from p and x was proposed from it. The Metropolis
acceptance probability for this swap proposal is

min
(

1,
p̈(x′, x)
p̈(x, x′)

)
= min

(
1,

p(x′) q(x←x′)
p(x) q(x′←x)

)
, (2.5)

i.e., the Metropolis–Hastings acceptance probability. In this sense only an algorithm
with symmetric proposals is needed. But this is not a very natural description of the
Metropolis–Hastings algorithm. Similarly, while it is possible to describe all algorithms
satisfying detailed balance as Metropolis or Metropolis–Hastings algorithms, other de-
scriptions may be more natural. However, we will find constructing joint distributions
like p̈(x, x′) a useful theoretical tool and one that suggests new Markov chain operators.

Metropolis methods 30

2.1.2 Gibbs sampling

Gibbs sampling (Geman and Geman, 1984) resamples each dimension xi of a mul-
tivariate quantity x from their conditional distributions p(xi|xj 6=i). Any individual
update maintains detailed balance, which is easily checked directly. Alternatively we
can write the Gibbs sampling update as a Metropolis–Hastings proposal: q(x′←x) =
p(x′i|xj 6=i)I(x′{j 6=i}= x{j 6=i}), where I is an indicator function ensuring all components
other than xi stay fixed. The acceptance probability for this proposal is identical to
one, so need not be checked.

Gibbs sampling is often easy to implement. If the target distribution is discrete and
each variable takes on a small number of settings then the conditional distributions can
be explicitly computed,

p(xi|xj 6=i) ∝ p(xi,xj 6=i) =
p(xi,xj 6=i)∑
x′i

p(x′i,xj 6=i)
. (2.6)

On continuous problems the one-dimensional conditional distributions are usually
amenable to standard sampling methods as mentioned in subsection 1.3.1.

A desirable feature of Gibbs sampling is that it has no free parameters and so can be
applied fairly automatically. Indeed the BUGS packages can create Gibbs samplers for
a large variety of models specified using a simple description language (Spiegelhalter
et al., 1996). There are actually some free choices regarding how the variables are
updated. “Block-Gibbs” sampling chooses groups of variables to update at once. Also,
continuous distributions can be re-parameterized before Gibbs sampling — a basis in
which the dimensions are independent would obviously be particularly effective.

Clifford et al. (1993) contains several interesting discussions regarding the nature and
history of the Gibbs sampler. The method has often been regarded with a rather
undeserved special status amongst MCMC methods. It is just one of many ways to
construct a Markov chain with a target stationary distribution. In particular there is no
need to approximate Gibbs sampling when sampling from conditionals is not tractable
as in (Ritter and Tanner, 1992). Metropolis–Hastings updates of each dimension can
be used instead, and there is no need to call this method Metropolis-within-Gibbs.

2.1.3 A two stage acceptance rule

If the target distribution is factored into two terms, for example a prior and likelihood
p(x)∝π(x)L(x), a proposal can be accepted with probability

pa = min
(

1,
q(x←x′)π(x′)
q(x′←x)π(x)

)
min

(
1,

L(x′)
L(x)

)
. (2.7)

Construction of estimators 31

Straightforward checking shows that this satisfies detailed balance. We know from
previous discussions that it will accept less often than standard Metropolis–Hastings
and is inferior according to Peskun (1973), but computationally it can be more efficient.
Algorithm 2.2 is an acceptance rule that will accept proposals with probability pa. If
π(x′) is able to veto an a priori unreasonable proposal then L(x′) need not be computed.
Factoring out a cheap “sanity-check” distribution π(x) may be worth a fall in acceptance
rate in problems where likelihood evaluations are expensive.

Algorithm 2.2 A two stage acceptance rule
Input: initial setting x, proposed setting x′

1. Draw r1 ∼ Uniform[0, 1]

2. if r1 <
q(x←x′)π(x′)
q(x′←x)π(x)

3. Draw r2 ∼ Uniform[0, 1]

4. if r2 <
L(x′)
L(x)

Accept else Reject

5. else
6. Reject

As with standard Metropolis–Hastings none of the probabilities need to be computed
exactly. Bounding them sufficiently to make the accept/reject decision in step 2. or 4. is
all that is required. In practice few Monte Carlo codes implement the required interval
arithmetic to make these savings. In contrast the two stage procedure is generally
applicable and easy to implement.

Algorithm 2.2 is a special case of the “surrogate transitions method” (Liu, 2001,
pp. 194–195) and also the (different) algorithm of Christen and Fox (2005). The two-
stage method here is also equivalent to Dostert et al. (2006, Algorithm II), which
presented it in the context of a particular choice for q(x′← x). This literature has a
rich variety of possible approximate distributions that can be used for π(x) in particular
applications. In a statistical application where p(x) depends on a data set a general
choice would be to use a subset of the data to define π(x).

An obvious generalization is splitting the acceptance rule into more than two terms.
Factoring the distribution into many terms could make the acceptance rate fall dra-
matically, so there would need to be a specific computational benefit.

2.2 Construction of estimators

The output of an MCMC algorithm is a set of correlated samples drawn from a joint
distribution P ({x(s)}). At equilibrium every marginal p(x(s)) is the correct distribu-
tion of interest. Using these equilibrium samples in the straightforward Monte Carlo

Construction of estimators 32

estimator would be unbiased,

EP ({x(s)})

[
1
S

S∑
s=1

f(x(s))

]
=
∑
{x(s)}

P ({x(s)}) 1
S

S∑
s=1

f(x(s))

=
1
S

S∑
s=1

∑
x(s)

f(x(s))
∑

{x(s′)}s′ 6=s

P ({x(s)})

=
1
S

S∑
s=1

∑
x(s)

f(x(s))p(x(s)) = Ep[f] .

(2.8)

The states drawn from a Markov chain started at an arbitrary position will not have
the correct marginal distribution. Asymptotically equation (2.8) is still an unbiased
estimator under weak conditions, but in practice it is advisable to discard some initial
states allowing the chain to “burn-in”. After this, there is no need to remove intermedi-
ate samples in an attempt to obtain a set of approximately independent samples. Such
“thinning” will only make the variance of the estimator worse (Geyer, 1992). However,
thinning can be justified when adjacent steps are highly correlated or when computing
f(x) is costly. Then discarding some samples can save computer time that is better
spent running the Markov chain for longer.

A related issue is whether it is better to run one long Markov chain, or perhaps to
obtain independent points more quickly by trying many initializations. Geyer (1992)
also shows that theoretically a longer chain is to be preferred. Intuitively an arbitrary
initialization is bad as it introduces bias, which takes time to remove. It turns out this
time is better spent evolving an existing chain to new locations.

Despite the theory favoring running a single chain we tend to prefer running a few rather
than one. When more than one computer processor is available this is the easiest way to
“parallelize” our code. Although agreement amongst multiple chains does not provide a
guarantee that the Markov chains are mixing, differing results would reveal a failure to
mix that might go unnoticed from a single chain. Finally, multiple chains are useful for
adapting step-sizes in Metropolis methods and turn up naturally in population methods
(chapter 3).

2.2.1 Conditional estimators (“Rao-Blackwellization”)

Using a sample average of function values is not the only way to construct MCMC
estimators. It is an attractive default procedure as the estimator only needs to know
f(x) evaluated at the samples. However, it is sometimes possible to perform some
computations involving f(x) analytically. A simple identity lets us use this analytical
knowledge: ∑

x

f(x)p(x) =
∑

h

[∑
x

f(x)p(x|h)

]
p(h), (2.9)

Construction of estimators 33

where h is an arbitrary statistic. If we can sum over the distribution conditioned on h,
then the bracketed term evaluated under samples of h can be used as an estimator. A
special case provides more concrete motivation:

∑
x

f(xi)p(x) =
∑

x{j 6=i}

[∑
xi

f(xi)p(xi|x{j 6=i})

]
p(x{j 6=i})

= Ep(x{j 6=i})

[
Ep(xi|x{j 6=i})[f(xi)]

]
.

(2.10)

Here we are interested in a function of a particular variable xi. Sums over a single
variable are often tractable. The identity allows averaging Ep(xi|x{j 6=i})[f(xi)] under
Monte Carlo samples, rather than f(x) itself. As an example consider finding the
marginal of a binary variable: xi ∈ {0, 1}, f(xi)=xi. The standard estimator throws
away x{j 6=i} and averages the xi samples, a sequence of zeros and ones. The new
estimator throws away the observed xi values(!), but does use x{j 6=i}. The resulting
average of real numbers between zero and one can be much better behaved. If xi is
(nearly) independent of the other variables the new estimator gives (nearly) the correct
answer from one sample, whereas the standard estimator is always noisy.

Does the conditioning trick improve variances in general? Without loss of generality
we assume that the function of interest has zero mean. Under this assumption the
variance of the estimator that conditions on a statistic h becomes

varp(h)

[
Ep(x|h)[f(x)]

]
=
∑

h

p(h)

[∑
x

p(x|h)f(x)

]2

≤
∑

h

p(h)
∑

x

p(x|h)f(x)2 =
∑

x

p(x)f(x)2.
(2.11)

where the bound is an application of Jensen’s inequality using the convexity of the
square function. The final equality from summing out h means that

varp(h)

[
Ep(x|h)[f(x)]

]
≤ varp(x)[f(x)] , (2.12)

the variance of the conditional estimator is never worse than the standard Monte Carlo
estimator. This result applies under independent sampling from p(x), unfortunately
the result does not hold in general for correlated MCMC samples (Liu et al., 1994).

Even if the variance is improved, we don’t generally know when a conditional estimator
will be computationally more efficient than the straightforward Monte Carlo estimator.
As an extreme example h(x)=x gives an “estimator” with zero variance, because the
target expectation is computed exactly. Clearly the cost of computing the conditional
expectation must be considered.

The use of equation (2.10) was suggested by Gelfand and Smith (1990), an influential
paper that popularized Gibbs sampling in the statistics community. Their motivation

Construction of estimators 34

was essentially equation (2.11), cited as a version of the Rao-Blackwell theorem. The
bound’s requirement of independent samples was satisfied because the paper proposed
running many independent Gibbs sampling runs. As this practice has fallen out of favor,
it seems misleading to continue to call the method “Rao-Blackwellization”, although
some of the literature continues to do so. Despite the lack of Rao-Blackwell guarantees
the estimator can often be justified empirically, as was done earlier by at least Pearl
(1987).

2.2.2 Waste recycling

The Metropolis–Hastings algorithm has the undesirable property that for many pro-
posal distributions a large fraction of proposed states are rejected from the final set of
samples. As computations involving these rejected points were performed it seems a
shame not to use this information in Monte Carlo estimators. The same observation
followed our description of rejection sampling, for which the solution was to use the
same proposal distribution in importance sampling. M–H proposal distributions are
generally local in nature and unsuitable as importance sampling proposals. Waste re-
cycling is a framework for constructing better estimators using the importance ratios
computed while running MCMC.

A simple way to understand how to perform waste-recycling is to augment the station-
ary distribution over the current state x and the next proposal x′ with an auxiliary
variable x̂. We declare that x̂ was generated by copying one of x and x′:

p(x̂|x, x′) =

min
(
1, p(x′) q(x←x′)

p(x) q(x′←x)

)
x̂ = x′

1−min
(
1, p(x′) q(x←x′)

p(x) q(x′←x)

)
x̂ = x .

(2.13)

Alternatively any other rule that gives x̂ the same stationary distribution as x can be
used. Now we could use draws of x̂ for estimators instead of x. We can also average
estimators under the conditional distribution of x̂ given x and x′:

Ep(x)[f(x)] = Eq(x′←x)p(x)

 ∑
x̂∈{x,x′}

f(x̂) p(x̂|x, x′)

= f(x) +

(
f(x′)−f(x)

)
min

(
1,

p(x′) q(x←x′)
p(x) q(x′←x)

)
.

(2.14)

This is just the conditional estimator, equation (2.10) from the previous section, applied
to the auxiliary distribution p(x, x′, x̂)=p(x̂|x, x′)q(x′←x)p(x).

We hesitate to assign credit for this estimator to any particular author. It, or closely
related estimators can be found in various independent sources, including at least Ka-
los and Whitlock (1986), Tjelmeland (2004) and Frenkel (2004). Waste-recycling is not
necessarily better than the straightforward estimator, let alone worth the computa-

Convergence 35

Q

P

L

(a) Slow diffusion (b) Burn-in and mode finding

0 a A

p1

p2

(c) Balancing density and volume

Figure 2.1: Challenges for Markov chain exploration.

tional expense. However, there is empirical evidence that it can be useful, dramatically
so in the case of Frenkel (2004). Casella and Robert (1996) also derived a “Rao-
Blackwellized” estimator for using all the points drawn by the Metropolis algorithm.
However their algorithm has an O(S2) cost in the number of steps of the Markov chain
and, unsurprisingly, has not been widely adopted.

2.3 Convergence

No review of Markov chains would be complete without discussing their convergence
properties. If the simulation is initialized at an arbitrary starting location, how long
must we wait before we can treat the chain’s states as samples from the stationary
distribution?

Often Metropolis proposals have a local nature; the typical step-size σ is limited by a
need to maintain a reasonable acceptance rate. The amount of time it takes to explore
a distance of length L by a diffusive random walk scales like (L/σ)2 (figure 2.1a). This
offers a rule of thumb to understand sampling within a mode.

An arbitrarily chosen initial state is usually very improbable under the target distri-
bution. Reaching a mode in high dimensions can take a long time with sophisticated
optimizers, let alone a Markov chain simulation. Analyzing the chain can identify when
the statistics of the sampler settle down, allowing the initial exploratory phase to be
discarded. Such diagnostics could be severely misleading if there are multiple modes
as in figure 2.1b. In general applications there is no way of knowing if a Markov chain
has yet to find the most important regions of a probability distribution.

There are also more subtle problems with convergence that do not relate to finding
modes or step sizes. Figure 2.1c illustrates a distribution with a pillar at 0 < x < a.
Points within this mode have higher probability density than any state within the
shaded plateau a < x < A. But given the large size of the plateau, few proposals will
suggest moving to the pillar. Initializing the chain within the pillar using an optimizer
would not help. Here p2 = 1/(2a) and p1 = 1/(2(A − a)), the pillar and plateau have

Auxiliary variable methods 36

equal probability mass, yet only a small fraction of proposals from the pillar to the
plateau can be accepted — the acceptance rate is a/(A−a) for symmetric proposals.
A proposal distribution that knew the probability masses involved (e.g. i.i.d. sampling
q(x′ ← x) = p(x′)) would move rapidly between the modes; but this would involve
already having the knowledge that MCMC is being used to discover.

There is a theoretical literature on Markov chain convergence. But for general statistical
problems it is difficult to prove much about the validity of any particular MCMC result.
In later chapters we make occasional use of a standard diagnostic tool to compare the
convergence properties of chains. But in general we would also run the sampling code on
a cut-down version of the problem where exact results are available or simple importance
sampling will work. In inference problems it is a good idea to check that a sampler
is consistent with ground truth when learning from synthetic data generated from the
prior model. Geweke (2004)’s method for “getting it right” is a more advanced way
to check consistency between samplers for the prior and posterior. Such diagnostics
are also a guard against errors in the software implementation, a possibility considered
seriously even by experts (Kass et al., 1998).

2.4 Auxiliary variable methods

As emphasized in the introduction, Monte Carlo is usually best avoided when possible.
In tractable problems computations based on analytical solutions will usually be far
more efficient. One would think this means we should analytically marginalize out
variables wherever possible.

Auxiliary variable methods turn this thinking on its head. Given a target distribution
p(x), we introduce auxiliary variables z such that p(x) =

∫
p(x, z) dz. We could just

sample from p(x), corresponding to analytically integrating out z from p(x, z). Instead,
auxiliary variable methods instantiate the auxiliary variables in a Markov chain that
explores the joint distribution. Surprisingly, this can result in a better Monte Carlo
method.

An alternative way of introducing extra variables is to make the target distribution a
conditional of a joint distribution p(x) = p(x|β = 1). The whole p(x, β) distribution is
explored, but only samples where β=1 are retained. This seemingly wasteful procedure
can also yield better Monte Carlo estimates. An example is simulated tempering,
discussed later in subsection 2.5.1.

2.4.1 Swendsen–Wang

The Swendsen–Wang algorithm (Swendsen and Wang, 1987) is a highly effective algo-
rithm for sampling Potts models (subsection 1.1.3) with a small number of colors q. The

Auxiliary variable methods 37

algorithm is important in its own right (we use it in chapters 4 and 5) and as a signif-
icant development in auxiliary variable methods. Edwards and Sokal (1988) provided
a scheme for constructing similar auxiliary variable methods for a wider class of mod-
els. They also identified the “Fortuin-Kasteleyn-Swendsen-Wang” (FKSW) auxiliary
variable joint distribution that underlies the algorithm.

The FKSW joint distribution is over the original Potts color variables s= {si} on the
nodes of a graph and binary bond variables d={dij ∈ {0, 1}} present on each edge:

p(s,d) =
1

ZP(J, q)

∏
(ij)∈E

[
(1− pij)δdij ,0 + pijδdij ,1δsi,sj

]
, pij ≡ (1− e−Jij). (2.15)

As long as all couplings Jij are positive the marginal distribution over s is the Potts
distribution, equation (1.4). The marginal distribution over the bonds is the random
cluster model of Fortuin and Kasteleyn (1972):

p(d) =
1

ZP(J, q)

∏
(ij)∈E

p
dij

ij (1− pij)1−dijqC(d), (2.16)

where C(d) is the number of connected components in a graph with edges wherever
dij =1.

The algorithm of Swendsen and Wang (1987) performs block Gibbs sampling on the
joint model by alternately sampling from P (d|s) and P (s|d). This also allows a sample
from any of the three distributions — Potts p(s), random cluster p(d), or FKSW p(s,d)
— to be converted into a sample from one of the others. The algorithm is illustrated
in figure 2.2. While implementing Swendsen–Wang, we were grateful for the efficient
percolation code available in Newman and Ziff (2001).

It is commonly stated that Swendsen–Wang only allows positive Jij couplings, as pre-
sented here. In fact Swendsen and Wang described the extension to negative bonds,
which also follows easily from Edwards and Sokal’s generalization. The resulting algo-
rithm only forms bonds between edges where Jij <0 if the adjacent sites have different
colors. Colors joined by these negative bonds must remain different when choosing a
new coloring. For binary systems two colorings of a cluster are possible: the previous
coloring and its inverse. When there are many strong negative interactions the entire
system gets locked into one of two configurations, whereas many configurations are
probable. Swendsen–Wang can still be very useful when only some connections have
negative weights: Stern et al. (2005) provide a nice example in the context of modeling
the game of Go. For a wider view of related methods in the context of spatial statistics
see Besag and Green (1993).

Auxiliary variable methods 38

(a) Potts state (b) FKSW state

(c) Random cluster state (d) New FKSW state

Figure 2.2: The Swendsen–Wang algorithm. (a) As an example we run the
algorithm on a binary Potts model on a square lattice. (b) Under the FKSW
conditional p(d|s) bonds are placed down with probability pij =1 − e1−Jij wher-
ever adjacent sites have the same color. (c) Discarding the colors gives a sample
from the random cluster model. (d) Sampling from p(s|d) involves assigning each
connected component or “cluster” a new color uniformly at random, giving a new
FKSW state. Discarding the bonds gives a new setting of the Potts model. This
coloring is dramatically different from the previous one. In contrast a sweep of
single-site Gibbs sampling can only diffuse the boundaries of the red and blue
regions by roughly the width of a single site.

Auxiliary variable methods 39

x

h

(x, h)

(a)

x

h

(x, h)

(b)

x

h

(x, h)

(c)

x

h

(x, h)

P
∗(x)

(d)

x

h

(x, h)

P
∗(x)

(e)

Figure 2.3: Slice sampling. (a)–(c) show a procedure for unimodal distributions:
after sampling h from its conditional distribution an interval is found enclosing the
region where H(x)>h. Samples are drawn uniformly from this interval until one
underneath the curve is found. Points outside the curve can be used to shrink the
interval, this is an adaptive rejection sampling method. (d) Sampling uniformly
from the slice is difficult for multi-modal distributions. (e) One valid procedure
uses an initial bracket of width σ that encloses x but is centered uniformly at
random. This bracket is extended in increments of σ until it sticks outside the
curve at both ends. This can cut off regions of the slice, but applying the previous
adaptive rejection sampling procedure still leaves the uniform distribution on the
slice invariant.

2.4.2 Slice Sampling

All Metropolis methods make use of a proposal distribution q(x′← x). In continuous
spaces such distributions have step-size parameters that have to be set well. Almost
all proposals are rejected if step-sizes are too large; overly small step-sizes lead to slow
diffusive exploration of the target distribution. In contrast, a self-tuning method, which
has less-important or even no step-size parameters would be preferable.

Slice sampling (Neal, 1997, 2003) is a method with one auxiliary variable that fits into
the framework of Edwards and Sokal (1988). The auxiliary variable does not directly
help mixing but allows the use of relatively easy-to-implement algorithms that allow
self-tuning while generating a valid Markov chain. Like Gibbs sampling a slice sampling
chain has no rejections: it always moves when sampling a continuous distribution. Slice
sampling works by stepping back to the view of figure 1.5a: sampling involves drawing
points uniformly underneath a curve H(x) = p∗(x). Rather than drawing points i.i.d.
as in rejection sampling, a Markov chain explores this uniform distribution over the
original variables x and a height variable 0<h<H(x).

Slice sampling algorithms alternate between updating h and one or more of the orig-
inal variables. The height has a simple conditional distribution from which it can be
resampled, h∼Uniform[0,H(x)]. Conditioned on h the stationary distribution over x

is uniform over the ‘slice’ that lies under the curve: H(x)≥h. When the distribution is

Auxiliary variable methods 40

unimodal this conditional can be sampled by rejection sampling, see figure 2.3(a)–(c).

More generally we use transition operators that leave a uniform distribution on the slice
stationary. One of the operators introduced by Neal is briefly explained in figure 2.3e.
Like most Metropolis methods it uses a step-size parameter σ, which would ideally
match the length-scale of the problem, L. When σ�L the initial search region shrinks
exponentially. When σ�L the search region requires O(L/σ) computations to grow
out. This is much better than the O(L/σ2) steps required by Metropolis to explore the
region by a random walk.

Neal also provides a slice sampling operator that can expand its search region exponen-
tially quickly. Skilling and MacKay (2003) provide a version with no step-size: it starts
with a large search region, which shrinks with a fast exponent. Both of these operators
are slightly harder to implement than the simple version sketched in figure 2.3.

We now propose a simple, we believe novel, method that can shrink slice sampling’s
search region more efficiently. The method is a generalization of subsection 2.1.3,
where we factored the target density into p(x)∝π(x)L(x). Here we also introduce two
auxiliary variables: p(h1|x)=Uniform[0, π(x)] and p(h2|x)=Uniform[0, L(x)]. The new
method follows any of the standard slice sampling algorithms, but defines the slice by
requiring both π(x)≥h1 and L(x)≥h2.

This version of slice sampling still satisfies detailed balance with respect to the sta-
tionary distribution p(x). We first identify all of the quantities involved in the slice
sampling procedure. The algorithm starts with a point x ∼ p(x). Then two auxiliary
variables h1, h2 are generated. The search procedure, e.g. figure 2.3e, will create an
interval around x and possibly some unacceptable points and adaptations of the inter-
val. We collectively refer to all of the intermediate intervals and rejected points as S.
Finally an acceptable point x′ is found and adopted. The joint probability of all of
these quantities is:

T (x′, S, h1, h2←x) · p(x) = 1/π(x)︸ ︷︷ ︸
p(h1|x)

1/L(x)︸ ︷︷ ︸
p(h2|x)

p(S|h1, h2, x)p(x′|S, h1, h2, x) · π(x)L(x)
Z

= p(S|h1, h2, x)p(x′|S, h1, h2, x)/Z.

(2.17)

All of the standard slice-sampling procedures are designed to ensure that x′ is only
accepted as the final point if this expression is symmetric in x and x′. Therefore,
T (x′, S, h1, h2←x) · p(x) = T (x, S, h1, h2←x′) · p(x′). Summing this expression over S,
h1 and h2 shows that the operator satisfies detailed balance.

Multiple auxiliary variables sometimes allow very fast mixing, as in Swendsen–Wang.
However, in this context the slice defined by the two auxiliary variables h1 and h2 will
typically be smaller than under standard slice sampling. This is likely to increase the
mixing time of the chain. Neal warns about this problem with reference to Damien
et al. (1999). Our motivation is computational: π >h1 can be checked first, and only

Auxiliary variable methods 41

if it satisfies the slice constraint need L > h2 be checked. Thus schemes that start
with a large range and rapidly shrink a bracket around the slice can do so with less
computation if π(x) can reject some unreasonable points while being cheap to compute.

2.4.3 Hamiltonian Monte Carlo

Physical simulations often work by discretizing time and approximately computing the
result of following the Hamiltonian dynamics of the system being modeled. These
dynamics exploit gradients of a target stationary probability density, not just point-
wise evaluations as in the Metropolis algorithm. Theoretically, gradients only ever
cost a constant multiple of the computer time needed to evaluate a function (Bischof
and Bücker, 2000), and are a much richer source of information. The difficulty with
simulation work is that inaccuracies accumulate rapidly unless time is discretized very
finely, which has a large computational cost.

The Metropolis algorithm targets only an equilibrium distribution over states. The
method doesn’t need this distribution to be the result of an underlying dynamical sys-
tem. Instead the algorithm evolves according to a proposal distribution. The progress
of the Metropolis algorithm often resembles a diffusive random walk. In contrast a par-
ticle evolving under Hamiltonian dynamics will naturally move in persistent trajectories
across its state-space.

These two areas of physical simulation research were combined in Hybrid Monte Carlo
(Duane et al., 1987). Hamiltonian dynamics are simulated approximately as a Metropo-
lis proposal, which is accepted or rejected. This allows persistent, rapid motion across
a state space without damaging the equilibrium distribution of the chain through dis-
cretization errors. If the target probability distribution does not correspond to a Hamil-
tonian system then auxiliary variables are introduced to create a fictitious system that
can be simulated.

While Hamiltonian dynamics is time reversible, some care is required to ensure the
discretized version is also reversible. Neal (1993) reviews a variety of Hamiltonian based
Monte Carlo methods. See MacKay (2003) for another review with simple example
code.

Hybrid Monte Carlo crossed into a statistical setting through work on Bayesian neural
networks (Neal, 1992, 1996b), where it is extremely successful. Hamiltonian Monte
Carlo methods continue to appear in recent work, especially in Gaussian process mod-
eling, although they could be adopted more widely.

Annealing methods 42

2.5 Annealing methods

Simulated annealing (Kirkpatrick et al., 1983) is a heuristic for minimizing a cost func-
tion E(x) with isolated local optima. The Metropolis algorithm is run on a probability
distribution derived from the “energy” E,

pk(x) =
p∗k(x)
Z(βk)

=
1

Z(βk)
π(x)e−βkE(x)

.
(2.18)

A base measure π(x) is often omitted (set to uniform), but including this term ensures
pk is defined when β=0. Initially the inverse temperature βk is set very low so that the
distribution is diffuse. The distribution is then slowly ‘cooled’ by increasing βk towards
infinity. Eventually all of the probability mass will be concentrated on the global
optimum of E(x). There can be no guarantee that a particular sampling procedure
will actually find the global optimum; in general it is not possible to do better than an
exhaustive search. However, the heuristic has proved useful in a variety of applications.

Monte Carlo is not interested in optima. But if p(x)∝L(x)π(x) and E(x)=− log L(x)
then βk = 1 returns the target distribution of interest and distributions with βk < 1
give more diffuse distributions. Figure 2.4 shows an example of a sequence of distri-
butions. It might be that isolated modes at β =1 are difficult to explore by available
Markov chain operators. These modes join and disappear at lower β. These more
diffuse distributions will typically be easier to explore. This section reviews algorithms
designed to exploit this observation to provide better samples from multi-modal target
distributions. It turns out that all of these methods can also provide estimates of the
target distribution’s normalizing constant. A full discussion of normalizing constants
is deferred to chapter 4.

Notation: All of the algorithms in this section and several later in the thesis use a
sequence of distributions. We have adopted the following conventions throughout:

• p0 =π is a base distribution, usually easy to explore or amenable to direct sam-
pling. If pk are defined by inverse temperatures then β0 =0.

• There are K intermediate distributions {pk}Kk=1 between the base and target
distributions.

• pK+1 =p is the target distribution. If pk are defined by inverse temperatures then
βK+1 =1.

The sequences are usually defined using temperatures as in equation (2.18), but other
methods for creating intermediate distributions between the base and target distribu-
tions may be used.

Annealing methods 43

β = 0 β = 0.03 β = 0.1 β = 0.25 β = 0.5 β = 1

Figure 2.4: The effect of annealing. At β = 0 the distribution is equal to a
convenient base distribution. As the inverse temperature increases the distribution
morphs into the target distribution at β=1.

2.5.1 Simulated tempering / Expanded Ensembles

A coherent way of dealing with annealing in MCMC simulations was independently
discovered under the names expanded ensembles (Lyubartsev et al., 1992) and simulated
tempering (Marinari and Parisi, 1992). The idea is to bring the choice of intermediate
distribution pk into the joint distribution under exploration:

p(x, k) ∝ wST(k) p∗k(x), (2.19)

where wST(k) are user-chosen weights attached to each temperature level. The condi-
tional distribution at temperature βk = 1 returns the original distribution of interest:
p(x|βk =1) = p(x). A Markov chain at equilibrium returns correlated samples from the
correct distribution by only recording states when β = 1. The hope is that the extra
computation is justified by the decrease in auto-correlation of the Markov chain.

The extent to which simulated tempering improves a chain’s mixing time depends heav-
ily on the target distribution and the Markov chains used. One general characteristic
of the algorithm is the amount of time it takes to move the temperature index k be-
tween its extreme values. Usually Metropolis proposals k′←k±1 are used because large
changes in temperature are unlikely to be accepted. The adjacent levels must be similar
enough for these changes in k to be accepted frequently, this sets a minimum number
of temperature levels K. Even if all moves were accepted k would be undergoing a slow
random walk. It will take at least O(K2) steps to bring information from the rapidly
mixing k=0 distribution to the target k=K+1 distribution.

The extra cost of the algorithm depends on the fraction of time spent at the other
temperature levels. At equilibrium each level has marginal probability:

p(k) ∝
∑

x

wST(k) p∗k(x) = wST(k)Z(βk). (2.20)

The partition function Z(βk) can easily vary by orders of magnitude across temperature
levels. In order for simulated tempering to spend a reasonable amount of time at
each temperature level we could set wST(k) ≈ 1/Z(βk). Except of course that this
ideal weighting is unknown: e.g., Z(1) is the unknown normalization of the target
distribution.

A practical implementation of simulated tempering must be an iterative process where

Annealing methods 44

p(x)

p3(x)

p2(x)

p1(x)

T

T3

T2

T1

T

T3

T2

T1

T

T3

T2

T1

T

T3

T2

T1

Figure 2.5: An illustration of the idea behind a family of “parallel tempering”
algorithms. Each column represents the states of a Markov chain. Each states
in the first row have marginal distribution p(x), the other rows have stationary
distributions bridging between this distribution and a vague distribution for which
exploration is easy. MCMC proceeds by traditional simulation of each of the in-
dependent states and (dotted arrows) Metropolis proposals to exchange the states
between adjacent levels.

the wST(k) are improved over a series of preliminary runs.

2.5.2 Parallel tempering

Parallel tempering1 is a popular alternative to simulated tempering based on a different
joint distribution. While simulated tempering uses a union space consisting of the
temperature and the original state space, parallel tempering simulates on a product
space. That is, replicas of the original state space exist concurrently for each of the
stationary distributions {pk}:

p({x(k)}) =
K+1∏
k=1

pk(x(k)). (2.21)

As the states at each level are independent under the target distribution, independent
transition operators Tk with corresponding stationary distributions pk can be applied.
For the higher temperature chains to communicate the results of their freer motion to
the lower temperature chains interactions are also required.

Figure 2.5 illustrates one possible way of evolving a product space ensemble. The
state of the Markov chain consists of an entire column of variables. These evolve using
standard MCMC operators or by swaps between states that are accepted or rejected
according to the Metropolis rule. The swap proposals can be scheduled in a variety of
ways but, as with simulated tempering, information will propagate amongst levels by
a random walk or slower.

By construction the amount of computer time spent on each level is completely under
the user’s control. In particular no weights wST(k) are required, which is one source of

1This method has several names and independent authors, its history is documented by Iba (2001b).

Annealing methods 45

the method’s relative popularity. Another feature of coexisting chains is the possibility
of using proposals based on sophisticated interactions between states, e.g. Wang and
Swendsen (1988). These advantages are at the expense of an obvious increase in memory
requirements and a harder-to-gauge cost for bringing a larger system to equilibrium.

2.5.3 Annealed importance sampling (AIS)

Annealed importance sampling (Neal, 1998a, 2001) looks more like the original sim-
ulated annealing for optimization than the above ensemble methods. An initial
point x0 is drawn from p0 a vague ‘high temperature’ base distribution. Further
points x1, x2, . . . , xK result from ‘cooling’ by evolving through a sequence of K Markov
chain transition operators T1, . . . , TK whose stationary distributions p1, . . . , pK become
sharper at each iteration2.

The ensemble of K+1 points generated in the algorithm is denoted by X ={x(k)}Kk=0.
We treat the procedure that generated them as a proposal which has the following joint
distribution:

Q(X) = p0(x0)
K∏

k=1

Tk(xk←xk−1). (2.22)

But what is this a proposal for? The marginal distribution over the final point
q(xK) =

∑
xk<K

Q(X) is not the target distribution and is probably intractable. We
cannot directly compare q(xK) with p(xK), instead we must create an ensemble target
distribution P (X) that can be compared to Q(X). Under this target model, xK is
drawn from the distribution of interest p= pK+1. The remaining, auxiliary quantities
are drawn using a sequence of reverse Markov chain transitions such that

P (X) = pK+1(xK)
K∏

k=1

T̃k(xk−1←xk), (2.23)

where T̃k are reverse operators as described in section 1.4. Figure 2.6 illustrates both
the ensembles P (X) and Q(X).

Samples of X from Q can be assigned importance weights with respect to P in the
usual way (subsection 1.3.2),

w∗(X) =
P ∗(X)
Q∗(X)

=
p∗K+1(xK)

p∗0(x0)

K∏
k=1

T̃k(xk−1←xk)
Tk(xk←xk−1)

=
p∗K+1(xK)

p∗0(x0)

K∏
k=1

pk(xk−1)
pk(xk)

=
K∏

k=0

p∗k+1(xk)
p∗k(xk)

.

(2.24)

2In Neal’s papers the indexes of the points started at n−1 and ran down to 0. The presentation
here is designed to be consistent with similar algorithms found in later chapters.

Annealing methods 46

xK ∼ pK+1 = p(x)

P (X) : xK xK−1 xK−2 x1 x0

T̃K
T̃K−1 T̃1

x0 ∼ p0(x) = π(x)

Q(X) : xK xK−1 xK−2 x1 x0
TK TK−1 T1

Figure 2.6: Annealed importance sampling (AIS) is standard importance sam-
pling applied to an ensemble P (X). This generative process starts with a draw
from the target distribution p(x) = pK+1(x), which is intractable. Importance
sampling uses proposals drawn from Q(X), which starts at a simple distribution
π(x)=p0(x).

Samples weighted in proportional to w∗(X) can be used as though they came from
P . Typically only xK is of interest, which under P comes from the target pK+1 = p.
The weights themselves are an unbiased estimate of ZP /ZQ = Z(βK+1)/Z(β0) as in
standard importance sampling, equation (1.13).

A valid choice for all of the Tk is the “do nothing” operator, which attaches all of
its probability mass to staying still: T∅(x′← x) = δ(x′ − x). Then Q(X) just corre-
sponds to drawing from p0 (and copying the results), similarly P (X) only draws from
pK+1. As one might expect, the importance weights collapse down to those of standard
importance sampling of a target distribution p = pK+1 with proposals from the base
distribution q = p0 = π. This highlights that the Markov chains do not need to mix
well for AIS to be valid, but poor mixing operators will not improve over standard
importance sampling.

A feature of AIS is that the importance weights do not require details of the transition
operators Tk. This means that a given ensemble X(s) will always be given the same
importance, regardless of whether the Tk mix immediately by drawing from their sta-
tionary distributions pk, or in fact do nothing like T∅. The down-side to this behavior
is that even with ideal transition operators there is always a mismatch between P (X)
and Q(X). Under perfect mixing the final point is proposed from pK , not the target
distribution pK+1.

The annealed importance sampling technique was first described in the physics litera-
ture by Jarzynski (1997). However, earlier still was the method of tempered transitions,
which contains the same core idea.

2.5.4 Tempered transitions

Tempered transitions (Neal, 1994, 1996a) defines a reversible Markov chain transition
operator leaving a distribution of interest, pK+1, stationary. Thus its use is in MCMC

Annealing methods 47

rather than importance sampling. It uses pairs of mutually reversible base transitions
T̂k and Ťk with corresponding stationary distributions {pk}Kk=1.

Given a current state x̂K a candidate state x̌K is proposed through a sequence of states
drawn as follows:

Generate x̂K−1 from x̂K using T̂K .
Generate x̂K−2 from x̂K−1 using T̂K−1.

· · ·
Generate x̄0 from x̂1 using T̂1.
Generate x̌1 from x̄0 using Ť1.

· · ·
Generate x̌K−1 from x̌K−2 using ŤK−1.
Generate x̌K from x̌K−1 using ŤK .

This generating sequence is illustrated in figure 2.7a. The candidate state is accepted
with probability

a (x̂K , · · ·, x̌K) = min

[
1,

K∏
k=1

pk(x̂k)
pk+1(x̂k)

pk+1(x̌k)
pk(x̌k)

]
, (2.25)

note that the normalizations of pk cancel so are not needed. One way to derive this
acceptance rule it is to identify the whole joint distribution of figure 2.7a as the target of
the sampler. If the order of the states were reversed, figure 2.7b, x̌K would be the new
state generated at equilibrium. A few lines of manipulation results in equation (2.25)
for the Metropolis acceptance probability for this proposal. The intermediate states
can be discarded because they are resampled at the next iteration.

Typically p1 is much more vague than pK+1 which allows easier movement around
the middle of the proposal sequence. If there are many intermediate distributions then
every pk can be made close to its neighbors pk±1. This suggests each state visited during
the proposal should be close to equilibrium under each of the transition operators and
that the final state should nearly be drawn from pK , which is close to pK+1. Thus the
acceptance rate can be high for large K.

One might expect that deterministically raising and lowering the temperature gives
better performance than the Markov chain employed by simulated tempering. In fact
the advantage is roughly cancelled by the need for a larger number of intermediate
distributions, see Neal (1996a) for details. The main advantages of tempered transi-
tions are: 1) it doesn’t need a set of weights like simulated tempering; 2) it doesn’t
have parallel tempering’s large memory requirements because equation (2.25) can be
accumulated as the states are generated.

Annealing methods 48

x̂K ∼ pK+1(x)

X :

x̂K

x̂K−1

x̂K−2

x̂1

x̄0

x̌1

x̌K−2

x̌K−1

x̌K

T̂K

T̂K−1

T̂1 Ť1

ŤK−1

ŤK

(a) Current state

x̌K ∼ pK+1(x)

X ′ :

x̌K

x̌K−1

x̌K−2

x̌1

x̄0

x̂1

x̂K−2

x̂K−1

x̂K

T̂K

T̂K−1

T̂1 Ť1

ŤK−1

ŤK

(b) Proposed state

Figure 2.7: Tempered transitions. (a) The algorithm starts with a state x̂K and
generates the ensemble X. (b) The acceptance probability is for the proposal X ′,
which by reversing all the states would make x̌K the new state generated under
the equilibrium distribution pK+1.

2.5.4.1 Generalization to only forward transitions

In standard tempered transitions T̂k and Ťk are mutually reversible, here we consider
two modified algorithms. A “forwards” tempered transition operator, T , uses T̂k =
Ťk =Tk to form the proposal distribution Q, where each Tk is any transition operator
leaving pk stationary. A “reverse” tempered transition operator, T̃ , uses T̂k = Ťk = T̃k

to form the proposal distribution Q̃, where each T̃k is the reverse transition operator
corresponding to Tk. Both algorithms use the same acceptance rule as before. Neal
(1996a) shows that the operator defined by standard tempered transitions satisfies
detailed balance. Here we present a similar proof to show that T and T̃ are mutually
reversible with respect to pK+1.

As in standard tempered transitions we start at x̂K and generate a sequence of states
x̂K−1, x̂K−2, . . . , x̄0, . . . , x̌K . To simplify notation both x̂0 and x̌0 are taken to mean
x̄0 throughout. The probability of generating a particular sequence of states given the
initial state using only forward transitions Tk is:

Q (x̌K , · · ·, x̂K−1← x̂K) =

[
K∏

k=1

Tk(x̂k−1← x̂k)

][
K∏

k=1

Tk(x̌k← x̌k−1)

]
, (2.26)

=

[
K∏

k=1

T̃k(x̂k← x̂k−1)pk(x̂k−1)
pk(x̂k)

][
K∏

k=1

T̃k(x̌k−1← x̌k)pk(x̌k)
pk(x̌k−1)

]

=

[
K∏

k=1

T̃k(x̌k← x̌k−1)

][
K∏

k=1

T̃k(x̂k−1← x̂k)

]
pK+1(x̌K)
pK+1(x̂K)

[
K∏

k=1

pk+1(x̂k)
pk(x̂k)

pk(x̌k)
pk+1(x̌k)

]
.

Annealing methods 49

Using equation (2.25) and equation (2.26) we can compute the equilibrium probability
of starting at x̂K , generating the sequence x̂K−1, · · ·, x̌K and accepting the move with
operator T :

T (x̌K , · · ·, x̂K−1← x̂K)pK+1(x̂K)

= Q(x̌K , · · ·, x̂K−1← x̂K)pK+1(x̂K)a(x̂K , · · ·, x̌K)

=

[
K∏

k=1

T̃k(x̌k← x̌k−1)

][
K∏

k=1

T̃k(x̂k−1← x̂k)

]
pK+1(x̌K) min

[
1,

K∏
k=1

pk+1(x̂k)
pk(x̂k)

pk(x̌k)
pk+1(x̌k)

]

= Q(x̂K , · · ·, x̌K−1← x̌K)pK+1(x̌K)a(x̌K , · · ·, x̂K)

= T̃ (x̂K , · · ·, x̌K−1← x̌K)pK+1(x̌K). (2.27)

This is the equilibrium probability of observing the corresponding reverse move under
T̃ . Summing both sides over all intermediate quantities {x̂k, x̌k}k 6=K gives

T (x̌K← x̂K) pK+1(x̂K) = T̃ (x̂K← x̌K) pK+1(x̌K), (2.28)

which shows that both T and T̃ leave pK+1 invariant. Therefore, we only need one of
them, T say. This means that the standard tempered transitions algorithm still leaves
the target distribution invariant if forward operators Tk are used for both T̂k and Ťk;
implementing reverse operators is not required.

2.5.4.2 Generalization to a single pass

The second half of tempered transitions is identical to annealed importance sampling.
Neal (2001) states that the major difference between the two methods is the requirement
for an upward pass in tempered transitions, making the updates twice as expensive. In
fact, this upward pass is not necessary.

Looking back at figure 2.6 there is no reason why the AIS ensemble X ′∼Q cannot be
used as a Metropolis–Hastings proposal for updating a state X drawn, at equilibrium,
from P . This is a Metropolis independence sampler, where the proposal does not depend
on the current state. This method of turning an importance sampler into a Markov
chain operator dates back at least to Hastings (1970).

Importance sampling seems a more natural way to construct estimators than the
Metropolis independence sampler. Notice that an independence sampler sometimes
rejects states when the current state is more important. The states kept by the algo-
rithm will depend on the order in which the proposals are made, which is arbitrary as
they are independent. It seems likely that treating the proposals identically through
importance weights will be better, and theoretically this is usually the case (Liu, 1996).

Multicanonical ensemble 50

Tempered transitions and annealed importance sampling are really two applications of
the same joint distribution. The main difference is whether an MCMC operator or an
importance sampler is preferable. In isolation the importance sampler may yield better
estimators, but the MCMC operator can be combined with other MCMC operators.
Hastings argued that unweighted MCMC samples are more interpretable, although one
could also obtain approximate unweighted samples by resampling from a distribution
over points proportional to their importance-weights.

2.6 Multicanonical ensemble

The multicanonical ensemble (Berg and Neuhaus, 1992) is another method for allowing
easier movement around a state space. Rather than introducing extra distributions,
the original probability distribution is reweighted:

pMC(x) ∝ wMC(E(x)) · e−E(x), E = − log p∗(x). (2.29)

The weight function wMC(x) only depends on a state’s energy E, which is the log of
the state’s original unnormalized probability. The weights are chosen such that the
marginal distribution over energies p(E) is uniform, as far as possible. If the energy is
unbounded a cut-off is introduced.

Why set the distribution over energies uniform? As with the temperature-based algo-
rithms, more time is spent in regions of low probability, which helps join isolated modes.
But the multicanonical ensemble is just a heuristic, there is nothing fundamental about
this distribution. In fact, visualizing such a distribution can be somewhat surprising.
Figure 2.8 shows the result of reweighting a simple one-dimensional distribution. For
simplicity we created a set of energy bands and used a procedure that only ensured
that the distribution over bands was uniform.

The most probable states in figure 2.8c are in the extreme tail of the original distribu-
tion: few states occupy the lowest energy bands, so any particular one must be visited
frequently. In many high-dimensional problems the lowest probability states will be
plentiful and the tails will be given much less prominence. However, when there are
only a relatively small number states at a particular energy the very high probabilities
assigned by the multicanonical ensemble can be very useful.

Berg and Neuhaus invented the multicanonical ensemble to deal with distributions con-
taining ‘bottlenecks’, regions with small numbers of states that separate regions with
significant probability mass. Strangely, bottle-neck states can be problematic even
when they are individually more probable than many of the states typical under the
distribution. A Markov chain is not able to spend much time exploring the states be-
tween important regions if there are many more states elsewhere with much higher total
probability. This phenomenon is known as an entropic barrier, and can be overcome by

Multicanonical ensemble 51

0 5 10 15 20 25 30 35 40
x

O
rig

in
al

 p
ro

ba
bi

lit
y

(a)

0 5 10 15 20 25 30 35 40
−30

−25

−20

−15

−10

−5

x

E
ne

rg
y

(b)

0 5 10 15 20 25 30 35 40
x

M
ul

tic
an

on
ic

al
 p

ro
ba

bi
lit

y

(c)

Figure 2.8: An example of a “multicanonical ensemble”. (a) The target dis-
tribution of interest. (b) The energy function that defines this distribution. The
horizontal lines mark bands of energy used to construct the new ensemble. (c) The
final figure results from setting the probability of each state proportional to the
reciprocal of the number of states in its energy range. Drawing a state from
this “multicanonical” distribution and reading off its energy band gives a uniform
distribution over the bands.

Some artifacts in the plot are due to the precise way bands were chosen. But note
that the sharp peaks in the middle of the multicanonical plot are due in part to
the truncation of the original distribution at x = 0. Setting the distribution over
energies is a global operation and can have unexpected consequences.

Exact sampling 52

a multicanonical ensemble, which makes states with abnormal energies — low or high
— much more probable.

As in simulated tempering, finding the weights or weighting function for the multi-
canonical method is difficult. The original application of the multicanonical ensemble
used prior knowledge to construct a parametric approximation that would give a near-
uniform distribution over energy. General applications often use histogram methods
that bin ranges of energy together and iteratively fit weights for each bin on the basis
of preliminary runs. For more advanced methodologies there are whole theses largely
dedicated to these methods (e.g. Smith, 1995; Ferkinghoff-Borg, 2002).

Unlike annealing methods, the multicanonical method never simulates the target dis-
tribution. However correlated samples from pMC can be used to construct importance
sampling estimators of any quantity of interest. This is explored further in chapter 4.

2.7 Exact sampling

Exact or perfect sampling simply means drawing a sample from a target distribution.
Markov chain Monte Carlo uses approximate samples: the distribution over the position
at the sth step of a Markov chain depends, perhaps weakly, on its starting position
at s=0.

Surprisingly it is sometimes possible to obtain exact samples from Markov chains. A
sketch of the technique known as coupling from the past (CFTP) (Propp and Wilson,
1996) is given in figure 2.9. The core idea is to find the location of a Markov chain that
has run for an infinitely long time without having to simulate its entire length. Typically
exact sampling algorithms require the ability to track sets of states through a random,
possibly large, number of Markov chain steps. This is technically challenging, but
provides a means to draw samples from some distributions such as large Potts models
and some spatial point processes where traditional means fail. See Wilson (1998) for
reviews, examples and more algorithms for exact sampling with Markov chains.

Is exact sampling actually useful? Some users like to see samples, which can give insight
into a problem. But in many statistical applications there is no interest in the samples
themselves, only estimates of expectations. Given some exact samples, the variance of
an estimator could be improved by running Markov chains from the samples to produce
more (correlated) samples. If it is possible to start with exact samples some comfort
is derived from removing any bias associated with the ‘burn in’ of the chain. But it is
still better to run a small number of long Markov chains than investing in equilibrating
many independent ones (section 2.2).

Several algorithms in chapter 5 rely heavily on exact sampling. These require an
exact sample from a different distribution at each iteration. Using approximations
is dangerous as biases can accumulate at every iteration, so Markov chains potentially

Exact sampling 53

x

time

−∞ 0

(a) A sample is at the end of an infinite chain.

x

time

−∞ 0−t1

?

(b) We try to find the end with a finite number of random numbers.

x

time

−∞ 0−t1−t1−t2

(c) Eventually, after a random amount of time, we find the sample

Figure 2.9: Coupling from the past (CFTP) overview. Each dash on the time axis
represents a random number used by the chain. Everything must be consistent
with the infinite chain in (a). We try to locate the final state by looking at
(drawing) just some of the random numbers. (b) Before time −t1 we know nothing,
so the chain could be anywhere, we evolve a bound on the state space forward to
time zero. At first this might only localize the sample. (c) We look at more
random numbers further into the past until a bound collapses to a single state,
we then follow it to the exact sample at time zero. It takes a random amount of
computation before the bound can be made tight.

Exact sampling 54

have to be run for a very long time. Exact sampling gives a stopping rule, and one that
guarantees zero bias.

2.7.1 Exact sampling example: the Ising model

Coupling from the past relies on being able to prove where the final state of a Markov
chain lies without knowing the starting location. To demonstrate that this is sometimes
possible we describe the summary state technique, following Childs et al. (2001). The
method is originally due to Huber (1998), who uses the name bounding chains.

Our task is to find the setting of an Ising model, a Potts model (subsection 1.1.3) where
each variable takes on q = 2 settings si ∈ {+1,−1}. We assume the system evolved
under Gibbs sampling (subsection 2.1.2) from time t=−∞ to t=0. Each variable was
updated in order at each time step according to the following algorithm:

ui,t ∼ Uniform[0, 1]

p+ = p
(
s
(t)
i =+1

∣∣ sj<i =s
(t)
j<i, sj>i =s

(t−1)
j>i

)
=

exp
(∑

j∈Ei Jij(δ+1,sj − 1)
)∑

s′i
exp

(∑
j∈Ei Jij(δs′isj

− 1)
)

if ui,t < p+ then set s
(t)
i ←+1 else s

(t)
i ←−1.

(2.30)

In general, the setting of variable i at time t depends on the random number ui,t and
the settings of its neighbors j ∈ Ei.

The summary states algorithm starts by drawing all the random numbers ui,t for some
finite range of time t =−T . . . 0. We don’t know what happened before time −T , so
for each variable we set s

(−T)
i =?. We then follow the Gibbs sampling updates from

t=−T to t=0, setting the states to ?’s whenever the result of an update depends on
the settings of states we do not know:

ui,t ∼ Uniform[0, 1]

p+,max = max
sj :sj=?

p
(
s
(t)
i =+1

∣∣ sj<i =s
(t)
j<i, sj>i =s

(t−1)
j>i

)
p+,min = min

sj :sj=?
p
(
s
(t)
i =+1

∣∣ sj<i =s
(t)
j<i, sj>i =s

(t−1)
j>i

)
if ui,t < p+,min then set s

(t)
i ←+1

if ui,t > p+,max then set s
(t)
i ←−1

otherwise set s
(t)
i ←?.

(2.31)

If some of the s
(0)
i states are set to ? then we do not know the setting of our exact

sample. We draw more of the random numbers ui,t from time −T−1 back to time −2T

and start again from s(−2T) =?. The hope is that eventually, after doubling the number
of Markov chain steps enough times, no ?’s will remain and we will know s(0).

Discussion and Outlook 55

More sophisticated versions of the algorithm have been developed for models with q>2
and for tracking dependencies among unknown states. When the connection strengths
J are large it won’t be possible to get rid of all the ?’s in practice. Better Markov chains
than Gibbs sampling are required. While the details are considerably more involved,
it is possible to bound the behavior of random-cluster samplers (Propp and Wilson,
1996) and carefully implemented Swendsen–Wang samplers (Huber, 2002).

2.8 Discussion and Outlook

In this chapter we have reviewed a subset of the established literature on Markov chain
Monte Carlo methods. Most MCMC algorithms are underpinned by proving detailed
balance, which is almost synonymous with the seminal algorithms of Metropolis et al.
(1953) and Hastings (1970). Some choices still remain in the choice of acceptance rule
and the construction of estimators. We presented an interpretation of “waste-recycling”
estimators, which we will apply in a new setting in chapter 3. We also reviewed a “two-
stage” acceptance rule in subsection 2.1.3, which trades off statistical optimality to give
computational savings. We extended this idea to slice sampling in subsection 2.4.2.

Algorithms and proposal distributions tuned for particular applications are clearly im-
portant, but were beyond the scope of this review. Moreover, we did not discuss
techniques that sample distributions with variable dimensionality (e.g. Green, 1995),
or infinite dimensionality (e.g. Neal, 1998c). While important in some applications, or
as a replacement for model selection techniques, they are not used by the remainder
of the thesis. We do have a brief excursion into sampling from an infinite-dimensional
distribution at the end of chapter 5, although this is more closely related to the work
on exact sampling reviewed in the previous section.

Auxiliary variable methods have the potential to dramatically accelerate Markov chain
exploration. Figure 2.2 demonstrated the large changes possible in a single step of
Swendsen–Wang. Slice sampling doesn’t make such dramatic moves, but it is an easy-
to-apply method that we have found personally useful both in this thesis and in quickly
testing hypotheses in discussions with colleagues. Similarly Hamiltonian Monte Carlo
has proved personally useful in work outside this thesis (Murray and Snelson, 2006),
and we feel it should be used more widely.

The use of annealing methods appears somewhat mysterious — especially in a statistical
setting. It seems strange to sample at a range of “temperatures” in applications outside
of physics. However, the annealing heuristic, figure 2.4, can be very effective in problems
with multiple modes. It is less clear whether these distributions need to be simulated
together as in parallel tempering or separately as in the other algorithms. We explore
the issue of populations of samples in the next chapter. This work leads us to construct

Discussion and Outlook 56

new algorithms for constructing non-reversible Markov chains, operators that do not
satisfy detailed balance.

Returning to annealing, chapter 4 explores the computation of normalizing constants.
There we explore why standard MCMC is insufficient for solving this problem and the
advantages of using multiple distributions as in annealing. We then provide a critical
and comparative review of annealed importance sampling, the multicanonical ensemble
and nested sampling, a new method by John Skilling. We will propose new procedures
for running both nested sampling and annealed importance sampling.

Finally, all of the algorithms discussed so far rely on being able to evaluate a function
proportional to the target distribution, p∗(x)∝p(x). It turns out that this assumption
is not met by a class of statistical inference problems, which we label doubly-intractable.
Chapter 5 is dedicated to constructing new algorithms for this problem. Their operation
draws on ideas from all areas of this review, including annealing and exact sampling.

Chapter 3

Multiple proposals and

non-reversible Markov chains

Markov chain Monte Carlo is ambitious: a huge amount is asked of a solitary point
diffusing through the void of a complex high-dimensional space. The target station-
ary distribution may have multiple modes, a representative sample of which must be
found. Also, somehow, the mass of each mode is (implicitly) estimated so that the
correct amount of time is spent in each one. Even navigating a single mode can be
difficult. A long standing idea is that multiple points evolving simultaneously should
help. Communication amongst points might help find and explore the regions of high
probability mass.

The simplest way to introduce multiple points is to target a product model P (X) =∏K
k=1 p(xk). This is just like parallel tempering (subsection 2.5.2), except that each

of the independent distributions are the same. Although each of the xk variables are
independent, a Markov chain operator used to update one of them can depend on the
setting of the others at the same time step. This provides a limited but adapting source
of information about length-scales in the problem and the positions of modes.

Adaptive Direction Sampling (ADS) is a name given to at least two algorithms. One of
these updates a point by resampling from its conditional distribution (i.e. Gibbs sam-
pling) along a direction suggested by another pair of points (Gilks et al., 1994). This
allows coupled movement of highly correlated variables, which would be difficult under
standard axis-aligned Gibbs sampling. Initial experiments with ADS highlighted the
need for many more particles than dimensions in order to equilibrate in all necessary
directions. Then the burden of bringing K points all to equilibrium simultaneously
removes the advantage. On the other hand some advantage is obtained with a small
number of points when combined with standard axis-aligned updates to ensure mix-
ing in the full space. I have been able to produce very similar results using a slice
sampling based version of ADS as suggested in MacKay (2003). Related ideas are

“Population Monte Carlo” 58

still being actively pursued in the literature (Ter Braak, 2006; Christen and Fox, 2006).
While general theoretical results seem elusive, a small number of parallel chains is often
empirically useful and seems advisable in general.

This chapter is dedicated to exploring other Monte Carlo algorithms that attempt to
leverage an advantage from multiple points. The first of these, “Population Monte
Carlo” as in Cappé et al. (2004), is an existing importance sampling method described
as a competitor to MCMC methods. We highlight some important differences with
MCMC-based methods like ADS, not made apparent enough in the current literature.
We then return to MCMC methods, looking at those not based on the ADS product
model. These methods have a single Markov chain ‘backbone’, which branches to a
set of points for consideration at each step. Ensembles of dependent points might al-
low more thorough local exploration. Section 3.2 reviews and extends Multiple-Try
Metropolis (MTM), an algorithm for making good use of expensive proposal mecha-
nisms. Section 3.3 covers ordered over-relaxation an existing extension to Gibbs sam-
pling, which draws multiple points to improve navigation of highly correlated variables.
We extend ordered over-relaxation from just Gibbs sampling to arbitrary transition op-
erators and multiple Metropolis proposals.

3.1 “Population Monte Carlo”

Many Monte Carlo algorithms could be described as population methods; Iba (2001a)
provides a review of some of them. This section refers to a specific method with
the name “Population Monte Carlo” (PMC) as described by Cappé et al. (2004) and
popularized in Robert and Casella (2004). It is described as an algorithm which can
be iterated like MCMC, but unlike Markov methods can easily be adapted over time.
Examples were presented in which replacing MCMC with PMC gave better results. In
fact it is also easy to demonstrate the reverse. This section provides a critical review
of PMC.

The template of a PMC method is given in algorithm 3.1. K particles are evolved in
parallel. An arbitrary distribution qks is used to move each particle at each step. These
distributions can depend on all the particles’ entire histories. Unbiased estimates can be
constructed from the proposed points, {x̃(s)

k }, weighted by their importance weights.
As usual (subsection 1.3.2) the weights are usually only available up to a constant.
Consistent estimators are still available by using normalized weights.

The resampled points drawn in step 7 are a biased sample from the target distribu-
tion for finite K. For example, K = 1 would just give a sample from the proposal
distribution. When K is large the points are approximately unbiased samples from
the target distribution. It is hoped these will form a useful basis for constructing the

“Population Monte Carlo” 59

Algorithm 3.1 “Population Monte Carlo” as in Cappé et al. (2004)

1. for s = 1 to S

2. for k = 1 to K

3. Select proposal distribution qks

4. Generate x̃
(s)
k ∼ qks(x)

5. Compute weight wk
(s) = p(x̃(s)

k)/qks(x̃
(s)
k)

6. end for
7. Resample K positions with replacement from {x̃k} with probabilities

proportional to the weights giving this step’s sample (x(s)
1 , x

(s)
2 , . . . x

(s)
K).

8. end for

proposal distributions at the next iteration. Estimators should be formed from the
importance-weighted ensemble before the resampling step.

As PMC is a framework for importance sampling the qks distributions must have ap-
preciable probability mass across the entire support of the target distribution. While
Cappé et al. do mention the need for heavy tails, they simultaneously suggest that
PMC is a replacement for MCMC:

“Population Monte Carlo borrows from MCMC algorithms for the
construction of the proposal, from importance sampling for the construction
of appropriate estimators,. . . ”

These two goals seem mutually exclusive. Metropolis–Hastings proposals are typi-
cally local in nature, we do not expect them to capture the entire target distribution.
Sometimes we might propose dramatic moves, perhaps from a kernel density estimate
(Tierney and Mira, 1999; Warnes, 2000). But such proposals do not need to be a good
global approximation to the target distribution for MCMC to work. Such transition
operators can be combined with local diffusion for robustness. Importance sampling
has no such choice — using M–H proposals which tend to cut off some or most of the
target density can have disastrous effects. In PMC some particles would occasionally
have very large weights. This would give high variance estimators and the occasional
collapse of all or most particles to a single point in the resampling step.

Both Cappé et al. (2004) and Robert and Casella (2004) describe a “Mixture PMC”
algorithm, which seems very likely to suffer from these failure modes of importance
sampling. The algorithm suggests choosing qks from a set of spherical Gaussian distri-
butions with a variety of widths. The probability of adopting each width is adapted
according to their past ability to make proposals that survive the resampling step.

To demonstrate the problem with mixture PMC we use a version of the “funnel” dis-
tribution described by Neal (2003). The distribution is over a zero-mean Gaussian
distributed variable v with standard deviation 3 and several independent, zero-mean
Gaussian variates {xi} each with variance exp(v). This type of structure can easily
exist in hierarchical Bayesian models. The original funnel distribution used nine xi

Multiple-Try Metropolis 60

variates and was exceedingly challenging for simple Metropolis sampling. Slice sam-
pling largely alleviated this problem. Here we make the distribution easier to handle,
using only four xi variates so that Metropolis sampling will equilibrate more quickly.

We used spherical Gaussian proposals with standard deviations selected uniformly
from an ad hoc set of 12 proposal widths: {0.05, 0.1, 0.2, 0.5, 1, 2, 4, 8, 10, 12, 14, 16}.
Metropolis was run 1000 times with 100,000 steps in each run, which produced a good
histogram for the marginal distribution of v, figure 3.1a. Only in the tails of the distri-
bution are some frequencies not quite right. It would have been better to sample fewer,
longer runs (section 2.2), but we wished to provide a direct comparison to 100,000
PMC steps with 1000 particles. Figure 3.1b shows a histogram of samples obtained
from step 7 of PMC algorithm 3.1. These samples do not match the true marginal
distribution, although we can expect this distribution to be biased. Figures 3.1 (c)–(f)
show estimates of v’s marginal distribution based on the importance weights of the
particles before resampling. The PMC estimates are terrible for all four variants of
the algorithm described in the figure. None of the Gaussian distributions are good
importance samplers for this distribution. A combination of the estimators does not
work well either.

Large importance weights during the PMC runs often caused many particles in the
population to move together into a new region of space. Unlike Cappé et al. we do not
see this as a sign that the space is being explored. Instead it indicates the underlying
high variance of the importance sampling estimator. When the distributions are in-
appropriate for importance sampling there is no guarantee that the time spent by the
population within a region reflects the target distribution. Instead the times between
large importance weight events depend on the details of the tails of the proposal dis-
tributions. In this case adapting the distributions did not solve the problem. In any
case, favoring proposals that can lead to extremely large weights seems unwise.

Iterated importance sampling algorithms are attractive in some contexts. However,
using proposals from MCMC algorithms within importance sampling is not generally
advisable. We now return to algorithms that stay within the MCMC framework.

3.2 Multiple-Try Metropolis

This section concerns the Multiple-Try Metropolis method (MTM) of Liu et al. (2000).
We review the method and provide a simple interpretation as an evolving joint distribu-
tion including auxiliary variables. This almost trivial rewriting of the algorithm makes
a possible improvement obvious and relates to the pivot-based Metropolis method in-
troduced later in the chapter.

The MTM algorithm was motivated as follows: local proposal distributions q(x′←x)
may lead to slow convergence, but longer range moves are rarely accepted. If multi-

Multiple-Try Metropolis 61

−10 −5 0 5 10

(a) Metropolis

−10 −5 0 5 10

(b) PMC samples.
q separate, adapted.

−10 −5 0 5 10

(c) PMC weights.
q separate, adapted.

−10 −5 0 5 10

(d) PMC weights.
q combined, adapted.

−10 −5 0 5 10

(e) PMC weights.
q combined, fixed.

−10 −5 0 5 10

(f) PMC weights.
q separate, fixed.

Figure 3.1: Histograms of samples of the v parameter from the funnel distribu-
tion. The curves show the correct marginal posterior. All samplers were initialized
at v =0, x=1. Both Metropolis and PMC used spherical Gaussian proposal dis-
tributions with the same set of proposal widths. For PMC these were ‘adapted’ as
in Cappé et al. (2004) or chosen from a ‘fixed’ uniform distribution. The PMC im-
portance weights were either computed using the proposal width that was used, ‘q
separate’, as in Cappé et al. (2004) or using ‘q combined’, the mixture of Gaussians
obtained by summing over the choice of width (Robert and Casella, 2004).

Multiple-Try Metropolis 62

ple points are proposed from a long-range distribution then it is more likely that an
acceptable one will be found. MTM, algorithm 3.2, is one way of allowing K draws
from a proposal distribution. Figure 3.2 illustrates and motivates the procedure with
a graphical model.

Algorithm 3.2 A single step of the Multiple-Try Metropolis Markov chain

1. Draw K i.i.d. proposals from xk ∼ q(xk←x)
2. Compute weights w(x, xk) = p(x) q(xk←x) λ(x, xk)

λ is any symmetric function λ(x, xk) = λ(xk, x)
3. Choose one proposal x′ ∈ x1, . . . xK , using probabilities proportional to

the weights
4. Generate a new set of K−1 points x′k ∼ q(x′k← x′) for k = 1 . . .K−1

and define x′K = x.

5. Compute a(x′, x) =
w(x1, x) + · · ·+ w(xK , x)
w(x′1, x′) + · · ·+ w(x′K , x′)

6. Assign x←x′ with probability min(a, 1)

MTM is actually a family of algorithms defined by the λ function used at step 2 to
weight the points. MTM(II) is the MTM algorithm with symmetric q and λ = 1/q

giving weights w(xk)∝p(xk). As various of choices of λ were reported to behave very
similarly, we use MTM(II) in our experiments.

Figure 3.2’s graphical model description immediately suggests an alternative algorithm.
Step 1 of the MTM algorithm resamples x1, . . . xK from the joint distribution. This
discards the setting already made by a previous iteration. In some circumstances
keeping the existing proposals could save computer time. This would be achieved by
omitting step 1 after the first iteration and updating step 6 to include {xk}←{x′k} in
the assignment.

3.2.1 Efficiency of MTM

For a given proposal distribution q(xk ← x), each step of MTM is more expensive
than a single Metropolis–Hastings proposal. Counting the number of target distribu-
tion evaluations suggests that the computational cost is roughly 2K times more for
MTM. Various practical issues make the exact cost trade-off more complex. In many
circumstances the time taken to evaluate 2K probabilities will grow sub-linearly with
K. This may be because some intermediate results can be shared, or because related
computations can be vectorized and computed efficiently on some types of computer.
The sequential nature of MCMC often makes it difficult to vectorize operations, yet
such code transformations can have surprisingly large benefits, especially in popular
interpreted environments such as R, Octave or Matlab.

The results reported by Liu et al. (2000) suggest that MTM outperforms Metropo-
lis without needing implementation-based code-tuning. One example involved simple

Multiple-Try Metropolis 63

x

x1 x2 xi=x
′ xK

(a) K proposals are generated and one selected.

x
′

x1 x2 x xK

(b) A suggested swap makes x′ the sample from p(x).

x
′

x
′

1
x

′

2
x

′

i
=x x

′

K

(c) Resampling all but x and x′ makes the joint
setting more plausible.

Figure 3.2: Multiple-Try Metropolis (MTM): (a) x is assumed to come from the
target distribution p(x). K proposals are drawn xk ∼ q(xk← x). This defines a
joint target distribution on which the Markov chain operates. Firstly one of the
proposed values, xi say, is chosen and labeled x′. (b) One could consider proposing
a swap x↔x′, giving a joint state in which x′ generated {x, xk 6=i}. The acceptance
probability for this proposal could typically be low: for large K it will often be
obvious that x rather than x′ generated the remaining variables. (c) MTM swaps
x and x′ and also resamples the remaining variables from their new stationary
distribution x′k 6=i∼q(x′k←x′). The acceptance rule is simply Metropolis–Hastings
applied to the proposal (a)→ (c).

Multiple-Try Metropolis 64

0 5 10 15

5

10

15

20

25

index

va
r(

x,
t)

5/3
MTM(II)
Metropolis 1
Metropolis 10

Figure 3.3: Performance of Multiple-Try Metropolis based on figure 2 from Liu
et al. (2000). Samplers were run on a t-distribution as described in the main text.
Plotted is var(x, t), the variance of a sampler’s state after t steps from x0 = 9,
estimated from 5000 runs. The time taken for a chain’s states to match the true
variance of 5/3 is a measure of its burn-in time. Computer time was measured
as follows: for MTM(II) with K = 5 index is the number of steps taken; for
the Metropolis algorithms index is (optimistically) the number of steps divided
by 2K. The performance of Metropolis with σ = 1 and MTM(II) with σ = 10
closely reproduce the results from the original paper. Rerunning Metropolis with
a Gaussian step-size of σ=10 shows a much shorter burn-in time than MTM.

Gaussian-based proposals on a one-dimensional t-distribution with five degrees of free-
dom. The amount of computer time to reach equilibrium from an extreme fixed starting
point (x(0) =9) appeared to be considerably less for MTM(II) with N (x, 102) proposals
than for Metropolis with N (x, 1) proposals. As shown in figure 3.3 this claim is repro-
ducible, but why were different proposal widths σ = 1 and σ = 10 used while making
the comparison? Presumably a longer step-size was deemed appropriate for MTM as it
has more attempts to find a good proposal. But our results show that Metropolis with
σ=10 approaches equilibrium (according to the measure used) faster than Metropolis
with σ=1 or MTM with σ=10.

The amount of computer time needed to forget a particular atypical initialization is
only one measure of performance. We also used R-CODA (Cowles et al., 2006) to
estimate the effective number of samples based on a spectral analysis of the time series.
These are compared in table 3.1.

Table 3.1: Equilibrium efficiency of MTM and Metropolis

Method Effective samples / proposals

i.i.d. sampling (control) 0.998± 0.002
M–H, σ=1 0.065± 0.002
M–H, σ=10 0.118± 0.001
MTM, σ=10 0.036± 0.001

The acceptance rates for Metropolis–Hastings with σ=1 and σ=10 were 0.72 and 0.15
respectively. This suggests that the optimal step size is somewhere in between the two

Multiple-Try Metropolis 65

values tried. MTM’s acceptance rate was 0.45, close to ideal for both standard M–H
and — according to Liu et al.’s experience — MTM. Despite this, MTM’s sampling effi-
ciency on this very simple example distribution is worse than M–H at both equilibrium
sampling and initial burning in.

This is a negative result, but one worth noting. Using multiple parallel proposals is not,
in our experience, worthwhile in itself. This makes sense: when proposals are made
sequentially a good proposal can be accepted immediately and future proposals move
from the new location. In contrast, only one point from a set of parallel proposals can
be accepted, if there is more than one good point the rest are wasted.

The motivation for using multiple proposals cannot be to explore larger search regions.
Instead we should consider MTM if making multiple proposals together is computation-
ally cheaper than making them separately. The orientational bias procedure in Frenkel
and Smit (2001, algorithm 22, section 13.1.2) is equivalent to MTM(II). In this context
the proposals involve moving molecules. A molecule’s probability depends on indepen-
dent terms depending on its position and orientation. The orientational bias procedure
proposes a single new position with several possible orientations. While the issue isn’t
discussed in detail, presumably it is sharing the positional energy computation across
proposals that makes the algorithm worthwhile in molecular dynamics simulations.

A statistical example claiming benefit from multiple proposals is given by Qi and Minka
(2002). They drew proposals from local Gaussian approximations based on the Hessian
of the log posterior at the current sample location. In high-dimensional problems these
proposals would be expensive to construct1, O(D3) to prepare a matrix factorization
for a multivariate-Gaussian sampler. Drawing multiple samples is then cheaper, O(D2).
Even sequential sampling can take advantage of this, because the proposal will be reused
until a move is accepted. One wonders if, given the effort expended to construct the
distribution, drawing more samples than needed for acceptance could be useful. The
reported accuracy for a given CPU time does appear to be slightly better by combining
Hessian-based sampling with an MTM variant, multiple-importance try.

3.2.2 Multiple-Importance Try

MTM makes it more likely that the chain moves, but is wasteful of information: multiple
evaluations of the probability density are made at each iteration but at most one of
these points is used. Qi and Minka (2002) suggested a way to use all of the {xk} points
and called their combined Hessian-based MTM method Adaptive Multiple-Importance
Try (AMIT). We will refer to the part of the algorithm that concerns including all the
points in MTM as Multiple-Importance Try (MIT).

1Qi and Minka also discuss cheap approximations to Hessians, but are still keen to get the best use
from them however constructed.

Multiple-Try Metropolis 66

MIT is the standard multiple-try Metropolis algorithm with a particular choice for
post-processing the samples. If p can be evaluated then the samples are weighted by

wk =
p(xk)

q(xk←x)
. (3.1)

When p(x) is only known up to a constant the wk are computed using the unnormalized
version p∗(x) and then made to sum to one. This is standard importance sampling using
q(xk←x) as a proposal distribution. The locations x of these importance samplers are
chosen using MCMC.

Using local Gaussian approximations can lead to importance sampling estimators with
large or even infinite variances. This suggests that MIT is likely to give erroneous results
on high-dimensional problems. MIT will work when good global proposal distributions
can be obtained, but we are unsure why MCMC would be an appropriate way to
adapt these distributions. These are similar concerns to those discussed in section 3.1
regarding “population Monte Carlo”.

3.2.3 Waste-recycled MTM

Waste recycling (subsection 2.2.2) is a method for using proposals that are not accepted
as part of the Markov chain. Here we describe how to recycle the points from the
MTM method that are normally unused. Waste recycling does not carry the risks of
huge variances associated with using importance sampling estimators with Metropolis
proposals.

We first take the MTM joint distribution identified in figure 3.2a,

p
(
x, {xk}Kk=1

)
= p(x)

K∏
k=1

q(xk←x), (3.2)

and augment it with a new variable x̂. The marginal distribution of the new variable
should be the target distribution of interest. This could be achieved by copying x or
picking one of the proposals at random and copying it according to the Metropolis–
Hastings acceptance rule:

p (x̂|x, {xk}) =

ak = 1
K min

(
1, p(xk) q(x←xk)

p(x) q(xk←x)

)
x̂ = xk

1−
∑

k ak x̂ = x .
(3.3)

As in subsection 2.2.2, any quantity can be estimated by averaging over each of the
{x, {xk}} settings weighted by their probability under this conditional distribution.

So far we are still discarding the {x′k} variables drawn by the algorithm. If the (x′, {x′k})
joint state were accepted we could draw a new auxiliary variable x̂′∼p (x̂′|x′, {x′k}) using
the conditional distribution analogous to equation (3.3). To include both possible joint

Multiple-Try Metropolis 67

settings in an estimator we use a further auxiliary variable ˆ̂x, which is equal to one of
x̂ or x̂′. We could define the probability of ˆ̂x= x̂′ according to the min(1, a) acceptance
probability of the MTM algorithm. However, this would sometimes give zero weight to
x̂. In normal waste-recycling we do not mind ignoring the initial state as it was already
used at the previous iteration, but the {xk} were created at this iteration2. Instead we
use

p(ˆ̂x= x̂′|x, {xk}, x′, {x′k}) =
∑

k w(xk, x)∑
k w(xk, x) +

∑
k w(x′k, x

′)
, (3.4)

which also gives ˆ̂x the correct stationary distribution. The final estimator averages over
all states visited at each iteration based on the following identity for Ep(x)[f(x)]:

Ep(x,{xk},x′,{x′k})

 ∑
x̂∈{x,{xk}}

x̂′∈{x′,{x′k}}

p (x̂|x, {xk}) p
(
x̂′|x′, {x′k}

)∑
ˆ̂x∈{x̂,x̂′}

f(ˆ̂x) p(ˆ̂x|x, {xk}, x′, {x′k})

 .

(3.5)
The expression looks cumbersome, but when expanded out only costsO(K) to compute.
The estimator can be implemented once and used as a “black-box”.

The conditional probabilities of x̂ and x̂′, equation (3.3), require some backwards pro-
posal probabilities not normally needed by MTM or MIT. This would remove the
potential advantage when proposals are expensive, as in Qi and Minka (2002), but
would not be a problem when, as in Frenkel and Smit (2001), the purpose of multiple
proposals is shared computation of p(x).

We compared the MTM’s mean square error (MSE) in estimating |x| to that obtained
by the waste-recycled version (WR-MTM) on the same t-distribution example as before.

Table 3.2: Accuracy on t-distribution after 1000 proposals

Method Mean Square Error (MSE)

M–H, σ=1 0.0119± 0.0010
M–H σ=10 0.0105± 0.0005
MTM, σ=10 0.0267± 0.0014
WR-MTM, σ=10 0.0167± 0.0008
MIT, σ=10 0.0047± 0.0002

Post-processing the MTM run with waste-recycling reduces the MSE considerably, but
still not to the level of Metropolis–Hastings. Speedups from efficient implementation
of parallel proposals would still be required to justify waste-recycled MTM. Treating
the xk proposals as draws from importance samplers, the MIT estimator, obtains the

2Unless we are applying the alternative algorithm suggested just before subsection 3.2.1.

Ordered overrelaxation 68

Figure 3.4: The idea behind successive overrelaxation for minimization: when
performing component updates moving past the minimum along the current search
direction can give faster progress along the direction that points to the optimum.
Monte Carlo overrelaxation methods attempt to successively move to the other
side of a component’s conditional distribution, which can cause persistent motion
along a more interesting direction.

best MSE. This reflects the fact that importance sampling is usually more appropriate
than MCMC for estimating the statistics of simple 1D densities.

In higher dimensional problems, where MCMC is favored over simple importance sam-
pling, the proposals will generally be more local and take longer to explore the target
distribution. This situation was simulated by setting the proposal width to 0.1 and
taking 10000 MTM steps with K =5. Averaging over 1000 such runs the mean square
error (MSE) of MTM in estimating |x| was 0.051 ± 0.011 this wasn’t hurt by waste-
recycling, which had an MSE of 0.046± 0.005. There wasn’t much to gain from using
the extra samples as the MTM sequence is highly correlated. As such, recycling would
not be worth the computational expense, but wouldn’t be too harmful. The MIT im-
portance sampling estimate had a significantly worse MSE of 0.131± 0.002. MIT does
not necessarily reduce variance. In high-dimensional problems it could be much worse.

3.3 Ordered overrelaxation

Ordered overrelaxation (Neal, 1995, 1998b) is a technique to improve the convergence
of Gibbs sampling for some distributions with strong positive correlations amongst its
variables. A variety of MCMC methods exist that are inspired by successive overrelax-
ation in optimization, see figure 3.4. Ordered overrelaxation is one of these methods,
considered here because it is based on a population of proposals.

Ordered overrelaxation is based on Gibbs sampling. A normal iteration of Gibbs sam-
pling involves resampling xd from its conditional distribution p(xd|x{d′ 6=d}). A (waste-
ful) way to implement this rule is to draw K samples from the conditional distribution
and then pick one of them uniformly at random. We could leave the conditional dis-

Ordered overrelaxation 69

tribution stationary by also including the current setting and choosing uniformly from
K +1 settings. Moreover we need only apply a transition operator that leaves this
uniform distribution over K +1 settings stationary. Ordered overrelaxation provides
such an operator.

The ordered overrelaxation transition operator requires that the K+1 candidates for the
dth component can be ordered in some way. If they are real scalars we simply sort by
numerical value. If only a partial ordering is available then ties are broken arbitrarily.
After sorting the points they are relabeled in order:

s0 ≤ s1 ≤ · · · ≤ si =xd ≤ · · · ≤ sK . (3.6)

The operator chooses x′d =sK−i as the next step in the Markov chain. As long as K is
odd this rule will always pick one of the K new values. Because the rule is determin-
istic and reversible it clearly leaves a uniform distribution over the points stationary.
Choosing x′d = sK−i tends to move to the opposite side of the conditional distribution
from xd. This is precisely the goal of overrelaxation. The effect becomes stronger when
increasing K. For very large K the point is moved almost deterministically from its
current quantile q to 1−q.

In näıve implementations any benefits from persistent motion is cancelled by the cost
of drawing additional samples. Whether ordered overrelaxation is useful will depend
on whether repeated draws, sk ∼ T (sk← z), can be performed cheaply. Neal (1998b)
discusses some circumstances in which this can be done. Another potential cost saving
is to make the number of points, K, small when ordered overrelaxation is less useful.
We now introduce a new procedure with this goal.

3.3.1 Adapting K automatically

Our new algorithm attempts to use fewer samples in ordered overrelaxation when the
current position is close to the center of its conditional distribution. This is a situation
where over-relaxation is typically unhelpful. It requires the user to set Kmin and Kmax

parameters, giving the smallest and largest acceptable number of samples to draw per
iteration.

The procedure is detailed in algorithm 3.3. The numbers of new points to the ‘right’
and ‘left’ of the current position are tracked as r and l. In an extreme situation, where
the current position is at the very edge of the conditional distribution one of r and l

will remain at zero and Kmax points will be drawn. Conversely when xd is near the
median of the conditional distribution, the algorithm will typically return sooner.

After obtaining an unordered set of points from algorithm 3.3 the list is sorted together
with the current point xd = si giving an ordered set {sk}Kk=0 as before. We now show
that ordered overrelaxation still satisfies detailed balance using a variable K. To do this

Pivot-based transitions 70

Algorithm 3.3 Self size-adjusting population for ordered overrelaxation.
Generates number of points K and unordered set {sk}Kk=1.
Inputs: Kmin, Kmax, current location x
Initialize: l = 0; r = 0

1. for k = 1 . . .Kmax

2. sk ∼ p(xd|x{d′ 6=d})
3. if sk > xd then
4. r = r + 1
5. else if sk < xd then
6. l = l + 1
7. end if
8. if (r ≥ Kmin/2) and (l ≥ Kmin/2) then
9. K = k

10. return
11. end if
12. end for

we need the equilibrium probability of starting at point xd = si, generating a set {sk}
and then deterministically transitioning to x′d = sK−i. The order in which the set of
points was generated does not matter, although some orderings are not possible because
algorithm 3.3 would terminate before generating the entire set. Let C(l, r) be the
number of orderings of r+l points with r greater than xd that can be generated by the
algorithm. The equilibrium probability of all the points is C(i,K−i)

∏K
k=0 p(sk|x{d′ 6=d}).

Given the symmetry C(l, r)=C(r, l), this is also the probability of starting at x′d =sK−i,
producing the same set of points and then deterministically moving to x=si. Summing
over all intermediate points shows that the transition xd↔x′d satisfies detailed balance.

3.4 Pivot-based transitions

Inspired by the ordered overrelaxation generalization of Gibbs sampling, we now intro-
duce a new method which uses general Markov chain transition operators. We start
from any pair of mutually reversible transition operators, T (x′ ← x)p(x) = T̃ (x ←
x′)p(x′) which leave a desired target distribution, p(x), stationary. A single reversible
operator T = T̃ will also suffice. Algorithm 3.4 takes the existing operator (pair) and
constructs a new transition operator, T (x′←x). This procedure is illustrated in fig-
ure 3.5. The pivot-based transition operator will favor moves to the opposite side of the
region accessible by T , as defined by a user supplied ordering. The stationary target
stationary distribution p(x) is maintained without introducing any rejections into the
chain (although T (x′=x←x) will carry finite probability in some discrete settings, or
if T (x′=x←x) is finite).

Each of the {sk}Kk=0 points in algorithm 3.4 are marginally distributed according to

Pivot-based transitions 71

Algorithm 3.4 The pivot-based transition, T (x′←x):

1. Take one step of T̃ from point x to a “pivot state” z, i.e.: z ∼ T̃ (z←x)
2. Use T to draw K points one step away from z i.e.: sk ∼ T (sk←z), k = 1 . . .K

3. Use the sk and x points to create an ordered list {sk}Kk=0. Break ties
arbitrarily and relabel the points such that sk ≤ sk+1. Identify index i
giving x=si.

4. Set x′ equal to sK−i.

Start point x

Pivot state z

Points generated from T (s←z)

Point selected for x
′

(a) forwards

Start point x
′

Pivot state z

Points generated from T (s←z)
Point selected for x

(b) backwards

Figure 3.5: Illustration of the pivot-based transitions operator for K = 6 be-
tween points x and x′ via points z and set S consisting of the set of round
dots excluding the ringed one. (a) moving forwards generating a draw from
T (x′, S, z←x). (b) the reverse process involving the same S and z occurs with
probability T (x, S, z←x′).

Pivot-based transitions 72

the target distribution. They also have the same relation to the pivot state: all points
including x and x′ can be seen as draws from T (sk ← z). By symmetry the point
labeled as the starting position can be resampled from a uniform distribution over the
points, or updated as in ordered overrelaxation, which leaves the uniform distribution
stationary. While perhaps unconvincing as a proof, this symmetry is important. If all
the proposals started at x, then this location would be made special, making it harder
to construct plausible reverse moves starting at any other point.

We now show explicitly that the new operator satisfies detailed balance. Given a
starting point x, the probability of generating a pivot state z, a new point x′ and K−1
other points (set S), as in figure 3.5a, is:

T (x′, S, z←x) = T̃ (z←x) K! T (x′←z)
∏
s∈S

T (s←z). (3.7)

The first step must produce the pivot state z from x. The other points can then
be produced in any of K! possible orderings. The probability of producing the same
configuration of points by starting at x′, as in figure 3.5b, is:

T (x, S, z←x′) = T̃ (z←x′) K! T (x←z)
∏
s∈S

T (s←z). (3.8)

A small amount of manipulation gives:

T (x, S, z←x′)
T (x′, S, z←x)

=
T̃ (z←x′)
T (x′←z)

T (x←z)

T̃ (z←x)
=

p(z)
p(x′)

p(x)
p(z)

=
p(x)
p(x′)

⇒ T (x, S, z←x′)p(x′) = T (x′, S, z←x)p(x)

⇒ T (x←x′)p(x′) = T (x′←x)p(x) ,

(3.9)

i.e. the new chain satisfies detailed balance. The second line was obtained from the T

and T̃ operators’ mutual reversibility condition. The final line is obtained simply by
summing over z and S.

The number of points K used by the algorithm could be automatically adjusted. We
would use algorithm 3.3 to draw the points, replacing the conditional distribution with
T (sk←z). The proof above still holds if we replace K! with C(l, r).

3.4.1 Ordered overrelaxation with pivot-based transitions

Gibbs sampling updates each component of a distribution xd in turn by applying a
transition operator Td that resamples from the conditional p(xd|x{d′ 6=d}). The original
ordered overrelaxation replaces Gibbs sampling’s Td operators with modified versions
that tend to move to the opposite side of the conditional distribution from the current
setting of xd.

Pivot-based transitions 73

Gibbs sampling is not the only Monte Carlo algorithm that updates components of a
distribution in turn. Now we can perform ordered overrelaxation by replacing any al-
gorithm’s component-based update operators Td with their pivot-based versions. Each
update will tend to move the current setting to the opposite side of the distribution
defined by Td. When the original Markov chain is Gibbs sampling the z states become
irrelevant and the resulting transition operator is equivalent to the standard ordered
overrelaxation algorithm.

Figure 3.6 gives an illustrative example of ordered overrelaxation applied to a bivariate
Gaussian distribution. Using pivot-based transitions we can obtain the same benefits
as the original ordered overrelaxation with slice sampling, which doesn’t require the
ability to sample from conditional distributions. Again, as with standard ordered over-
relaxation, the benefits are only worth the computational cost if some saving can be
made when drawing multiple points.

Although pivot-based transitions do not introduce any rejections into the chain, if the
underlying transition operator is a Metropolis method then the chain will sometimes
stay still. The rejections will cause reversals in the direction of motion, reducing the
ability of the chain to maintain a persistent direction. This will tend to occur at the
edges of a distribution where rejections are more frequent and where ordered overrelax-
ation is normally of most use. Figure 3.6c demonstrates that pivot-based transitions
based on Metropolis works much less well than the same method based on slice or
Gibbs sampling. In section 3.5 we will develop a better Metropolis method based on
pivot states. First we explore another use of pivot-based transitions.

3.4.2 Persistence with pivot states

As pivot-based transitions apply to general transition operators we can consider al-
gorithms that are not tied to component-based updates. In this section we present
an alternative way to achieve persistent motion using pivot-based transitions. This
algorithm is based on the expanded distribution,

p̈(x, z) = T̃ (z←x)p(x) = T (x←z)p(z). (3.10)

For other ways of constructing non-reversible chains that use this distribution see Neal
(2004b). Here we do not require the base operator T to be reversible.

A sample (x, z) from the expanded distribution provides an equilibrium sample x and
a pivot state z as produced by step 1 of algorithm 3.4. Following the rest of the
algorithm gives a new setting (x′, z), the same pivot state with a new starting point.

Pivot-based transitions 74

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

(a) Standard ordered overrelaxation (Gibbs sampling)

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4

(b) Pivot-based transitions (univariate slice sampling)

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

(c) Pivot-based transitions (Metropolis)

Figure 3.6: Ordered overrelaxation schemes applied to a highly correlated bi-
variate Gaussian. Some exact samples from the distribution are shown in black.
Standard Metropolis shown in red proceeds by slow diffusion. Ordered overre-
laxation schemes shown in blue are able to make persistent progress along the
distribution, here exaggerated with K = 32. Rejections in the underlying transi-
tion operators upset this persistent motion however. The Metropolis sampler in
(c) gains little benefit from pivot-based transitions.

Pivot-based transitions 75

This procedure leaves the expanded distribution invariant, the proof is similar to before:

T (x′, S; x, z) = K! T (x′←z)
∏
s∈S

T (s←z)

T (x, S; x′, z) = K! T (x←z)
∏
s∈S

T (s←z)

T (x, S; x′, z)
T (x′, S; x, z)

=
T (x←z)
T (x′←z)

=
T̃ (z←x)p(x)

p(z)
p(z)

T̃ (z←x′)p(x′)

=
T̃ (z←x)p(x)

T̃ (z←x′)p(x′)

⇒ T (x, S; x′, z) T̃ (z←x′)p(x′) = T (x′, S; x, z) T̃ (z←x)p(x)

⇒ T
(
(x, z)←(x′, z)

)
p̈(x′, z) = T

(
(x′, z)←(x, z)

)
p̈(x, z) .

(3.11)

The final line was obtained by using equation (3.10) and summing over the intermediate
points S. We have shown that the appropriate detailed balance relationship holds with
respect to the expanded distribution.

Equation (3.10) suggests that the sample from the expanded distribution can also be
interpreted as an equilibrium sample z and a pivot state x ∼ T (x← z). This pivot
state could be updated by an alternative pivot-based transition operator T̃ based on
algorithm 3.4. As T was used in step 1 we switch to using T̃ to produce the K points in
step 2. A version of the above proof shows that this operator also leaves the expanded
distribution invariant.

Given a pair sampled from the expanded distribution (x1, x2) ∼ p̈(x1, x2) = T̃ (x2 ←
x1)p(x1) we alternate between two Markov chain updates. First we update x1 using
x2 as a pivot state with algorithm 3.4 (operator T). Next we update x2 using x1 as a
pivot state with the alternate operator T̃ . Figure 3.7 illustrates the effect of alternately
applying these two operators. Both operators have a tendency to reverse the ordering
of x1 and x2. By continually jumping over each other, the pair move persistently across
the space that induces the ordering. By chance, for finite K, the points will sometimes
stay in the same order. In subsequent iterations motion will be in the opposite direction
allowing the chain to mix across the whole space.

Figure 3.8 shows pivot-based persistent motion when the base transition operator has
a small step size, which would normally lead to slow diffusion. The effect is dramatic:
the entire range of the distribution is explored in many fewer iterations. However,
the improved dynamics alone are not actually sufficient to justify the increased cost
of drawing multiple proposals. As with MTM, some further savings, such as parallel
computation, are required.

Pivot-based transitions 76

Point to be updated
Pivot state
(updated at next iteration)

New points (the set S)
Updated point (next pivot)

Figure 3.7: Using pivot states for persistent motion. Each row shows a new
iteration of the algorithm described in the main text. The pivot state tends to
move in the same direction for multiple iterations. In the final two iterations
shown the direction of motion has reversed. Drift in one direction would persist
for longer if a larger number of states were drawn from the pivot state.

1

0.5

0
200010000

P
o
si

ti
o
n
,
x

Iteration number

Metropolis

K =60

Figure 3.8: Example of persistent motion: exploring Uniform[0, 1] with σ=0.05
Gaussian proposals. Metropolis’s random walk behavior is greatly reduced by
pivot-based transitions, although at a greater computational cost.

Pivot-based Metropolis 77

3.5 Pivot-based Metropolis

Pivot-based Metropolis is a new alternative to MTM-based methods for using multiple
Metropolis proposals. As in MTM we use an arbitrary proposal distribution q(xk←x),
but by making different trade-offs ordered-overrelaxation updates become possible.

The new procedure will follow algorithm 3.4 closely but uses arbitrary proposal dis-
tributions rather than transition operators. Arbitrary proposals could be turned into
Metropolis–Hastings transition operators for use in algorithm 3.4, but many of the can-
didate points would be in the same place due to rejections. Algorithm 3.5 provides a
way to use all of the points proposed from a proposal distribution q. The pivot state
can optionally be created using a different proposal distribution q̃. Also, the pivot state
need not live in the same space as the distribution being sampled (unless applying the
persistence procedure of subsection 3.4.2). This procedure can be seen as an instance
of “Random Proposal Distributions” (Besag et al., 1995).

Algorithm 3.5 The pivot-based Metropolis operator, T (x′←x):

1. Take one step of q̃ from point x to a “pivot state” z, i.e.: z ∼ q̃(z←x)
2. Use q to draw K points one step away from z i.e.: sk ∼ q(sk←z), k = 1 . . .K

3. Use the sk and x points to create an ordered list {sk}Kk=0. Break ties
arbitrarily and relabel the points such that sk ≤ sk+1. Identify index i
giving x=si.

4. Compute weights wk =
q̃(z←sk)
q(sk←z)

p(sk)

5. Choose x′ = sj from {sk}Kk=0 using a distribution proportional to the
weights, or any reversible move Ts

(
j← i; {sk}

)
that leaves this distribu-

tion invariant.

The pivot-based Metropolis operator of algorithm 3.5 is a valid transition operator
for p(x). Proof: the equilibrium probability of starting at si, generating pivot state z

the remainder of the set of points S ={sk}Kk=0 and choosing final point sj is

T
(
(z, S, j)←si

)
p(si) = Ts(j← i;S) p(si) q̃(z←si) K!

∏
k 6=i

q(sk←z), (3.12)

which is invariant to swapping si↔sj . Summing over all intermediate points {sk 6=i,j , z}
shows that T (sj←si) satisfies detailed balance.

Ordered over-relaxation uses a transition rule that leaves a uniform distribution over a
set of points stationary. Pivot-based Metropolis and perhaps other algorithms require
a generalized move that leaves a non-uniform discrete distribution stationary.

A probability distribution over points {sk} can be represented on a unit interval. Each
point occupies a segment with width equal to its probability pk. The segments can be
ordered by any method that does not use the current setting si or the history of the
Markov chain.

Summary 78

c c

pi pj

oij

si sj

Figure 3.9: Reflect move for discrete distributions. A unit interval is constructed
from segments {sk}. Each of these bars has width equal to the point’s probability.
Given current point si, the probability of transitioning to another point is pro-
portional to its overlap with si’s reflection. For example sj will be selected with
probability oij/si. Self-transitions are only possible if si overlaps with the middle
of the unit interval. This is when ordered overrelaxation is less helpful.

Assume we have a current sample si and wish to a apply a transition operator that
tends to take us to the opposite end of the distribution. Such a transition operator is
illustrated in figure 3.9. The probability interval corresponding to the current point,
[c, c+pi], is reflected to [1−c−pi, 1−c]. The reflected interval will have some overlap with
one or more points’ probability segments. We sample from these points with probability
proportional to their overlap oij with the reflected interval. The probability of observing
a transition from si→sj is

Ts(j← i) · pi =
oij

pi
· pi = oij , (3.13)

which is independent of the direction of the transition. Therefore detailed balance
holds; the generalized reflection rule leaves the discrete target distribution invariant.
Using this rule within algorithm 3.5 gives an operator based on arbitrary proposals that
is suitable for use in ordered overrelaxation or the persistent motion of subsection 3.4.2.

3.6 Summary

This chapter explored ways to use populations of points drawn from proposal distribu-
tions. We started with a review of two existing methods, “Population Monte Carlo”
(PMC) and Multiple-Try Metropolis (MTM), which highlighted two important points:

1. Proposal distributions used by MCMC are usually unsuitable for simple impor-
tance sampling. Attempts to combine MCMC with estimators based on impor-
tance sampling should not forget this.

2. Drawing multiple points in parallel from a proposal distribution usually gives
slower mixing than drawing the same number of points sequentially. The parallel
methods require savings from shared computations to be competitive.

In response to item 1. we derived a “waste recycling” scheme for MTM as an alternative
to an existing importance sampling-based estimator.

Related and future work 79

We then focussed on methods that use a population of points to move the state of
a Markov chain to the opposite side of a user-defined ordering. Chaining these up-
dates together can cause persistent motion through Neal’s ordered overrelaxation or
the method we introduced in subsection 3.4.2. A random walk will explore a distribu-
tion with length-scale L in O(L/σ2) steps of size σ. More persistent motion can bring
this down to O(L/σ). Our contributions to this area were:

1. Algorithm 3.3, which automatically reduces the size of a population when ordered
overrelaxation is less likely to be useful, saving computation.

2. Generalizing ordered overrelaxation to transition operators other than Gibbs sam-
pling, algorithm 3.4.

3. Using ordered transition operators for persistent motion without using
component-based updates, subsection 3.4.2.

4. Generalizing ordered updates to operate directly on a set of weighted points,
section 3.5. These moves are less likely to reject than using Metropolis–Hastings
within algorithm 3.4, which is important because rejections destroy persistent
motion.

The usefulness of these innovations relies on the assumption that drawing multiple pro-
posals is computationally efficient. It remains to be seen if implementations leveraging
caching of intermediate results or parallel computations will make our work effective
in real applications. Similar assumptions are made by related work in the literature,
which we now briefly consider along with directions for future research.

3.7 Related and future work

Tjelmeland (2004) and Stormark (2006) investigate an idea similar to pivot-based
Metropolis. They suggest drawing a set of antithetic variables, possibly using quasi
Monte Carlo. Recent work also applies these ideas to MTM (Craiu and Lemieux,
2007). Pivot-based Metropolis could also be extended in this way. Tjelmeland also
recommends waste-recycling, which would also apply to pivot-based algorithms. The
main difference in his algorithm is that all the states are drawn as proposals from the
current state x, rather than an intermediate state z. Making reversible moves based on
these proposals requires working out the probability of each state reproducing the entire
ensemble, an O(K2) computation. Our pivot state approach reduces this computation
to O(K) and makes an exchange of the current point with one of the proposals seem
more natural.

As an example we showed pivot-based ordered overrelaxation applied to slice sampling.
In fact, slice sampling already has its own method for overrelaxation (Neal, 2003), al-
though this is susceptible to rejections unless the edges of the slice are found accurately.

Related and future work 80

Ordered overrelaxation may be preferable as it never has rejections while needing only
enough information to draw K samples. There is a way to eliminate the pivot state
when slice sampling from unimodal distributions: it is possible to Gibbs sample the
slice sampling auxiliary distribution, so standard ordered overrelaxation applies.

Subsection 3.4.2 described a new way to make persistent motion along a direction that
defines an ordering on the state space. Choosing suitable methods for ordering points
will be problem-dependent in general. One generic application could be simulated tem-
pering (subsection 2.5.1), where energy could be used to define an ordering. Persistent
motion along this ordering should encourage the inverse-temperature to move more
rapidly between zero and one.

Radford Neal has suggested (personal communication) considering an alternative to
pivot-based transitions. This method starts with a random integer f drawn uniformly
between 0 and K inclusive. The current point x is evolved through a sequence of f

transitions using T . Then starting at x again, a sequence of b = K−f ‘backwards’
transitions is simulated using T̃ . Choosing uniformly from the resulting K+1 states
maintains the stationary distribution. Also reordering the points and choosing the
complement to x as in ordered overrelaxation is valid. Producing a chain of states
rather than a star of steps starting at a single state is likely to produce larger moves.

A version of Neal’s idea based on the weighted reflect operator of section 3.5 is also
possible. The chain could use transition operators that leave a cheaper-to-evaluate
surrogate distribution invariant. Proposal weights could be evaluated for a thinned
subset of the chain and then the reflect operator applied. Yet another possibility is the
multipoint Metropolis method (Qin and Liu, 2001), an extension to MTM that uses a
chain of states.

A disadvantage of using a chain of transitions is that each move must be made se-
quentially. The pivot-based algorithms introduced in this chapter could evaluate their
proposals in parallel on suitable computer hardware.

Chapter 4

Normalizing constants and

nested sampling

The computation of normalizing constants plays an important role in inference and
statistical physics. For example, Bayesian model comparison needs the evidence, or
marginal likelihood of a model M given observed data D

Z = p(D|M) =
∫

p(D|θ,M)p(θ|M) dθ ≡
∫

L(θ)π(θ) dθ, (4.1)

where the model has prior π and likelihood L over parameters θ. In statistical physics
Z(β) =

∫
exp(−βE(θ))dθ is the normalizing constant for the distribution over states

with energy E at inverse temperature β. In this context Z is an important quantity
known as the partition function, a function of β from which several fundamental prop-
erties of a system can be derived. The marginal likelihood, equation (4.1), is also a
function, in this case of the model M, which will become important in chapter 5. In
this chapter we focus on estimating the constant for a given model. We also consider
estimating the whole Z(β) function from physics which, perhaps surprisingly, is useful
for solving the marginal likelihood problem.

Statistical physics normally uses the normalization in its log form; − logZ is known as
the free energy of a system. When used in statistical inference logZ has also been found
to be a useful and natural scale for comparing models. Given two modelsM0 andM1

the log-likelihood ratio, log Z1/Z0 =log p(D|M1)−log p(D|M0), can be used in a classical
hypothesis test which rejects M0 in favor of M1 when a threshold is exceeded. This
means that absolute differences in logZ0 correspond to shifts in model quality that are
meaningful without reference to an alternative model. Researchers decrypting codes
at Bletchley park judged that a difference of roughly a deciban, log10

Z1/Z0 = 1/10, is
about the smallest difference in two models that people can express. Table 4.1 contains
qualitative descriptions of the importance of marginal likelihood ratios.

82

Table 4.1: A selection of qualitative descriptions of the importance of evidence values
taken from Kass and Raftery (1995) and Jeffreys (1961, Appendix B, p432). The third
column could be turned into a “deviance” by multiplying by two. For more on units of
information content, particularly the ban, see MacKay (2003, p264).

Z1/Z0
log2

Z1/Z0

(bits)
loge

Z1/Z0

(nats)
log10

Z1/Z0

(bans)
Evidence againstM0

1 to 3.2 0 to 1.7 0 to 1.2 0 to 0.5 Weak
3.2 to 10 1.7 to 3.3 1.2 to 2.3 1/2 to 1 Substantial
10 to 100 3.3 to 6.6 2.3 to 4.6 1 to 2 Strong

> 100 > 6.6 > 4.6 > 2 Decisive
> 1000 > 10 > 7 > 3 Beyond reasonable doubt(?)

The precise interpretation of the numerical value of a model’s evidence will depend on
context. In some applications it is quite possible to keep usingM0 even with a marginal-
likelihood ratio that in isolation seems in favor of M1 “beyond reasonable doubt”. In
a legal setting it may be that a guilty hypothesis being a thousand times more likely
than innocent is enough to convict. But other applications associate even more extreme
losses with adopting a particular model. In data compression of large files a difference
in size of 10 bits is insignificant. If compressing with M0 is computationally cheap an
improvement in marginal likelihood very much greater than 10 bits is required to adopt
a new model. Even in the legal setting one must remember that the most probable
model is not necessarily the one with the highest marginal likelihood. Extreme prior
ratios can cancel large likelihood ratios, although this shouldn’t happen very often.
Under the rules of rational inference one should mechanically apply Bayes’ rule, but
if the data are strongly out of line with prior expectations it would seem sensible to
carefully reexamine the models’ assumptions and check for computational errors.

This chapter focusses on the computation of Z. The message to take from the above
discussion is that computing the evidence of a model to a very high level of precision
is usually pointless. It is difficult to appreciate a difference in logZ of less than one,
and some errors larger than this may not affect decisions based on the computation.
This means that even noisy Monte Carlo estimates can be useful. Indeed Monte Carlo
techniques are sometimes identified as providing “gold standard” estimates of Z suit-
able for comparison with other approximate techniques (e.g. Beal and Ghahramani,
2003; Kuss and Rasmussen, 2005). However, just as with any Monte Carlo integration
method, it is quite possible to get wrong answers for some classes of difficult problems.
This includes algorithms guaranteed to be correct asymptotically. Developing a variety
of methods and checks and hoping for the best is all we can do in general.

This chapter first examines the necessary ingredients of a Monte Carlo method for
computing Z. Next we review nested sampling, a new method due to John Skilling. We
provide a comparative analysis of this new algorithm and more established techniques.
Then, having analyzed nested sampling in its own right, we consider using it as a
method for guiding and checking other algorithms.

Starting at the prior 83

4.1 Starting at the prior

By definition the prior π(θ) should spread its probability mass over settings of the pa-
rameters deemed reasonable before observing the likelihood L(θ). Therefore, samples
from this distribution can sometimes provide a useful representation of the whole pa-
rameter space. In particular, as Z is just an average under the prior, a simple Monte
Carlo approach could be attempted,

Z =
∫

L(θ)π(θ) dθ ≈ 1
S

S∑
s=1

L(θ(s)), θ(s) ∼ π(θ). (4.2)

The variance of this estimator may be huge. Most of the mass of the integral is as-
sociated with parameter settings that are typical under the posterior. The posterior
often occupies a small effective fraction of the prior’s volume, so it can take a long time
to obtain a representative sample. However simple Monte Carlo, equation (4.2), does
work on small problems and provides a simple-to-implement check of more complex
code. Starting at the prior will also form the basis of more advanced methods.

Why not start at the posterior instead? Posterior samples are concentrated around the
mass of the integral. Also practitioners already sample from the posterior for making
predictions. It would be convenient if these samples could also estimate Z. The obvious
importance sampling estimator for Z based on posterior samples is nonsensical as it
involves knowing Z. A moment of inspiration yields the following harmonic mean
estimator noted by Newton and Raftery (1994):

1
Z

=
1
Z

L(θ)
L(θ)

∫
π(θ) dθ =

∫
1

L(θ)
p(θ|D,M) dθ

≈ 1
S

∑
s

1
L(θ(s))

, θ(s) ∼ p(θ|D,M).
(4.3)

As acknowledged by its creators, this estimator has the unfortunate property that the
least probable points have small L and so carry the largest weights. Thus the effective
sample size tends to be very small; indeed the estimator can easily have infinite variance.

Various attempts have been made to fix the harmonic mean estimator, both within
the original paper and in more recent research (Raftery et al., 2007). The authors
are keen to avoid sampling from the prior as well as the posterior, however this goal
seems misplaced. Firstly, implementing samplers for most priors is relatively simple
and allows several diagnostics to be performed, e.g.: checking prior assumptions look
reasonable, checking against simple importance sampling (equation (4.2)) and Geweke
(2004)’s tests for “getting it right”. Secondly, while some specific instances seem to
work, there is a generic problem with posterior-only methods as pointed out by Neal in
the discussion of Newton and Raftery (1994). The choice of prior has a strong influence
on the value of Z; taking a broad prior to an improper limit will send Z towards zero.

Starting at the prior 84

However in many inference problems the data are so influential that the statistics of
the posterior are fairly insensitive to such changes in the prior. This demonstrates that
posterior statistics alone bear little relation to Z in many statistical problems.

Reliable estimates of Z require finding the prior mass associated with the large likeli-
hood values found under the posterior. In low-dimensional problems this is a feasible
density estimation problem, although deterministic approximations to Z based on a
direct fit to the posterior may be preferable in those cases. Chib (1995) notes that it
is sufficient to know the posterior probability at just a single point. For any point θ∗

Z =
L(θ∗) π(θ∗)
P (θ∗|D,M)

. (4.4)

Chib provides an estimator for P (θ∗|D,M) based on the probability of a Gibbs sam-
pler’s transitioning to θ∗ from each of the points visited by the sampler. Chib’s method
is relatively easy to apply and should work well on unimodal problems.

Posteriors with more complex shapes will lead to subtle difficulties. In general it is
unreasonable to expect the sequence of states visited by a sampler to densely cover the
posterior in models with many parameters. If this were possible it would be feasible to
build a kernel density estimate on the basis of a preliminary run and perform importance
sampling. Instead practitioners simply hope to get a representative sample of points
that are useful for prediction. It is accepted that the sampler may not go near some
typical points. As an analogy consider conducting a survey of the world population.
A sample of people might not include anyone from some cities, yet will be adequate
for many statistical purposes. In contrast Chib’s method is likely to fail without fairly
dense sampling. If none of the posterior samples can easily reach θ∗ within one Gibbs-
sampling iteration (“are in its city”) the estimator will be badly behaved. This won’t
occur if θ∗ was chosen from the posterior samples, but this is only hiding the problem
at the expense of biasing the estimator.

Jumping directly to the posterior is fraught with problems. The normalizer Z is a
global quantity that depends on the entire posterior’s relationship to the prior. If
standard numerical methods apply, that is good news. But if the posterior is sufficiently
complicated to justify MCMC the place to start is probably a much simpler distribution
like the prior. On small problems simple Monte Carlo can be more reliable than Chib’s
method Neal (1999). When solving larger problems prior sampling, equation (4.2),
doesn’t work either. We need advanced methods that start with a feasible sampling
problem but overcome the variance problems of simple importance sampling.

Bridging to the posterior 85

4.2 Bridging to the posterior

When samples from the prior rarely find regions of high posterior mass a distribution
closer to the posterior is needed for importance sampling to work. Designing or adap-
tively finding a tractable approximation to the posterior is one approach, although hard
in general. Another solution is a divide-and-conquer approach; rather than finding Z
directly a series of easier sub-problems are solved.

First consider a family of distributions, specified by an inverse temperature β,

p(θ;β) =
1
Z(β)

π(θ)L(θ)β =
1
Z(β)

π(θ) e−βE(θ), E(θ) ≡ − log L(θ). (4.5)

The prior has β =0, while p(θ;β =1) is the posterior. All of the distributions for β >0
involve unknown normalizations given by the partition function Z(β). We will try to
compute this function for a range of inverse temperatures β0 =0 < β1 < β2 . . . < βK <

βK+1 =1.

When adjacent distributions p(θ;βk) and p(θ;βk+1) are close they can be compared
with standard importance sampling. As reviewed in subsection 1.3.2, weights give the
relative importance of states evaluated under the two distributions,

w∗k(θ) =
π(θ)L(θ)βk+1

π(θ)L(θ)βk
= L(θ)βk+1−βk . (4.6)

The expected value of these weights is the ratio of the two distributions’ normalizers:

Z(βk+1)
Z(βk)

≈ 1
S

S∑
s=1

w∗k(θ
(s)), θ(s) ∼ p(θ;βk). (4.7)

These estimates can then be combined using

Z =
Z(βK+1)
Z(β0)

=
Z(β1)
Z(β0)

Z(β2)
Z(β1)

Z(β3)
Z(β2)

· · · Z(βK+1)
Z(βK)

. (4.8)

Numerical concerns suggest taking logs of a large positive product,

logZ = log
Z(βK+1)
Z(β0)

=
K∑

k=0

log
Z(βk+1)
Z(βk)

, (4.9)

where each term in the sum can be estimated from samples under p(θ;βk). This form
is also convenient for error bars: the variance of an estimator for logZ is the sum of
the variances of the estimators for the log of each ratio.

Given this basic annealing approach there are several implementation alternatives. Sim-
ulated tempering and parallel tempering reviewed back in section 2.5 both offer corre-
lated samples from p(θ;β) over a user-set range of β. Annealed importance sampling,

Bridging to the posterior 86

subsection 2.5.3, samples from distributions which are only close to p(θ;β), but a single
run gives the same estimator as above for S =1:

l̂ogZ =
K∑

k=0

log w∗k(θ
(k)) =

K∑
k=0

(βk+1 − βk) log L(θ(k)), (4.10)

where θ(k) is the sample drawn at the kth iteration of AIS, or a single sample from
p(θ;βk).

When S >1 or multiple AIS runs are performed the samples are combined differently.
Independent importance samplers provide local gradients or ratio information at each
temperature. The samples are first combined at each level as in equation (4.7). AIS
gives up the requirement for valid samples from each p(θ;βk) by running importance
sampling on a global distribution (see subsection 2.5.3). Thus AIS dictates forming in-
dependent Ẑ estimates from each run and then averaging them. Generally the AIS esti-
mator should be used because it does not assume exact samples are available from each
temperature. In some cases applying equation (4.7) to pseudo-samples from rapidly
mixing Markov chains can work better than AIS, but is difficult to justify.

4.2.1 Aside on the ‘prior’ factorization

Some readers may be more familiar with canonical distributions defined by p(θ;β) =
exp(−βE(θ))/Z(β). Here the energy E is defined in terms of the negative-log of the
whole unnormalized probability rather than just the likelihood. For finite state spaces
this corresponds to equation (4.5) with a uniform π(θ). In an unbounded state space
p(θ;β =0) is an improper distribution. Introducing a tractable, normalized base mea-
sure π(θ) ensures it is always possible to sample from p(θ;β=0).

The base measure π(θ) need not be a prior distribution. Another choice may be com-
putationally convenient, or the problem may not be Bayesian and so have no prior. In
subsection 4.7.3 a distribution is factorized in an unconventional way for algorithmic
reasons. The term prior is used throughout this chapter to emphasize a common usage
of these algorithms, and that π(θ) should usually be a simple, tractable starting point.

4.2.2 Thermodynamic integration

The bridging procedures above have been independently developed by various commu-
nities (Gelman and Meng, 1998). These different views can bring a better understanding
to the problem. The statistical physics community views Z as a useful function. Apply-
ing operators to the partition function often yields interesting, physically meaningful

Bridging to the posterior 87

quantities. In particular for the canonical distribution

p(θ;β) =
1
Z(β)

π(θ)e−βE(θ), Z(β) =
∫

π(θ)e−βE(θ) dθ, (4.11)

the log-normalizer is a moment generating function:

d logZ
dβ

= − 1
Z

∫
E(θ) π(θ)e−βE(θ) dθ

= −Ep(θ;β)[E(θ)]

d2 logZ
dβ2

=
1
Z

∫
E(θ)2 π(θ) e−βE(θ) dθ −

(
1
Z

∫
E(θ) π(θ) e−βE(θ) dθ

)2

= Ep(θ;β)

[
E(θ)2

]
− Ep(θ;β)[E(θ)]2

= varp(θ;β)[E(θ)]

· · ·

(4.12)

Unlike Z itself these expectations can reasonably be approximated for a given temper-
ature using samples recorded under simulations at that temperature. Of course logZ
is related to its gradients by a trivial identity:

logZ(1) = logZ(0) +
∫ 1

0

d logZ
dβ

∣∣∣∣
β̃

dβ̃

logZ = log
Z(1)
Z(0)

= −
∫ 1

0
Ep(θ;β)[E(θ)] dβ.

(4.13)

The simplest discrete approximation to equation (4.13) uses measurements at a se-
quence of temperatures β0 =0, β1, . . . βK in order to estimate the normalizer at inverse
temperature βK+1 =1,

l̂ogZ = −
K∑

k=0

(βk+1 − βk)E(θk), θk ∼ pβk
. (4.14)

Comparing to equation (4.10) and remembering that E(θ) = − log L(θ) we see that
simple thermodynamic integration and a bridging sequence of importance samplers are
the same approximation.

Thermodynamic integration seems deceptively general. The difficulty is in choosing in-
termediate distributions. Appropriate temperature-based distributions may be difficult
and sometimes impossible to find. This chapter explores how to choose a sequence of
temperatures and alternative methods that don’t use annealing schedules.

Multicanonical sampling 88

4.3 Multicanonical sampling

The multicanonical ensemble was mentioned in section 2.6 as a distribution that might
allow better Markov chain exploration of the state space than the original target dis-
tribution. The multicanonical ensemble is available in terms of the target distribution
pt(θ)=p∗t (θ)/Zt and a multicanonical weighting function wMC(θ):

pMC(θ) =
p∗MC(θ)
ZMC

, p∗MC(θ) = p∗t (θ) wMC(θ). (4.15)

The multicanonical heuristic suggests finding a weighting such that a Markov chain
exploring pMC(θ) spends equal times at all energies, including those typical of the pos-
terior and the prior. A weighting function giving approximately this behavior must be
found from preliminary runs.

Samples from pMC can be used as an importance sampling proposal distribution. As
in subsection 1.3.2 weights w∗(θ) = p∗(θ)/p∗MC(θ) give the normalizing constant ratio
between any distribution p(θ)=p∗(θ)/Zp and the multicanonical distribution pMC:

∆(p) =
1
S

S∑
s=1

w∗(θ(s)) ≈ Zp

ZMC

. (4.16)

The multicanonical normalization ZMC is generally unavailable but can be eliminated
by comparing to the base distribution:

l̂ogZt = log ∆(pt)− log ∆(π). (4.17)

Instead of bridging carefully between the prior and posterior, the multicanonical en-
semble has the ambitious goal of capturing both at once. One hopes that the broad
coverage of pMC gives estimators with reasonable variance for quantities relating to both
pt and π. This is explored theoretically and experimentally in later sections.

4.4 Nested sampling

Nested sampling is a new Monte Carlo method by Skilling (2004, 2006, 2007) intended
for “general Bayesian computation”, which bears some relation to earlier work found
in McDonald and Singer (1967). It is designed to be a general and robust alternative
to annealing-based methods. Like annealing it starts at the prior and samples from
a sequence of distributions that become more constrained at each iteration. However,
nested sampling makes no use of temperature and does not require tuning of intermedi-
ate distributions or other large sets of parameters. It also provides a natural means to
compute error bars on all of its results without needing multiple runs of the algorithm.

Nested sampling 89

The key feature and technical difficulty of nested sampling is sampling from the prior
subject to a series of lower bounds on the likelihood. The reward for attempting
this novel challenge is an estimate of the prior probability mass associated with each
observed likelihood value. This representation of the posterior provides an estimate of
the normalization constant and any other property of the posterior.

In addition to reviewing necessary material the remainder of this chapter provides:

1. An improved implementation of nested sampling for problems with degenerate
likelihoods or discrete distributions.

2. A brief study of a deterministic approximation of nested sampling’s behavior.
This has theoretical implications for its performance and practical benefits for
some applications.

3. A comparative analysis of the generic properties of annealed importance sampling,
nested sampling and multicanonical sampling.

4. Illustrative examples: some simple continuous distributions and the Potts model,
an undirected graphical model. Incidentally a new variant of Swendsen–Wang is
derived.

Some of this material was previously presented in Murray et al. (2006b).

4.4.1 A change of variables

The normalization of a posterior over variables θ is a weighted sum of likelihoods L(θ)
over elements of prior mass π(θ)dθ:

Z = p(D|M) =
∫

p(D|θ,M) p(θ|M)dθ =
∫

L(θ) π(θ)dθ. (4.18)

We label each element of prior mass dx(θ)=π(θ)dθ. This is only a change in notation:

Z =
∫

L(θ) dx(θ). (4.19)

The integral could, in principle, by accumulating elements in a standard raster order in
the θ parameter space, figure 4.1a. Alternatively we can add up the contributions from
each scalar element of prior mass dx in any order we like. As illustrated in figure 4.1b we
choose to order the elements by their corresponding likelihood. As π is a distribution,
its elements sum to one and can be arranged along a unit interval:

Z =
∫ 1

0
L(θ(x)) dx, x(θ) =

∫
θ′:L(θ′)>L(θ)

π(θ′) dθ′. (4.20)

For now assume θ is continuous and L(θ) provides a total ordering of elements so that
x(θ) is an invertible change of variables. In subsection 4.4.6 these assumptions will be
relaxed so that the mapping will always be invertible.

Nested sampling 90

(a) (b)

Figure 4.1: Views of the integral Z=
∫

L(θ) π(θ)dθ for the posterior normaliza-
tion: (a) Elements of the parameter space dθ are associated with likelihood values
(heights) L(θ). These elements’ likelihood values are summed weighted by their
prior masses π(θ)dθ. (b) Bars with exactly the same set of heights are arranged
in order along a scalar unit interval. Three bars are colored to help illustrate
the correspondence. In (a) the bars have a (hyper-)area base corresponding to
an element in parameter space. In (b) they have a scalar width corresponding to
an element of prior mass dx=π(θ(x))dθ(x). The area of each bar is its weighted
likelihood, so Z is the sum of these, the area under the curve in (b).

The mapping x(θ) may seem strange, but is closely related to the familiar cumulative
distribution function (CDF) for a one-dimensional density p:

c(θ) =
∫

θ′:θ′<θ

p(θ′) dθ′. (4.21)

This quantity is often considered very natural; some authors prefer to define distri-
butions in terms of the CDF. Unlike a density the CDF is invariant to monotonic
changes of variable and it directly returns the probability mass between two settings of
the parameters. Also its inverse allows the straightforward generation of samples from
uniform random variates. Each element dc corresponds to an element of probability
mass, p(θ)dθ. Naturally these elements sum to one:

∫ 1
0 dc=1.

Cumulative distribution functions for multivariate distributions are less frequently used
in statistics. A sensible ordering of the elements of probability mass is less obvious, and
the multivariate integrals involved may be difficult. Comparing equations (4.20) and
(4.21) we see that x is just a cumulative distribution function of the prior corresponding
to a particular choice of ordering. For scalar parameters the standard inverse CDF θ(c)
gives the parameter such that fraction c of the prior mass is associated with parameters
less than θ. For general parameters the inverse of the likelihood-sorted CDF θ(x) gives
the parameter value such that fraction x of the prior mass is associated with likelihoods
greater than L(θ). This is illustrated in figure 4.2a. For multimodal likelihoods the
prior mass satisfying a likelihood constraint will be scattered over disconnected regions.

Nested sampling 91

θ1

θ2

x11

2

1

4

1

8

L(x)

(a)

θ1

θ2

x1

L(x)

x
(1)

x
(2)

x
(3)

(b)

θ1

θ2

x1

L(x)

x
(1)

(c)

Figure 4.2: Nested sampling illustrations (adapted from MacKay (2004)).
(a) Elements of parameter space (top) are sorted by likelihood and arranged on
the x-axis. An eighth of the prior mass is inside the innermost likelihood contour
in this figure. (b) Point x(s) is drawn from the prior inside the likelihood contour
defined by x(s−1). L(s) is identified, the ordering on the x-axis and p({x(s)}) are
known, but exact values of x(s) are not known. (c) With N particles, the one with
smallest likelihood defines the likelihood contour and is replaced by a new point
inside the contour ({L(s)} and p({x(s)}) are still known).

4.4.2 Computations in the new representation

Given the change of variables described in the previous section the normalizer is just the
area under a monotonic one-dimensional curve “L vs. x”. One-dimensional integrals
are usually easy to approximate numerically. Assuming an oracle provided some points
{(x(s), L(s))}Ss=1 ordered such that x(s) > x(s+1), we can obtain an estimate Ẑ based
on quadrature:

Ẑ =
S∑

s=1

L(s)w(s)
q w(s)

q =
1
2
(
x(s−1) − x(s+1)

)
, (4.22)

where the quadrature weights given correspond to the trapezoidal rule. Rectangle rules
can upper and lower bound the error Ẑ−Z, as long as an upper bound on L is known.
The boundary conditions of the sum require an arbitrary choice for the edge x-values
such as x(0) =2 − x(1) and x(S+1) =−x(S). Sensitivity to such choices could always be
checked; in our experience they do not matter.

Quadrature is effectively approximating the posterior with a distribution over S parti-
cles each with probability proportional to L(s)w

(s)
q . Samples from this distribution can

approximate samples from the true posterior. The approximate distribution can also
be used to directly approximate posterior expectations.

The change of variables has removed details of the high-dimensional θ space and made

Nested sampling 92

the integration problem apparently easy. Of course the high-dimensional space is still
in the original problem and will make the change of variables intractable. This is now
the target for approximation.

4.4.3 Nested sampling algorithms

Nested sampling aims to provide a set of points {θ(s), L(s)}Ss=1 and a probability distri-
bution over their corresponding x={x(s)} values. A simple algorithm to draw S such
points is algorithm 4.1, see also figure 4.2b.

Algorithm 4.1 Single particle nested sampling

1. Initial point: draw θ(1) ∼ π(θ)
2. for s = 2 to S

3. draw θ(s) ∼ π̆(θ;L(θ(s−1))), where

π̆(θ;L(θ(s−1))) ∝

{
π(θ) L(θ) > L(θ(s−1))
0 otherwise.

(4.23)

4. end for

The first parameter set by this algorithm is drawn from the prior, which implies that the
corresponding cumulative prior quantity must have distribution p(x(1))=Uniform[0, 1].
Similarly p(x(s)|x(s−1)) = Uniform[0, x(s−1)], as each point is drawn from the prior
subject to L(θ(s))>L(θ(s−1))⇒ x(s) <x(s−1). This recursive relationship defines p(x).

A simple generalization, algorithm 4.2, uses multiple θ particles; at each step the one
with smallest likelihood is replaced with a draw from a constrained prior (figure 4.2c).

Algorithm 4.2 Multiple particle nested sampling

1. Initialize: draw N points {θ(n) ∼ π(θ)}Nn=1

2. m = argminn L(θ(n))
3. θ(1) = θ(m)

4. for s = 2 to S

5. redraw θ(m) ∼ π̆(θ;L(θ(s−1))), given by equation (4.23), algorithm 4.1
6. m = argminn L(θ(n))
7. θ(s) = θ(m)

8. end for

The first parameter θ(1) is the setting with the smallest L from the initial N draws,
this is the particle with the largest x. For this parameter to be at x(1) the other (N−1)
points must have x < x(1) so p(x(1)|N) = N(x(1))N−1. The extra factor of N comes
from the invariance of the points to reordering and is needed for correct normalization.
Alternatively it is immediately identified as a standard result1 from order statistics

1The n-th ordered point drawn from a distribution has its cumulative quantity distributed according
to Beta(n, N+1−n) where our case corresponds to n=N .

Nested sampling 93

(e.g. Balakrishnan and Clifford Cohen, 1991). After replacing a particle in step 5.
there will be N samples uniformly between 0 and x(s−1). The point with smallest
L and largest x will be a fraction r = x(s)/x(s−1) through this range, distributed as
p(r|x(s−1), N)=NrN−1. Changing variables gives:

p(x(s)|x(s−1), N) = N
(x(s))N−1

(x(s−1))N
, 0 < x(s) < x(s−1). (4.24)

This defines the joint distribution over the entire sequence:

p(x)=p(x(1)|N)
S∏

s=2

p(x(s)|x(s−1), N). (4.25)

Note that p(x) depends only on N , it is the same distribution regardless of the problem-
dependent likelihood function.

If we knew the x locations, we could combine these with the likelihood observations
L={L(s)}Ss=1 and compute the estimate of the normalization Ẑ given in equation (4.22).
Instead we have a distribution over x, which gives a distribution over what this esti-
mator would be:

p(Ẑ|{L(s)}, N) =
∫

δ(Ẑ(x)− Ẑ) p(x|N) dx. (4.26)

We defer philosophizing over the precise meaning of this distribution to subsection 4.9.3.
For now we assume that this distribution gives reasonable beliefs over the estimate
that would be obtained by quadrature. As can be checked in a given application, the
uncertainty of this distribution tends to be much larger than the differences between
choices of quadrature scheme. We can therefore, somewhat loosely, take equation (4.26)
to be a distribution over Z itself. Similarly distributions over any other quantity such
as logZ or posterior expectations can be obtained by averaging quadrature estimates
over p(x|N).

To recap, the key ideas required to understand nested sampling are:

• It would be convenient if we could perform an intractable mapping from the
original state space θ to a cumulative quantity x. Numerical computation of Z
or posterior expectations would only involve a one-dimensional function.

• Samples from the prior, subject to a nested sequence of constraints, equa-
tion (4.23), give a probabilistic realization of the mapping.

• These samples give a distribution over the results of any numerical computation
that could be performed given the change of variables.

No algorithm can solve all problems: some pathological integration problems will always
be impossible. For nested sampling the difficulty is in obtaining samples from the nested
sequence of constrained priors.

Nested sampling 94

1e-120

1e-100

1e-80

1e-60

1e-40

1e-20

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x
s

s

〈x〉
exp(〈log x〉)

error bars

1e-115

1e-110

1e-105

1e-100

1e-95

1e-90

1e-85

1e-80

1e-75

1500 1600 1700 1800 1900 2000

x
s

s

〈x〉
exp(〈log x〉)

error bars

Figure 4.3: The arithmetic and geometric means of x(s) against iteration num-
ber, s, for algorithm 4.2 with N = 8. Error bars on the geometric mean show
exp(−s/N ±

√
s/N). Samples of p(x|N) are superimposed (s = 1600 . . . 1800

omitted for clarity).

4.4.4 MCMC approximations

The nested sampling algorithm assumes obtaining samples from π̆(θ;L(θ(s−1))), equa-
tion (4.23), is possible. This is somewhat analogous to thermodynamic integration’s
requirement for samples drawn from a sequence of temperature-based distributions in
section 4.2. Annealed importance sampling offers a way to approximately sample from
temperature-based distributions and still obtain unbiased estimates of Z. In contrast,
nested sampling really needs exact samples from its intermediate distributions, π̆, for
its theoretical justification to be valid.

Rejection sampling of the constrained distributions using π would slow down exponen-
tially with iteration number s. In general we do not know how to sample efficiently
from the constrained distributions so, despite the theoretical difficulties, we will replace
step 5 of algorithm 4.2 with an approximate sampler using a few steps of a Markov
chain. In practice this often works well, but one must remember to be careful when
interpreting error bars that ignore the approximation.

We must initialize the Markov chain for each new sample somewhere. One possibility
is to start at the position of the deleted point, θ(s−1), on the contour constraint, which
is independent of the other points and not far from the bulk of the required uniform
distribution. However, if the Markov chain mixes slowly amongst modes, the new point
starting at θ(s−1) may be trapped in an insignificant mode. Experience suggests it is
generally better to start at one of the other N−1 existing points inside the contour
constraint. These are all (ideally) draws from the correct distribution, π̆(θ;L(θ(s−1))),
so represent modes fairly. Making this new point effectively independent of the point
it cloned may take many Markov chain steps. How many to use is an unfortunate free
parameter of MCMC-based nested sampling.

Nested sampling 95

4.4.5 Integrating out x

To estimate quantities of interest, we must average over p(x|N), as in equation (4.26).
The mean of a distribution over log(Ẑ) can be found by simple Monte Carlo estimation:

log(Z) ≈
∫

log(Ẑ(x))p(x|N) dx ≈ 1
T

T∑
t=1

log(Ẑ(x(t))), x(t) ∼ p(x|N). (4.27)

This scheme is easily implemented for any expectation under p(x|N), including error
bars from the variance of log(Ẑ). To reduce noise in comparisons between runs it is
advisable to reuse the same samples from p(x|N) (e.g. clamp the seed used to generate
them).

A simple deterministic approximation of p(x|N) is useful for understanding, and also
provides fast-to-compute, low-variance estimators. After S iterations x(S) =

∏S
s=1 t(s),

where the t(s) are drawn i.i.d. from p(t) = NtN−1. Dealing with this distribution
directly requires substantial work, but notice that log(x(S)) =

∑S
s=1 log(t(s)) is a sum

of independent terms. The central limit theorem suggests that this should be well
characterized by its mean and standard deviation:

log(x(S)) = −S/N ±
√

S/N. (4.28)

Figure 4.3 shows how well this description summarizes sequences sampled from p(x|N).

Using the geometric path as a proxy for the unknown x is a cheap alternative to Monte
Carlo averaging over settings (equation (4.27)); see figure 4.4. We might further assume
that trapezoidal estimates of integrals are dominated by a number of trapezoids found
around a particular iteration s∗. The corresponding uncertainty in log Ẑ will be domi-
nated by uncertainty in log x(s∗) =−s∗/N±

√
s∗/N . It usually takes extensive sampling

to distinguish
√

s∗/N from the true standard deviation of the posterior over log Ẑ.

4.4.6 Degenerate likelihoods

The progress of nested sampling is supposed to be independent of the likelihood func-
tion. The procedures that estimate quantities based on nested sampling results rely on
this behavior. As an example, the geometric mean path suggests that with N = 100
particles nested sampling should typically get to x=0.1 after about −100 log 0.1 ≈ 230
iterations. Now consider running nested sampling algorithm 4.2 on a problem with the
following likelihood function:

L(x) =

0.5 0 < x < 0.1

0.01 0.1 < x < 1.
(4.29)

Nested sampling 96

−5 0 5
0

10

20

30

(a)

−5 0 5
0

100

200

300

(b)

−5 0 5
0

50

100

150

200

250

(c)

Figure 4.4: Histograms of errors in computing Ep(x)

[
log Ẑ

]
under three approx-

imations for integrating over p(x) (1000 random experiments shown). The test
system was a 40-dimensional hypercube of length 100 with uniform prior centered
on the origin. The log-likelihood was L=−θ>θ/2. Nested sampling used N =10,
S = 2000. (a) Monte Carlo estimation (equation (4.27)) using T = 12 sampled
trajectories. (b) T = 1200 sampled trajectories. (c) Deterministic approximation
using the geometric mean trajectory. In this example the distribution p(log Ẑ)
(from equation (4.26)) has a width ≈ 3 so the errors in finding its mean in (b) and
(c) are tolerable.

After drawing N =100 particles from the prior about 90 of them will have x>0.1 and
L=0.01. If the inequality L(θ(s))>L(θ(s−1)) is strictly enforced all new particles must
have L> 0.01 and therefore x< 0.1. Therefore x=0.1 will be reached in about s=90
iterations, leading to very wrong results. If instead L(θ(s))≥L(θ(s−1)) is enforced the
results will still be wrong: x=0.1 will not be reached until about iteration s=900.

The problem is that the mapping set up in subsection 4.4.1 required a total ordering of
all the dx elements of prior mass. It was assumed the likelihood function L(θ(x)) pro-
vided a unique key for this sort operation. In many applications this will be sufficient;
as long as no two likelihood evaluations in algorithm 4.2 are numerically identical there
is no problem. But degenerate likelihoods like equation (4.29) require special treat-
ment. Completely flat plateaus in likelihood functions of continuous variables are rare.
But when θ is discrete, finite elements of prior mass carry the same likelihood. This
will always introduce plateaus in L(x).

Solving the degeneracy problem requires imposing a total ordering on the dx elements.
Earlier presentations of nested sampling (Skilling, 2006) suggest introducing an aux-
iliary labeling of the states, `(θ) that resolves likelihood ties. It was suggested these
labels could be chosen arbitrarily:

“Random samples from Uniform[0, 1] suffice, as would a cryptographic iden-
tification key derived from θ, or almost anything else.”

However, a fixed key does not solve the problem with discrete parameters. If the
0.1<x<1 plateau in the example above originated from a single discrete θ setting, then
all the dx elements in this range would receive the same cryptographic key. Likelihood

Nested sampling 97

ties would still be unresolved. If random labels are employed and always regenerated on
repeated observations of the same θ then nested sampling will give the correct results.
This is how the code Skilling has made available is implemented2.

Skilling (2007) mentions a better way of thinking about the random ‘labels’. Instead
of an extra piece of information attached to each parameter setting, ` is an extra
input variable for an extended problem with a likelihood that depends on θ and `.
The distinction may seem fine: on large problems the same θ location will rarely be
revisited. But getting this right is important for obtaining correct answers on small test
problems. The joint distribution view also allows a rejectionless algorithm for the Potts
example in subsection 4.8.3, which was (tersely) introduced in Murray et al. (2006b).

The auxiliary joint distribution is over the variables of interest θ and an independent
variable ` ∈ [0, 1]:

p(θ, `) = p(θ) · p(`) =
1
Z

L(θ)π(θ) · 1
Z`

L0(`)π0(`)

=
1
Z

LJ(θ, `)π(θ),
(4.30)

where LJ(θ, `)=L(θ)L0(`), L0(`)=1+ ε(`−0.5), π0(`)=1 and Z` =1. Standard nested
sampling is now possible. At each iteration LJ(θ, `) must increase. We can choose ε

such that log(ε) is smaller than the smallest difference in log(L(θ)) allowed by machine
precision. This ensures the auxiliary variable ` will only matter when L(θ)=L(θ(s−1)).
The constrained-prior distribution becomes

π̆J(θ, `; θ(s−1), `(s−1)) ∝

π(θ) L(θ) > L(θ(s−1))

π(θ) L(θ) = L(θ(s−1)) and ` > `(s−1)

0 otherwise.

(4.31)

MCMC-based implementations of nested sampling require transition operators that
leave π̆J stationary. The simplest method is to propose θ with an operator that leaves
the original π̆ constrained prior stationary and then generate `∼Uniform[0, 1], rejecting
the proposal if `<`(s−1).

A rejectionless method would be preferable and is sometimes possible by marginalizing
out `

π̆m(θ; {θ, `}(s−1)) ∝

π(θ) L(θ) > L(θ(s−1))

π(θ)(1− `(s−1)) L(θ) = L(θ(s−1))

0 otherwise.

(4.32)

If the operator used for π̆ was slice sampling (subsection 2.4.2), then π̆m can also
be slice sampled directly. Similarly a Gibbs sampler could easily be adapted to use
the conditionals of π̆m instead of π̆. If Metropolis–Hastings proposals are used it will

2Available from http://www.inference.phy.cam.ac.uk/bayesys/

http://www.inference.phy.cam.ac.uk/bayesys/

Efficiency of the algorithms 98

sometimes be possible to re-weight q(θ′ ← θ) to reduce or eliminate rejections. An
example of such a transition operator is developed in subsection 4.8.3.

After generating θ(s) the auxiliary variable `(s) can be drawn from its conditional dis-
tribution

π̆(`(s)|θ(s); {θ, `}(s−1)) =

Uniform[0, 1] L(θ(s)) > L(θ(s−1))

Uniform[`(s−1), 1] L(θ(s)) = L(θ(s−1)).
(4.33)

As a minor refinement this could be done lazily if and when it is required by the next
iteration.

4.5 Efficiency of the algorithms

This section attempts to compare the computational efficiency of three significant al-
gorithms for estimating normalizing constants. General comparisons of Monte Carlo
algorithms are hard to make as they are designed for use with problems where ground
truth is unavailable. Also some algorithms are targeted at a particular class of problem,
making performance comparisons on other classes unfair.

All three normalizing constant methods considered below are designed to deal with
problems in which the base measure π(θ) is much more diffuse than the compact target
distribution pt(θ). We look at the scaling of computational cost with the nature of this
disparity. The behavior of a multivariate Gaussian toy problem is worked out for each
algorithm. The base distribution π is vaguely distributed with precision τπ,

π(θ) =
1
Zπ

exp

(
−τπ

2

D∑
d=1

θ2
d

)
. (4.34)

The target distribution pt has higher precision τt,

pt(θ) =
1
Zt

exp

(
−τt

2

D∑
d=1

θ2
d

)

=
Zπ

Zt
π(θ)L(θ), L(θ) = exp

(
−τt − τπ

2

D∑
d=1

θ2
d

)
.

(4.35)

We pretend that the normalization constants of the Gaussians are unknown and require
all of the algorithms under study to return an approximation to the (log of the) ratio
Zt/Zπ =(τt/τπ)(D/2).

Many continuous distributions have locally-Gaussian peaks, so poor performance on
the toy problem would be a general cause for concern. We also make some general
remarks relevant to non-Gaussian modes. Despite this the theoretical comparison pre-
sented here is necessarily limited: unreasonable assumptions are made regarding the

Efficiency of the algorithms 99

ability to draw samples from intermediate distributions. Obviously this doesn’t test the
ability of the algorithms to find and then fairly represent isolated modes. This will be
probed in the empirical comparisons in the sections that follow. For now the analysis
is confined to behavior that does not require details of particular Markov chains used
in implementations.

4.5.1 Nested sampling

The scaling behavior of nested sampling can be found without detailed calculation. The
algorithm is characterized by an exponential shrinkage of the prior mass under consid-
eration. If the bulk of the posterior mass is found around x∗, then an N -particle nested
sampling run reaches dominant terms in the integral after s∗ = −N log x∗ iterations.
Subsection 4.4.5 explained that the uncertainty in logZ is typically ±

√
s∗/N .

Obtaining a unit uncertainty in logZ would require setting the number of particles
to N =

√
s∗. For this choice the number of iterations required to reach the target

distribution’s mass from the prior is s∗=(log x∗)2.

Most of a high-dimensional Gaussian’s mass is within a hyper-spherical shell out at
a radius of

√
D/τ . This means that the bulk of the target distribution is in a shell

enclosing a fraction ∼ (τπ/τt)D of the prior volume. If the prior were uniform then
we could immediately say that the bulk of the target distribution is found around
x∗ ≈ (τπ/τt)D. It turns out3 that this is a good enough description for Gaussians
too: log x∗ ≈−D log τt/τπ. Therefore, the s∗ = (log x∗)2 computational cost of nested
sampling on the toy problem is:

Number of samples for unit error, s∗ ≈ D2 (log τt/τπ)2 . (4.36)

The O(D2) scaling revealed by this analysis is somewhat disappointing. If each sam-
ple costs O(D) to produce then the total cost for a unit error is O(D3). If one
knew that each dimension were independent one could estimate the log-normalizer
of each Gaussian separately. Making the D estimates have variance 1/D would require
≈ D (log τt/τπ)2 samples each. But samples of just one variable only cost O(1) com-
putation, which gives a total cost of O(D2) rather than O(D3). The reason to resort
to Monte Carlo is that real computations do not decompose this way. But we shall
see that without detailed knowledge of the distribution annealing does only need O(D)
iterations. The advantages of nested sampling do come at a cost.

3According to the χ2 cumulative distribution function the log-cumulative prior mass inside a radius
of

p
D/τt is log γ(D/2,(Dτπ)/(2τt))

Γ(D/2)
, which numerically matches the scaling of −D log τt/τπ to within a

small factor over a large range of τπ/τt and D.

Efficiency of the algorithms 100

4.5.2 Multicanonical sampling

As there are many possible algorithms for constructing an approximate multicanonical
ensemble a general comparison to ‘the’ method is hard. Instead we generously assume
that we have obtained (by chance) the ideal function that reweights the target distribu-
tion such that the distribution over energy is uniform. This avoids having to consider
the details of histogram-building methods or other energy density approximations. The
danger is that this section’s results may be severely misleading if the dominant com-
putational cost is actually obtaining the reweighting. The analysis here should be seen
as a lower bound of the costs involved and could be useful for indicating which method
is best for refining initial results, however they were obtained.

By definition the multicanonical ensemble has a uniform marginal distribution over en-
ergy. To be defined this distribution must be confined to some finite range, width H say,
so pMC(E(θ))=1/H. This ensemble could be used to compute the normalizing constant
of a simple target distribution, ps, which also has a uniform energy distribution but
over an energy range with smaller width h. The importance weights, equation (4.16),
are a constant with probability h/H and zero otherwise. This distribution gives

var[log ∆(ps)] ≈
H

Sh
(4.37)

after S (effective) samples. Empirically the estimator still exhibits quite heavy tails
after the S =H/h samples predicted for unit error, but the expression gives good error
bars for larger S. Finding effective widths corresponding to H and h will provide a
rule-of-thumb estimate of multicanonical’s variance on more complex distributions.

We now derive properties of the multicanonical ensemble for the Gaussian problem.
Under the target multivariate Gaussian the energy is

E(θ) = − log L(θ) =
τt − τπ

2

D∑
d=1

θ2
d =

τt − τπ

2
R, (4.38)

which is proportional to R =
∑D

d=1 θ2
d. The square-radius R follows a scaled χ2-

distribution with D degrees of freedom: p(R) ∝ RD/2−1 exp(−τtR/2). Weighting by
the reciprocal of p(R) makes the distribution over R and the energy uniform, giving
the multicanonical ensemble:

p∗MC(θ) ∝ p∗(θ) · wMC(θ)

∝ e−τtR(θ)/2 ·R(θ)1−D/2eτtR(θ)/2

∝ R(θ)1−D/2 0 < R(θ) < R(H).

(4.39)

A maximum energy, H must be imposed for the distribution to be defined. A reasonable
choice for the square radius defining this limit is 4σ larger than the prior mean value:
R(H)=(D+4

√
2D)/τπ. This cut-off excludes little of the prior mass from the ensemble.

Efficiency of the algorithms 101

The target distribution is softly confined to a narrow range of the energy spectrum with
an effective width likely to be related to the standard deviation of a χ2-distribution:
R(heff)∼

√
2D/τt.

While the exact variance of the estimator does not have a simple analytical form, a
more detailed analysis4 shows that the guess H/(Sheff)=R(H)/(SR(heff) is basically
correct:

var
[
l̂ogZt

]
≈ 1

S

τt

τπ

√
D

8π
. (4.45)

Astoundingly the number of effective samples required to obtain a unit error scales only
as O(

√
D). This is better than possible by a method that exploited independence and

estimated the normalizer of each of the D Gaussians separately. Perhaps this is a sign
that through the weighting function the method has unreasonable a priori knowledge
of the answer.

Despite the ideal weighting function the scaling with precision ratio τt/τπ is not impres-
sive. As the target distribution’s precision grows the multicanonical sampler becomes
exponentially worse than nested sampling, equation (4.36). This is a clear indication
that the energy spectrum ratio H/heff can be quite different from the volume ratio that
determines nested sampling’s performance. The details of a particular target distribu-
tion can make either method dramatically better than the other.

Another concern is the cost of each of the S effective samples. The ensemble pMC is
a distribution capturing a large energy range which will usually take many steps of
MCMC exploration to reach equilibrium. In contrast the intermediate distributions of
nested sampling or annealing were designed to be close, so a small number of MCMC
steps may be sufficient to equilibrate states at each iteration. The log-probability of

4

The variance of the two parts (equation (4.16)) of the multicanonical estimator (equation (4.17)) can be
approximated as follows:

var[log ∆(τ)] ≈
var[w∗τ]

S E[w∗τ]2
≈

E
ˆ
w∗τ

2
˜

S E[w∗τ]2
(4.40)

The ratio of the target distribution, equation (4.35), and multicanonical distribution, equation (4.39),
give importance weights:

w∗τ (θ) = R(θ)D/2−1 exp(−τR(θ)/2). (4.41)

Noting the integralsZ ∞

0
w∗τ (R) dR =

2D/2Γ(D/2)

τD/2
and

Z ∞

0
w∗τ (R)2 dR = τ1−DΓ(D − 1), (4.42)

and that, for suitably large H, these give approximately R(H) times the required expectations we have

var[log ∆(τ)] ≈
R(H)τΓ(D − 1)

S2D(Γ(D/2))2
≈

R(H)τ

S
p

8π(D − 2)
(Stirling’s approx. to both Γ functions). (4.43)

Substituting in R(H), assuming large D and using the approximate independence of the separate log ∆
estimators when τt�τπ gives the variance of the final estimator as

var
h
l̂ogZt

i
≈

τt/τπ + 1

S

 r
D

8π
+

2
√

π

!
. (4.44)

The version in the main text drops further terms for clarity. This footnote is terse because what matters
is the simpler H/heff description in the main text and the following assertion: empirically the expression
above reasonably matches the observed estimator variance for τt�τπ in a few or more dimensions.

Efficiency of the algorithms 102

pMC has a range of
∆EMC = (1−D/2) log τt/τπ (4.46)

between the typical sets of the target and prior distributions. If O(1) iterations of
MCMC are required to change this energy by 1, then it will take at least O(∆E2

MC)
iterations to equilibrate the multicanonical ensemble by a random walk. This would
make the cost of a obtaining a single effective sample from the multicanonical ensemble
the same order as the total cost of an entire nested sampling run! The potentially
good performance of the multicanonical method can be wiped out by the use of some
standard Markov chains.

4.5.3 Importance sampling

We now analyze the performance of combining a bridge of K+1 importance sampling
estimates as in section 4.2. For the toy Gaussian problem all the intermediate distri-
butions are also Gaussian,

pk(θ) =
1
Zk

π(θ)L(θ)βk

=
1
Zk

exp

(
−τk

2

D∑
d=1

θ2
d

)
, τk = (1− β)τπ + βτt.

(4.47)

This allows computation of the variance of the estimator in equation (4.10) under the
ideal case of direct sampling from each pk.

The log of the importance weights at each level from equation (4.6) become

log w∗k(θ) =
τk − τk+1

2

D∑
d=1

θ2
d. (4.48)

The variance of the log weights under pk is

varpk
[log w∗k] =

(τk − τk+1)2

4
varpk

[
D∑

d=1

θ2
d

]
=

(τk − τk+1)2

4
2D

τ2
k

=
D

2

(
1− τk+1

τk

)2

.

(4.49)

The variance of log w∗k only depends on k through the ratio αk = τk+1/τk. The variance
of l̂ogZ =

∑K
k=0 log w∗k(θk), is minimized by equalizing all the contributing variances,

αk =α=(τt/τπ)1/(K+1). The resulting estimator has variance

var
[
log Ẑ

]
=

D(K + 1)
2

(
1−

(
τt

τπ

)1/(K+1)
)2

≈ D

2(K + 1)

(
log

τt

τπ

)2

, for large K.

(4.50)

Constructing annealing schedules 103

The approximation becomes accurate very quickly. The amount of computation (∝
K+1) required for unit variance scales with dimensionality of the problem as O(D):

Number of samples for unit error, (K+1) ≈ D

2
(log τt/τπ)2 . (4.51)

Comparing to equation (4.36) we see that the τ -dependence of the computational cost
is the same as nested sampling and that the scaling with dimensionality is better. This
result is not strongly tied to the tail behavior of a Gaussian. Redoing the calculations
for distributions p∗ ∝ exp(−τ/2

∑
d |θd|p) only changes the number of samples required

slightly to (D/p)(log τt/τπ)2.

Before hastily discarding nested sampling, remember the caveats at the beginning of
this section. Practical realities of Markov chain based samplers will make performance
worse than predicted here. The Potts model (subsection 1.1.3) will be an example of
a distribution, which while easily sampled by multicanonical and nested sampling, is
totally unapproachable with temperature-based annealing methods.

As with multicanonical sampling we were very generous to annealing by assuming
the free parameters defining the annealing schedule were chosen optimally. We were
unlikely to guess

βk+1 =
τπ(α− 1)
τt − τπ

+ αβk, α =
(

τt

τπ

)1/(K+1)

. (4.52)

Indeed the optimal schedule balances variances, which through equation (4.12) are
intimately related to Z itself. We cannot know the optimal schedule without already
having solved the problem.

Some work is required to find a good schedule; default choices may not be sufficient.
For example, the linear annealing schedule βk =k/(K + 1) gives5

varβk=k/(K+1)

[
l̂ogZ

]
≈ D

2K

(τt − τπ)2

τtτπ
. (4.53)

For large τt this is exponentially worse than the correct schedule and nested sampling.

4.6 Constructing annealing schedules

Various families of annealing schedule have been used in the literature. While demon-
strating AIS on some example distributions, Neal (2001) spliced together a linear sched-
ule at high temperatures with a geometric schedule at lower temperatures. This is not
too far from the behavior of equation (4.52), the optimal schedule for some well-behaved

5Found by a large-K integral approximation to the discrete sum over equation (4.49) and also
checked numerically.

Constructing annealing schedules 104

posteriors. Beal (2003) suggested a family of non-linear annealing schedules

βk =
eτk/K

eτ + 1− k/K
, (4.54)

where the “linearity parameter” eτ makes the schedule approximately linear for large
values of eτ but dwells for longer at high temperatures for small positive values. An-
other ad hoc non-linear scheme is given by Kuss and Rasmussen (2005), where a linear
schedule is raised to the power of four: βk = (k/K)4, k=0 . . .K.

Each of the above schemes were presumably the result of some experimentation. Pre-
liminary runs are required to check that a proposed schedule, e.g. “fourth power of a
linear schedule”, is adequate and to eliminate others. Also any free parameters must
be found, such as the number of levels, linearity setting eτ or the change-point between
a linear and geometric schedule. Algorithms for these fitting procedures could be, al-
though rarely are, described in detail. Part of the difficulty is deciding how to include
results from earlier, higher variance runs. Often these are only run informally and sim-
ply discarded. Regardless of how an annealing schedule is chosen, the selection should
ideally be performed automatically. Otherwise computer time may become irrelevant
compared to the time required by manual adjustments.

An annealing schedule should control the variance of the log weights,

varβk
[log w∗k] = (βk+1 − βk)2 varβk

[log L(θ)] . (4.55)

Rearranging gives a recurrence relationship for the inverse temperatures,

βk+1 = βk +
√

v

varβk
[log L(θ)]

, (4.56)

which achieves a given target variance v = var[log w∗] on each weight. This update
rule is applied from β0 =0 until an inverse temperature of 1 is reached. The variance
of the l̂ogZ estimator, equation (4.10), is (K +1)v. A binary search on the control
parameter v can find a balanced annealing schedule with a user chosen total variance
or computational cost.

Implementing this algorithm for constructing annealing schedules requires the variance
of the log-likelihood or energy at each βk considered. These quantities are not available
exactly, otherwise logZ would be known, so the variances must be approximated from
some preliminary experiments. Running MCMC at each βk considered would be too
costly. One could try to interpolate results measured at a preliminary range of tem-
peratures. Alternatively statistics at any temperature are available from a single run
of either multicanonical or nested sampling.

We propose using nested sampling to set a schedule for AIS. The details are given in
algorithm 4.3. Sampling from the multicanonical ensemble would need a large set of

Markov chains for normalizing constants 105

control parameters to be set. Nested sampling can be run before annealing as it only
has two control parameters, N and the amount of effort to put into sampling at each
iteration. Annealed importance sampling can then be run with a schedule estimated
from nested sampling. Comparing the annealing results to those predicted by nested
sampling could uncover problems with Markov chains that would go unnoticed using a
single method.

Algorithm 4.3 Construction of an annealing schedule from nested sampling
Inputs: Total target variance Vtarget, num. nest particles N , numerical tolerance tol.

1. Run nested sampling algorithm 4.2, obtaining {θ(s)}.
2. Assuming x(s) = exp(−s/N), compute weights w

(s)
q as in equation (4.22).

3. vmax←Vtarget

4. vmin←0
5. K←0, β0←0
6. while (vmax − vmin)(K + 1)/Vtarget > tol
7. vtrial←(vmax + vmin)/2
8. Create discrete proxy for p(θ;βk) distribution: p̃βK

∝ wqL(θ(s))βK .
9. βK+1←βK +

√
v

varp̃βK
[log L(θ)] .

10. if βK+1 > 1 then
(passed end of schedule, start again with a higher variance per level)

11. vmin←vtrial, K←0
12. else if (K + 1)vtrial > Vtarget then

(exceeded target variance, start again with lower variance per level)
13. vmax←vtrial, K←0
14. else
15. K←K + 1
16. end if
17. end while
18. βK+1←1
19. return annealing schedule β0 . . . βK+1

4.7 Markov chains for normalizing constants

Each of the Monte Carlo algorithms in this chapter require sampling from complex
distributions: p(θ;β), π̆(θ) or pMC(θ). Standard sampling techniques — Metropolis–
Hastings, slice sampling, etc. — should apply, but there are some issues special to these
algorithms that are worth considering.

4.7.1 Randomize operator orderings

Many MCMC operators concatenate several operators with different behaviors together.
Gibbs sampling for example updates each dimension of a parameter vector separately.

Markov chains for normalizing constants 106

Some users prefer to randomize the order of these updates so that the resulting mixture
operator maintains detailed balance. But many use a deterministic ordering, if only for
convenience of implementation. This is not a good idea with algorithms that start out
of equilibrium at each iteration.

The problem is most easily demonstrated by nested sampling with N = 1. At each
iteration the only particle is by definition on the boundary of the constrained prior π̆.
The first update must increase the likelihood of the particle. Subsequent updates have
some freedom to decrease the likelihood again. As only a limited number of Markov
chain steps can be performed at each iteration the particle will climb unnaturally fast
up the likelihood surface in the direction of the first transition operator.

In subsection 4.8.1 nested sampling is run using a univariate slice sampler applied to
each variable in a random order. Initially these experiments used a fixed ordering. The
first variable to be updated would systematically become much more constrained than
the last, even if by symmetry they were equivalent. Fortunately this pathology is so
severe that it quickly made itself known by causing numerical problems and crashing
the slice sampling code.

Experiments with spherical Gaussians confirm that annealed importance sampling suf-
fers from a similar problem. Histograms of the unweighted final states obtained show
that the statistics of each dimension depend on the order in which they were updated.
The AIS weights correct this bias asymptotically, but samples without these artifacts
will tend to need lower variance weights. The easiest fix is to randomly permute the
Markov chain operators at each iteration.

4.7.2 Changes in length-scale and energy

There is usually a dramatic difference in scale between a prior and posterior. It is
unlikely that the same Markov chain operators are appropriate for both, yet annealing
has to sample them and all the interpolating distributions in between. Similarly nested
sampling has to sample from a sequence of distributions that shrink exponentially in
volume from the prior to the posterior and beyond.

Step size parameters in Metropolis–Hastings algorithms must be changed as the algo-
rithm proceeds. It is also profitable to adapt the initial step size of slice sampling.
Some authors set a schedule of step sizes by hand, but automatic schemes are clearly
desirable. One option is to adapt based on the acceptance rate of the previous iteration
or to use parallel chains. For AIS this would require giving up some theoretical cor-
rectness, while nested sampling is already in an approximate setting by using a Markov
chain at all. Another option for AIS is to adapt the schedule of proposals after each run.
Each run is unbiased in Z using any step-size, but when adapting it is still advisable
to discard early runs, which will have higher variance.

Markov chains for normalizing constants 107

There is usually a large change in the scale of probabilities involved between a diffuse
prior and a posterior which concentrates mass on a much smaller number of states.
Many standard Markov chain operators, such as simple Metropolis and slice sampling,
are only able to make small changes in log-probability at each iteration. Depending on
the algorithm this may or not be desirable.

The majority of the volume in a high-dimensional solid body is in a thin shell near its
surface (MacKay, 2003, p37). For nested sampling this means that much of π̆’s mass
is likely to be close to the likelihood contour surface and large changes in likelihood
are not required. Instead we need efficient chains that sample well at close to constant
likelihood6. Temperature-based distributions have soft constraints that lead to broader
distributions over energy, although in many problems they are still constrained to a
relatively narrow range.

The multicanonical method samples from a single distribution which has significant
overlap with both the prior and posterior. Making the distribution over energies uni-
form requires making some states much more probable than others under pMC. Simple
Metropolis methods are unable to move rapidly between regions of many states with
low probability and more compact regions with high probability. The exploration of
pMC’s energy spectrum will be characterized by a random walk or slower process. This
suggests that equilibrating pMC will need at least ∼ (∆EMC)2 steps, where ∆EMC is the
range of log probabilities under pMC not the original distribution.

Some Monte Carlo algorithms, such as Hybrid Monte Carlo, are able to make larger
changes in energy. Hamiltonian dynamics based on pMC could be simulated, as long as
the reweighting function is smooth. Nested sampling could also benefit from Hamil-
tonian dynamics for its large movements in state-space, although π̆ is not compatible
with large changes in energy. Fortunately versions of slice sampling that can use Hamil-
tonian dynamics on the prior and reflections from constraint boundaries have already
been developed (Neal, 2003).

Another important Markov chain operator for dramatic moves in state-space and en-
ergy is Swendsen–Wang (subsection 2.4.1). While this algorithm can work at any
temperature, it does not allow reweightings of the energy and is not easily modified to
sample at near constant energy. By recasting the problem we can develop a version of
Swendsen–Wang that will work with multicanonical and nested sampling.

4.7.3 A new version of Swendsen–Wang

The partition functions of the Potts model, equation (1.4), the random cluster model,
equation (2.16), and the FKSW joint distribution, equation (2.15), are identical. Also
a sample from any of these distributions is easily converted into a sample from one of

6For literature searches it is helpful to know that in physics a constant energy distribution is known
as a microcanonical ensemble.

Markov chains for normalizing constants 108

the others. This allows using any of the distributions to simulate the Potts model and
find its normalization, ZP(J, q). We focus on the random cluster model.

Assuming identical positive couplings J >0 on each edge, we rewrite the random cluster
distribution in an unconventional way:

p(d) =
1
ZN

L(d)π(d) where (4.57)

ZN =
ZP(J, q)
Zπ

exp(J |E|), L(d) = exp(D log(eJ − 1)), π(d) =
1
Zπ

qC(d).

Under this factorization the “energy” is minus the total number of bonds D =
∑

dij

and the inverse-temperature, log(eJ − 1), is set by the coupling parameter J . As in
subsection 2.4.1, C(d) is the number of connected components or clusters formed by
the bonds d.

Algorithm 4.4 gives an MCMC operator to update the bond configuration, d → d′.
The stationary distribution is a weighted prior ∝ wMC(D)π(d), where wMC could be
multicanonical weights, or set to wMC =1 for prior sampling, or set to zero and one to
sample from the prior subject to constraints on D.

Algorithm 4.4 Swendsen–Wang for weighted bond configurations

1. Create a random coloring, s, uniformly from the qC(d) colorings satisfying the
bond constraints d, as in the Swendsen–Wang algorithm.

2. Count sites that allow bonds, E =
∑

(ij)∈E δsi,sj .

3. Draw D′ from T (D′;E(s)) = 1
ZT (s)wMC(D′)

(E(s)
D′

)
.

4. Throw away the old bonds, d, and pick uniformly from one of the
(E(s)

D′

)
ways

of setting D′ bonds in the E available sites.

The probability of proposing a particular coloring and new setting of the bonds is

T (s,d′←d) = T (d′; s, D′) T (D′;E(s))T (s;d)

=
1(E(s)
D′

)T (D′;E(s))
1

qC(d)
=

wMC(D′)
ZT (s) qC(d)

.
(4.58)

Summing over all possible intermediate colorings, the probability of starting with D

bonds d and ending with D′ bonds d′ is proportional to

T (d′←d) wMC(D) π(d) = π(d) wMC(D)
∑
s

T (s,d′←d)

=
wMC(D) wMC(D′)
Zπ qC(d) qC(d′)

∑
s

1
ZT (s)

.
(4.59)

This expression is symmetric under the exchange of (D,d) and (D′,d′). Therefore the
transition operator satisfies detailed balance with respect to the weighted prior. It is

Experiments 109

also ergodic. Proof: with finite probability all si are given the same color, then any D′

with non-zero weight is possible, in turn all allowable d′ have finite probability.

When performing nested sampling using the weighted prior representation the likeli-
hood constraints in π̆ are thresholds on the total number of bonds D. This can be
realized by setting wMC =0 for states with fewer bonds. Many states have identical D,
which requires careful treatment, as discussed in subsection 4.4.6. The simple imple-
mentation that draws a random key for each state will lead to some rejections when
proposing moves to a state with the same D on the constraint surface. Sampling with-
out rejections can be achieved by setting the weights such that algorithm 4.4 leaves the
auxiliary constrained distribution π̆m, equation (4.32), invariant.

The number of bonds has previously been identified as a useful energy-like target for
reweighting (Janke and Kappler, 1995). In that work the bonds were updated by single
site Gibbs sampling rather than the block-Gibbs sampling move of step 4. This does
not allow simulation of the fixed D ensemble, or rapid exploration near fixed D. Single
site updates are easier to implement however, and would become more attractive on
systems that allow a different Jij on each edge. In this case the implementation of
global updates is much more involved.

4.8 Experiments

Detailed comparisons of nested sampling and more established Monte Carlo techniques
are not currently available in the literature. Anecdotally, nested sampling has already
been useful in astronomy. Mukherjee et al. (2006) and Shaw et al. (2007) claim nested
sampling gives speed-ups of 1–2 orders of magnitude over annealing based methods.
The annealing approach that was cited in both papers was very carefully implemented
(Beltrán et al., 2005). These results are somewhat surprising given that both nested
sampling and annealing follow a sequence of increasingly constrained ensembles and
theoretically seem quite similar. If anything nested sampling seems slightly worse,
although this should be a small effect for the D = 5 astronomy problems that were
tested.

The focus of this section is not applications, but well understood test problems. Hope-
fully these will give some better insight into the relative merits of the approaches.

4.8.1 Description of slice sampling experiments

A set of experiments were performed on some continuous distributions that are
amenable to slice sampling. This allowed the same MCMC code to be used within
each algorithm. The distributions tested are described first and then details of the
algorithms. The results, which appear in table 4.2, are discussed in the next section.

Experiments 110

Gaussian base and target distributions as considered theoretically in section 4.5 were
run in ten dimensions. These experiments reveal the actual performance when con-
founded by interactions with a particular MCMC operator. In version (a) we set the
standard deviation of the base distribution to be 10 times wider than the target, i.e.,
τt/τπ =100. In version (b) we made the prior 100 times wider: τt/τπ =10000.

t-distribution: this was included as another simple standard distribution with dif-
ferent tail behavior. The target distribution was a ten-dimensional multivariate-t with
five degrees of freedom. The base distribution was Gaussian with τπ =1/100.

Two modes: a mixture of Gaussians as tested in Neal (1998a, 2001).

pt(θ)Zt = exp

[
−1

2

6∑
d=1

(θd − 1)2

0.12

]
+ 128 exp

[
−1

2

6∑
d=1

(θd + 1)2

0.052

]
(4.60)

The base distribution was a unit six-dimensional Gaussian, pπ = N (0, I).

Deceptive: this two-dimensional problem bridges from a spherical Gaussian distribu-
tion with precision 1/252 to a two-dimensional mixture of 4292 Gaussians taken from
Neal (1994, 1996a).

pt(θ)Zt =
+5∑

i=−5

+5∑
j=−5

exp
(
−|θ − µ1,i,j |2

2σ2

)
+

+5∑
i=−5

+5∑
j=−5

exp
(
−|θ − µ2,i,j |2

2σ2

)
(4.61)

+
+22∑

i=−22

+22∑
j=−22

exp
(
−|θ − µ3,i,j |2

2σ2

)
+

+22∑
i=−22

+22∑
j=−22

exp
(
−|θ − µ4,i,j |2

2σ2

)
where σ = 0.001, and the mixture components are in four groups:

µ1,i,j = (0.0025i + 15, 0.0025j + 15) 121 means in the upper-right quadrant,

µ2,i,j = (0.1500i− 15, 0.1500j + 15) 121 means in the upper-left quadrant,

µ3,i,j = (0.0025i− 15, 0.0025j − 15) 2025 means in the lower-left quadrant,

µ4,i,j = (0.1500i + 15, 0.1500j − 15) 2025 means in the lower-right quadrant.

This target distribution is exceedingly challenging and more pathological than experi-
enced in many statistical problems. It is interesting however. The different spacings
of the means make it hard for algorithms to know from a distance where the bulk of
the probability mass is. This highlights differences between the mass-finding heuristics
implicitly performed by the algorithms.

In all cases one Markov chain update consisted of a simple univariate slice sampler
applied once to each variable in a new random order at each iteration. A linear stepping
out procedure was employed with an initial step-size equal to one or to the range of
settings currently occupied by particles being simulated in parallel. Some additional
choices were needed by each method.

Nest: nested sampling runs had two free parameters: the number of particles N and
the number of slice-sampling steps used to update π̆ at each iteration. Unless N =1 each

Experiments 111

new particle was initialized at one of the N−1 particles already satisfying the likelihood
constraint. As slice samplers always move and there are no plateaus in these problems’
likelihood functions the details in subsection 4.4.6 were not required. Rather than
setting a number of iterations, S, we terminated the nested sampler when the estimate
of logZ appeared to have converged. In particular, we used a geometric approximation
for x to estimate logZ with equation (4.22) and terminated when the remaining prior
mass appeared to contribute a fraction of only 10−6 to the sum. The reported results
used 1000 Monte Carlo samples of x in equation (4.27). These are very similar to
those obtained from the geometric mean approximation but also provide quantiles of
the predictive posterior over logZ.

AISr,c: annealed importance sampling has two free parameters in addition to its an-
nealing schedule. An experiment was repeated r times, each run using c parallel chains.
When c>1 the parallel chains are used to set the initial step sizes of the slice sampler.
For multimodal distributions this is not strictly justified within the AIS framework but
it seems unlikely the results will differ greatly from using preliminary runs instead. An
AIS initialization of “(e, nest N =n. K =k)” estimated an annealing schedule from a
nested sampling run with the given N and 1 step per iteration. The given value of K

intermediate temperatures was needed for target standard error e. The details of this
procedure and the linear and fourth power schedules were given in section 4.6.

Multicanonical: ten slice sampling chains initialized from the prior were run in paral-
lel on the multicanonical ensemble. Simple error bars were calculated from the variance
of the estimates from each chain. On the Gaussian problem the analytically-derived
weighting function that sets a uniform distribution over energies (equation (4.39)) could
be used. We also tried setting the multicanonical weights by estimating the distribution
over energies from a nested sampling run.

4.8.2 Discussion of slice sampling results

The experiments with a Gaussian highlight differences between the theoretical ideals
in section 4.5 and the realities of MCMC. Nested sampling is fastest with N =1, which
was tried as a preliminary run. The predictions from one or ten slice sampling sweeps
per iteration are imprecise as one might expect, but also overconfident: the posterior
over logZ has negligible overlap with the true answer. Increasing the amount of MCMC
sampling to 100 slice sampling steps per iteration overcomes the bias, but at a large
computational cost.

Increasing the number of particles N gives more precise answers, and increases accuracy.
There are three reasons: 1) each particle can start at one of the other particles which
are supposed to be drawn from the target π̆ distribution; 2) the more particles there
are the easier it is to forget exactly which one was copied; 3) the π̆ distributions change
more slowly with larger N . The answer from N = 19 with one step of sampling gives

Experiments 112

Table 4.2: Empirical behavior of slice-sampling-based nested sampling, AIS and “mul-
ticanonical” sampling. The distributions and methods are described in the main text,
subsection 4.8.1. The results are discussed in subsection 4.8.2.

Distribution Method (initialization) log L(θ) evals. logZ

Gaussian (a) Truth 9.18
Nest N =1, 1 step 2098 21.9± 2.7
Nest N =1, 10 steps 13563 26.4± 1.4
Nest N =1, 100 steps 349570 12.5± 3.9
Nest N =19, 1 step 29969 9.16± 0.96
Nest N =19, 10 steps 300755 9.37± 0.95
Nest N =212, 1 step 320983 9.18± 0.30
Nest N =212, 10 steps 3216381 9.12± 0.29
AIS1,1 (0.3, nest N =212. K =1190) 185405 8.96± —
AIS10,1 (0.3, nest N =212. K =122) 189494 8.98± 0.30
AIS100,1 (0.3, nest N =212. K =15) 241692 6.48± 0.48
AIS1,10 (0.3, nest N =212. K =122) 60148 9.35± 0.43
AIS1,100 (0.10, nest N =212. K =122) 593793 9.01± 0.16
AIS1,100 (linear, K =122) 594301 8.23± 0.23
AIS1,100 (fourth power, K =122) 592592 9.24± 0.15
Multicanonical (nest N =212) 647144 9.82± 0.19
Multicanonical (nest N =212) 6495834 9.71± 0.07
Multicanonical (analytic weighting) 500963 9.66± 0.47
Multicanonical (analytic weighting) 5001964 9.23± 0.08

Gaussian (b) Truth 9.18
Nest N =200, 1 step 531556 8.74± 0.47
Multicanonical (analytic weighting) 5014383 9.70± 0.68

t-distribution Truth 9.69
Nest N =10, 1 step 11426 11.13± 0.83
Nest N =93, 1 step 97847 9.66± 0.28
Nest N =946, 1 step 989453 9.71± 0.10
AIS1,100 (0.03, nest N =10. K =193) 978189 9.70± 0.05
AIS1,100 (linear, K =193) 973347 9.65± 0.05
AIS1,100 (fourth power, K =193) 952803 9.80± 0.08

Two modes Truth -7.20
Nest N =10, 1 step 8212 −10.1± 1.2
Nest N =158, 1 step 115968 −8.24± 0.29
Nest N =1455, 1 step 1197722 −6.47± 0.11
Nest N =1849, 1 step 1573194 −7.44± 0.09
Nest N =7000, 1 step 5972352 −7.29± 0.05
AIS1,100 (0.1, nest N =1849. K =101) 319831 −8.16± 0.13
AIS1,1000 (0.1, nest N =1849. K =13) 419767 −8.69± 0.18
AIS1,1000 (0.02, nest N =1849. K =197) 6321987 −7.18± 0.20

Deceptive Truth -3.61
Nest N =16000, 1 step 10046143 −3.73± 0.03
AIS1,1000 (0.02, nest N =4523. K =579) 10051190 −3.66± 0.23

Experiments 113

a much better answer than N = 1 with 100 steps and is also an order of magnitude
cheaper. Even with only one sampling step per iteration the estimates and error bars
with N =19 and N =212 are indistinguishable from those obtained by exact sampling
from the constrained priors7.

Three standard annealed importance sampling runs were performed with the same
target error of 0.3: AIS1,1, AIS10,1 and AIS100,1. Obtaining the target error from only
one run requires a very long annealing schedule, K = 1190. This gave similar results
to 10 shorter runs with K = 122, but error bars are much more easily obtained from
multiple runs. Increasing the number of runs to 100 required shortening the annealing
schedule further for a similar target error or computational cost. The short K =15 runs
had larger errors than predicted and unreliable error bars. This schedule was designed
assuming that the algorithm would keep close to the equilibrium distributions defined
in the annealing schedule. In this case there were not enough bridging distributions for
this approximation to be accurate.

The result with AIS1,10, K =122, which uses ten parallel chains is similar to the result
from separate runs, AIS10,1, but with many fewer likelihood evaluations. In the absence
of a population of points the slice sampling code used an initial step size of one, which
is inappropriately small for this problem at high temperatures. A user not prepared to
adapt step-sizes based on a population should find some way to set them appropriately.

The sequence of three AIS1,100 runs with K =122 are deliberately at higher precision
than necessary so that the error bars are somewhat reliable and reproducible. Some-
thing that is sadly not true of the lower precision AIS runs. These confirm that a linear
annealing schedule is worse than one that dwells for longer at higher temperatures. In
this case the fourth power schedule quite closely follows that set by nested sampling
and has very similar performance.

The first multicanonical result with weights set by nested sampling seems to give com-
parable uncertainty to AIS for the amount of computer effort. However, running the
chains for ten times longer reveals problems with this “multicanonical” estimator. We
had set the weights by estimating the probability mass between each pair of likeli-
hood values L(s) and L(s+1) visited by nested sampling. For simplicity we used the
deterministic approximation in equation (4.28). This gives noisy estimates of the ideal
multicanonical weights which, it turns out, are not good enough. We could attempt to
smooth the approximate multicanonical weighting function. Instead, for the Gaussian
case, we went directly to the “correct” multicanonical ensemble, equation (4.39). This
confirmed that the problem with the estimator was the choice of weighting function
and gives multicanonical a performance somewhere in between nested sampling and
AIS on the Gaussian (a) problem. Even with the ideal weighting multicanonical fails
to equilibrate and fails to give reasonable error bars on the Gaussian (b) problem. This
is to be expected given the method’s poor scaling with precision ratio τt/τπ. We did

7We were able to confirm this because π̆ is quite tractable for this toy problem.

Experiments 114

not continue to try multicanonical: adapting the weighting function beyond a nested
sampling initialization seems important and this would complicate the comparison.

Turning to the t-distribution example we see behavior different from the Gaussian case.
The annealing schedule estimated from nested sampling is closer to linear than to a
fourth power. Moreover, the linear schedule and that produced from nested sampling
are reproducibly better than the fourth power. Notice the reversal from the Gaussian
experiment. A good annealing schedule was estimated cheaply from nested sampling
with N =10. Obtaining as good answers as AIS with nested sampling alone would be
more expensive. Exactly how much is hard to tell from individual runs because the
error bars can be unreliable.

A more reliable comparison of nested sampling and AIS can be made based on many
repeated runs. Nested sampling was run 100 times each over a range of N and compared
to AIS with 100 runs of schedules of varying lengths set by nested sampling. Figure 4.5a
shows that the actual performance, measured as a mean squared error of the logZ
estimates, was similar for the two methods. Nested sampling is slightly more accurate
at low computational costs, being taken over by AIS at higher precisions. Increasing
the number of AIS runs at the expense of annealing schedule length performs worse for
the same computational cost. This difference goes away at high precisions, but may be
a concern when many runs are required on multimodal problems.

The main problem with AIS is that at lower precisions simple estimates and error bars
based on the mean and variance of the importance weights are unreliable. Figure 4.5b
shows large biases in estimates for logZ. Figure 4.5c shows that the error bars are too
small on average. Jackknife estimates (not shown) are sometimes slightly better cali-
brated but give very similar results. For a user the error bars are often very important,
so in this case the nested sampling estimator is the favorable choice.

The peaks of the “two modes” target distribution are highly separated at low tem-
peratures. The fraction of AIS chains ending in the mode in the positive orthant is
≈ 0.97, compared to its actual probability mass of a third. Through weighting these
runs AIS converges to the correct answer once enough sufficiently-long chains have been
run. Further checks show that it also estimated the mass of each mode correctly. The
same is true for nested sampling, the results from large N obtain nearly the correct
relative masses of the modes and in turn the overall normalization. Detailed analysis
still shows some signs of bias; the posterior overlap with the correct answer is smaller
than apparent from the scalar error bars in the table.

Both methods find “two-modes” difficult because it is not feasible to sample cor-
rectly from π̆ at late iterations or from low temperature distributions. AIS relies on
reweighting over many runs, nested sampling requires many particles to maintain a fair
representation of π̆.

Even after ≈ 107 likelihood evaluations, both nested sampling and AIS have problems

Experiments 115

0.01

0.1

1

10

100

1000

1000 10000 100000 1e+06

M
S
E

Likelihood evaluations

AIS1,100

AIS1,10

Nest

(a)

4

0

-4

-8

-12

1000 10000 100000 1e+06

M
e
a
n

e
rr

o
r

Likelihood evaluations

AIS1,100

AIS1,10

Nest

(b)

0.1

1

10

100

1000

1000 10000 100000 1e+06

C
a
li
b
ra

ti
o
n

Likelihood evaluations

AIS1,100

AIS1,10

Nest

(c)

Figure 4.5: Average behavior of AIS and nested sampling over 100 runs for a
range of N or target errors. The x-axis gives computational cost in likelihood
evaluations. (a) Mean square error of logZ estimate. (b) Mean error or bias
of point estimate. (c) Mean square normalized error (error divided by error bar
width), a measure of calibration.

Experiments 116

Table 4.3: Estimates of the deceptive distribution

Quadrant True probability Nest estimate AIS estimate

upper-left 0.0282 0.0285± 0.0002 0.0305± 0.0080
upper-right 0.0282 0.0214± 0.0002 0.0002± 0.0002
lower-left 0.4718 0.4039± 0.0006 0.47± 0.12
lower-right 0.4718 0.5482± 0.0005 0.50± 0.12

with the deceptive distribution. Nested sampling has an error bar on logZ that is
far too small. AIS’s estimate is consistent with the correct answer, although as with
“two modes” with a higher standard error than targeted due to poor mixing at low
temperatures. Additional problems are revealed by looking at the probability distri-
bution over the four quadrants containing each cluster of modes, table 4.3. Again the
nested sampling run is far too confident. In this case AIS’s error bars are generally
much better, although it is very certain that the upper-right quadrant has much less
probability mass than it actually does. Runs of nested sampling with smaller N show
that it too can easily lose the upper-right quadrant.

Nested sampling’s answers are wrong, according to its error bars, due to the Markov
chain approximation. At late iterations with high likelihood constraints the slice sam-
pler is unable to equilibrate π̆ and is relying on a large number of particles to provide
a good starting point. On this problem the inaccuracy of this approximation does not
reduce as fast as the size of the error bars with a large number of points.

Increasing the number of slice sampling steps per iteration does not solve the problem
because it would take an unrealistically large number to move between isolated modes.
However, proposals that take all of the particles’ positions into account could help.
Shaw et al. (2007) uses an approximate rejection sampler based on uniform samples
within ellipsoidal fits to clusters of the existing particles. No problems with biases
were reported using this method, although clearly problems could still occur when the
ellipsoids fail to correctly capture π̆. In general ellipsoids could be used as Metropolis
proposals, as part of several and various attempts to equilibrate a particle.

4.8.3 The Potts model

The Potts model was introduced in subsection 1.1.3. It describes a class of undirected
graphical models over discrete variables s. The variables take on one of q ‘colors’ and
the model has a temperature-like “coupling” parameter J . Gibbs sampling updates of π̆

are the simplest way to implement (approximate) nested sampling. We also try cluster-
based updates, subsection 4.7.3. While physicists tend to be interested in a broader
range of quantities, we focus here on the normalization constant ZP(J, q), where the
discrete variables s are the θ variables that need to be integrated (i.e. summed) over.

Experiments 117

Table 4.4: Partition function results for 16×16 Potts systems (see text for details).

Method q = 2 (Ising), J = 1 q = 10, J = 1.477

Gibbs AIS 7.1± 1.1 1.5
Swendsen–Wang AIS 7.4± 0.1 1.2
Gibbs nested sampling 7.1± 1.0 12.2± 2.4
Random-cluster nested sampling 7.1± 0.7 14.1± 1.8
Acceptance ratio 7.3 11.2

Table 4.4 shows results on two example systems: an Ising model, q = 2, and a q = 10
Potts model in a difficult parameter regime. We tested nested sampling and AIS with
Gibbs sampling and cluster-based updates. Annealed importance sampling (AIS) was
run 100 times, with a geometric spacing of 104 settings of J as the annealing schedule.
Nested sampling used N = 100 particles and 100 full-system MCMC updates to ap-
proximate each draw from π̆. We also developed an acceptance ratio method (Bennett,
1976) based on our representation in equation (4.57), which we ran extensively and
should give nearly correct results.

The Markov chains used by nested sampling were initialized at one of the N−1 particles
satisfying the current constraint. Preliminary experiments that initialized a new par-
ticle θ(s) at θ(s−1) on the constraint surface, were a failure: the Gibbs nested sampler
could get stuck permanently in a local maximum of the likelihood, while the cluster
method gave erroneous answers for the Ising system. This supports the suggestions of
subsection 4.4.4.

AIS performed very well on the Ising system and can work with q=10 at low coupling
strengths. We took advantage of its performance in easy parameter regimes to compute
Zπ, which was needed to interpret the results from the cluster-based nested sampler.
However, with a “temperature-based” annealing schedule, AIS was unable to give useful
answers for the q=10 system close to the critical J evaluated. Nested sampling appears
to be correct within its error bars under these conditions.

It is known that even the efficient Swendsen–Wang algorithm mixes slowly for Potts
models with q > 4 near critical values of J which correspond to a first order phase
transition (Gore and Jerrum, 1997, 1999), see figure 4.6. Typical Potts model states are
either entirely disordered or ordered; disordered states contain a jumble of small regions
with different colors (e.g. figure 4.6b), in ordered states the system is predominantly
one color (e.g. figure 4.6d). Moving between these two phases is difficult; defining a
valid MCMC method that moves between distinct phases requires knowledge of the
relative probability of the whole collections of states in those phases.

Temperature-based annealing algorithms explore the model for a range of settings of
J and fail to capture the correct behavior near the transition. Despite using closely
related Markov chains to those used in AIS, nested sampling can work in all parameter

Discussion and conclusions 118

(a)

⇒

(b) (c)

⇒

(d) (e)

Figure 4.6: Two 256×256, q = 10 Potts models with starting states (a) and
(c) were simulated with 5×106 full-system Swendsen–Wang updates with J =
1.42577. The corresponding results, (b) and (d) are typical of all the intermediate
samples: Swendsen–Wang is unable to take (a) into an ordered phase, or (c) into a
disordered phase, although both phases are typical at this J . (e) in contrast shows
an intermediate state of nested sampling, which succeeds in bridging the phases.

regimes. Figure 4.6e shows how nested sampling can explore a mixture of ordered
and disordered phases. By moving steadily through these states, nested sampling is
able to estimate the prior mass associated with each likelihood value. This behavior
is not possible in algorithms that use J as a control parameter, such as AIS with a
temperature-based schedule.

4.9 Discussion and conclusions

4.9.1 Summary

The main purpose of this chapter was to study nested sampling and its relationship
with more established methods. We find that it fits into a unique position amongst
Monte Carlo algorithms. Unlike the majority of annealing-based methods, nested sam-
pling can deal with first order phase transitions. While multicanonical sampling also
solves this problem its properties are different in almost every other respect: nested
sampling does not need prior setting of weights, its scaling with dimensionality and
energy ranges are very different and nested sampling follows a sequence of distribu-
tions like annealing. In some statistical settings nested sampling has clear advantages
over multicanonical. Undoubtedly it will perform badly on some applications where
multicanonical has already been successful.

Nested sampling’s theoretical scaling with dimensionality, O(D2) iterations, is worse
than that of annealing, O(D) iterations. In practice the difference can be less dramatic
as bringing a π̆ ensemble to equilibrium may require fewer function evaluations than a
temperature based distribution. The slice-sampling results do support AIS’s superior-
ity, at least for higher accuracy results. But other issues such as ease of implementation
and quality of error bars may be more significant. Issues with annealing’s error bars
were blamed for an order of magnitude extra cost by both Beltrán et al. (2005) and
Shaw et al. (2007).

Discussion and conclusions 119

Despite this the relative under-performance of annealing reported by these astronomers
is difficult to account for given the theoretical and practical results of this chapter. The
most likely explanation is a difference in the operators used to update the intermediate
distributions. In this chapter the same or closely related operators where used with
AIS and nested sampling. In Shaw et al. (2007) nested sampling was described with its
own special update rule using ellipsoids fitted to the current particles. This algorithm
could easily require fewer function evaluations than a simple slice sampler or Metropolis
method as used within annealing in Beltrán et al. (2005). Although the ellipsoid algo-
rithm was suggested by the need to sample from nested sampling’s π̆, there is no reason
not to use the same basic code to propose moves for an annealing method. Combined
with an annealing schedule specified by nested sampling AIS might perform as well as
or better than nested sampling.

4.9.2 Related work

This chapter only considered a subset of the available methods for computing normal-
izing constants. The focus has been on simple methods that compute the normalizing
constant of a generic probability distribution. We avoided assuming detailed knowledge
about the target distribution and its relationships with other distributions as much as
possible. For users with more time, a richer set of methods are available, some of which
are mentioned here.

The intermediate distributions in annealed importance sampling do not have to be
temperature-based distributions. That has been the focus here because of the simplicity
and generality of raising the likelihood to a power. Any other way of bringing in the
likelihood gradually can be used: “one data point at a time” may be natural in a
statistical setting. A generalization, linked importance sampling (Neal, 2005) may be
helpful for such cases where the intermediate levels are fixed and limited in number.

Annealed importance sampling can be seen as a member of a wider family of “Sequential
Monte Carlo” (SMC) methods. Some of these algorithms allow transfer of particles
amongst modes, and should definitely be considered by anyone attracted to nested
sampling by this property. A recent example of SMC combined with an interesting set
of bridging distributions leveraging the power of graphical models is presented in Hamze
and de Freitas (2006).

Some situations require the computation of more than one normalizing constant. An
option is to construct a distribution containing each of the models and explore it with
MCMC. Reversible jump MCMC (Green, 1995) makes this possible even when the
models have parameter vectors of different dimensionalities. The relative probability of
each model is available from the amount of time the sampler spent exploring each model,
and more advanced estimators based on transition probabilities may be available. This

Discussion and conclusions 120

only provides the normalizing constants up to a constant, although if one of the models
considered is tractable this constant could be found.

The path sampling approach of Gelman and Meng (1998) suggests computing normaliz-
ing constants by integrating along a path of model hyperparameters rather than along a
single inverse-temperature parameter. If the normalizer for each setting of the hyperpa-
rameters is required this is particularly effective. Contour plots based on independent
estimates will usually be very noisy compared to a path sampling approach.

4.9.3 Philosophy

Various authors have noted the irony of using Monte Carlo, a frequentist procedure, for
Bayesian computation (e.g. O’Hagan, 1987; Neal, 1993; Rasmussen and Ghahramani,
2003). Rather than giving beliefs about quantities given the computations performed,
Monte Carlo algorithms provide “frequentist” statistical estimators. Skilling claims
that nested sampling is Bayesian. This section examines the extent to which this
holds.

Our target is a posterior distribution over Z. Philosophically this is slightly tricky,
because Z is a constant which we should be able to work out given the prior and
likelihood functions. Thus according to any rational calculus of beliefs as in Cox (1946)
or Jaynes (2003) the posterior should concentrate all of its mass at the true value. The
problem is not lack of available information, but computer time to use it perfectly.

The solution to this conundrum is to be careful about what we claim to know. Assume
that some agent is running nested sampling on our behalf and only reports to us
L = {L(s)}. If it reported more information, such as θ(s) locations, we would be in
an embarrassing situation. To use this information we would need a probabilistic
model including θ(s) in which inference would probably be hard. But throwing away
knowledge is hard to deal with rationally, so we pretend it was never available. Thus the
inferences for nested sampling, as in Rasmussen and Ghahramani (2003), are rational
for a fictitious observer with limited information. This observer’s results will be more
vague than if {θ(s)} were not ignored but should be sensible, which is not guaranteed
by general approximations to Bayesian inference.

We first set up priors based on the knowledge that an agent is running nested sampling,
which will provide L(s) quantities with associated x(s) cumulative mass values. Our
knowledge of nested sampling defines a problem-independent prior distribution over
x={x(s)}. We should also specify a prior distribution over functions L(x).

After observing L = {L(s)}, we update our beliefs about the underlying cumulative
values according to Bayes’ rule: P (x|L) = P (L|x) P (x)/P (L). It is this posterior
distribution that should be used when computing posteriors over other quantities such

Discussion and conclusions 121

as Z,

P (Z|L) =
∫

P (Z|x,L) P (x|L) dx. (4.62)

Note that specifying a prior over monotonic functions P (L(x)) and computing with it
appears difficult in general. Skilling declares that “I can’t, so I don’t”. Instead the
prior P (x) is used. This corresponds to a particular assumption: an improper uniform
prior over likelihood functions. This cannot be avoided by claiming general ignorance:
unlike {θ(s)}, we must be told {L(s)}. Thus to maintain a claim of rationality, we must
be happy with this particular choice of prior or type of ignorance about the likelihood
function.

In addition, and much more seriously, we must assume the agent is actually running
nested sampling as in algorithm 4.2. In fact we really know that some approximation
will be involved. As we have seen this can give us unreasonable beliefs—as with most
probabilistic modeling where we know a priori that a model’s joint distribution does
not really capture every detail of a real system.

Similar concerns must surround all such attempts to introduce Bayesian methodology
into Monte Carlo algorithms for general inference problems. For example Bayesian
learning of the one-dimensional weighting function of the multicanonical method has
been attempted (e.g. Smith, 1995). This should be a difficult inference problem as
the output of a sampler has a complicated dependence structure. Only with incorrect
assumptions, i.e., approximations, can Bayesian methods be applied. The ultimate
justification for such methods must be their empirical performance, which is sometimes
very good.

Chapter 5

Doubly-intractable distributions

Most of this thesis has been dedicated to sampling from probability distributions where
the key difficulty has been an intractable normalization. When considering a posterior
over parameters θ given data y,

p(θ|y) =
p(y, θ)
p(y)

=
p(y|θ) p(θ)

p(y)
, (5.1)

we assumed that the joint probability in the numerator could be easily evaluated for
any particular joint setting (y, θ). Chapter 4 described how the important quantity
p(y) can be approximated, but it is often infeasible to compute this quantity exactly.

Standard MCMC methods are designed for use with these intractable distributions.
Markov chain operators can be constructed by restricting consideration to a manageable
subset of θ’s state space at each step. In Metropolis–Hastings only two settings are
considered, the current setting θ and a randomly chosen proposal, θ′. Gibbs sampling
changes only one component of θ at a time. Metropolis requires an ability to evaluate
p(y, θ) ratios for various θ pairs, and Gibbs sampling requires the ability to sample
from the conditional distributions p(θi|θ{j 6=i}, y). By considering restricted parts of the
state space, neither method needs to know the global normalizing constant p(y).

But what if p(y, θ), like p(y), contains a summation over a large state space so it
cannot feasibly be evaluated point-wise? Then the problem is doubly-intractable and,
as we shall see, even performing Markov chain Monte Carlo is potentially exceedingly
difficult.

The next section explains why doubly-intractable distributions arise and the difficulties
involved. Section 5.2 explores approximations of standard MCMC algorithms in the
context of undirected graphical models. Møller et al. (2004, 2006) provided the first
feasible algorithm for models where sampling from p(y|θ) is possible but its normal-
ization is unknown. Their method is reviewed in section 5.4 and generalized by us in
section 5.5. Working on these algorithms inspired the new exchange algorithm, sec-

Bayesian learning of undirected models 123

tion 5.3. These innovations were first described in (Murray et al., 2006a). This chapter
provides a slightly more general version of the exchange algorithm with a new derivation
which is somewhat simpler than the original description. Full mathematical derivations
of detailed balance are provided, which were previously omitted for space reasons. In
section 5.7 we consider further new valid MCMC algorithms for doubly-intractable
distributions, which provide a connection to the Approximate Bayesian Computation
(ABC) literature. Section 5.8 provides slice sampling algorithms for doubly-intractable
distributions. Finally new directions for research in this area are considered in sec-
tion 5.9.

5.1 Bayesian learning of undirected models

The Potts model discussed in the previous chapter belongs to a very wide class of
“energy-based models” where

p(y|θ) =
1
Z(θ)

exp

−∑
j

Ej(ycj , θj)

=

1
Z(θ)

∏
j

fj(ycj , θj), Z(θ) =
∑

y

∏
j

fj(ycj , θj).

(5.2)

The sets cj each index a subset of variables that take part in a corresponding poten-
tial function fj , parameterized by θj . Each potential expresses mutual compatibilities
amongst a subset of variables ycj . Sampling from the y variables is possible with
MCMC, but computing the normalization can be very difficult.

Section 1.1 reviewed how special structure in a graphical model sometimes allows effi-
cient computation of the normalization Z(θ). Most of this chapter concerns methods
that apply to general distributions, so it is convenient for clarity to collapse the model
to a simpler form:

p(y|θ) = f(y; θ)/Z(θ). (5.3)

We now consider sampling from the posterior over parameters, equation (5.1), when
the likelihood is of the unnormalized form given in equation (5.3). This posterior,

p(θ|y) =
(

f(y; θ)p(θ)
Z(θ)

)/
p(y), (5.4)

offers a new difficulty. As before p(y) is not needed for MCMC, but the normalizing
‘constant’ Z(θ) cannot be ignored as it is a function of the parameters θ, the vari-
ables being sampled. Every time new parameter values are considered it appears that
an intractable computation involving Z will be required. As MCMC estimators are
approximations unless an infinite number of iterations are performed, and each itera-

Bayesian learning of undirected models 124

tion is generally infeasible, p(θ|y) in equation (5.4) can be called a doubly-intractable
distribution.

While sampling from parameter posteriors by MCMC is a well established technique, it
is largely associated with distributions that could be represented as directed graphical
models. However, sampling parameters in anything but the most trivial1 undirected
graphical model is doubly-intractable. While directed models are a more natural tool
for modeling causal relationships, the soft constraints provided by undirected models
have proven useful in a variety of problem domains; we briefly mention six applications.

(a) In computer vision Markov random fields (MRFs), a form of undirected model, are
used to model the soft constraint a pixel or image feature imposes on nearby pixels
or features (Geman and Geman, 1984); this use of MRFs grew out of a long tradi-
tion in spatial statistics (Besag, 1974). (b) In language modeling a common form of
sentence model measures a large number of features of a sentence fj(s), such as the
presence of a word, subject-verb agreement, the output of a parser on the sentence,
etc, and assigns each such feature a weight λj . A random field model of this is then
p(s|λ) = (1/Z(λ)) exp{

∑
j λjfj(s)} where the weights can be learned via maximum

likelihood iterative scaling methods (Della Pietra et al., 1997). (c) These undirected
models can be extended to coreference analysis, which deals with determining, for ex-
ample, whether two items (e.g., strings, citations) refer to the same underlying object
(McCallum and Wellner, 2003). (d) Undirected models have been used to model pro-
tein folding (Winther and Krogh, 2004) and the soft constraints on the configuration
of protein side chains (Yanover and Weiss, 2003). (e) Semi-supervised classification
is the problem of classifying a large number of unlabeled points using a small number
of labeled points and some prior knowledge that nearby points have the same label.
This problem can be approached by defining an undirected graphical model over both
labeled and unlabeled data (Zhu and Ghahramani, 2002). (f) Given a set of directed
models p(y|θj), the products of experts idea is a simple way of defining a more pow-
erful (undirected) model by multiplying them: p(y|θ) = (1/Z(θ))

∏
j p(y|θj) (Hinton,

2002). The product assigns high probability when there is consensus among component
models.

Despite the long history and wide applicability of undirected models, until recently
Bayesian treatments of learning the parameters of large undirected models have been
virtually non-existent! Indeed there is a related statistical literature on Bayesian in-
ference in undirected models, log linear models, and contingency tables (Albert, 1995;
Dellaportas and Forster, 1999; Dobra et al., 2006). However, this literature, with the
notable exception of the technique reviewed in section 5.4, assumes that the partition
function Z(θ) can be computed exactly. But for many of the machine learning applica-
tions of undirected models cited above, this assumption is unreasonable. This chapter
addresses Bayesian learning for models with intractable Z(θ).

1i.e., low tree-width graphs, graphical Gaussian models and small contingency tables.

Bayesian learning of undirected models 125

5.1.1 Do we need Z(θ) for MCMC?

The modeler’s effort was put into specifying f(y; θ); it is tempting to think that Z(θ)
should have little relevance and there must be some way to side-step computing it.
It was established above that the normalizer Z(θ) is not a constant in the context
of sampling θ. This section explores the rôle of Z(θ) in more detail, addressing the
consequences for any scheme that avoids computing it.

Algorithm 5.1 gives the straightforward application of standard Metropolis–Hastings
(algorithm 2.1) to the doubly-intractable distribution in equation (5.4).

Algorithm 5.1 Standard (but infeasible) Metropolis–Hastings (M–H)
Input: initial setting θ, number of iterations S

1. for s = 1 . . . S

2. Propose θ′ ∼ q(θ′←θ; y)
3. Compute

a =
p(θ′|y)
p(θ|y)

q(θ←θ′; y)
q(θ′←θ; y)

=
f(y; θ′) p(θ′) q(θ←θ′; y)
f(y; θ) p(θ) q(θ′←θ; y)

· Z(θ)
Z(θ′)

4. Draw r ∼ Uniform[0, 1]
5. if (r < a) then set θ←θ′

6. end for

Computing the acceptance ratio requires a ratio of normalizing constants, or at least a
bound tight enough for step 5. This is difficult in general. There are usually some free
choices while constructing MCMC algorithms. Perhaps some “nuisance” parameters
could be judiciously set to remove Z(θ) through some fortunate cancellations? We are
not free to cancel out Z through a choice of prior p(θ): the prior would have to depend
on the number of observed data points and would take on extreme values dominating
any inferences (Murray and Ghahramani, 2004). In theory the proposal distribution
could be defined to remove explicit Z dependence from the acceptance ratio, but in
practice this does not seem to help: e.g. q(θ′←θ; y)=Z(θ)g(θ′) or q(θ′←θ; y)∝1/Z(θ′)
would be difficult to construct without knowing Z, and would be terrible proposals.
The only distribution we know of that contains Z(θ) gives probabilities in data space,
not over parameters.

Section 5.4 reviews and extends a method by Møller et al. (2004, 2006) which intro-
duced auxiliary variables taking on values in the data space. This allows proposals that
cancel out the unknown terms, but only if it is possible to draw from the (intractable)
distribution p(y|θ). This key insight makes it possible to sample from a limited but
significant class of distributions for which MCMC was previously impossible. How-
ever, the algorithm and its extensions are not a panacea. It is not always possible to
draw exact samples from the data distribution. Another problem (or opportunity) is

Bayesian learning of undirected models 126

yx

(a) f(·; θ)

yx

(b) f(·; θ′)

Figure 5.1: (a) The dash marked y shows the position of our observation in
data space. The curve shows an unnormalized function f(·; θ), which gives low
probability to the alternative data set x. (b) After changing the parameter θ→θ′

the unnormalized function evaluated at the observation has increased, f(y; θ′) >
f(y; θ). However the likelihood has decreased, p(y|θ′) < p(y|θ). Noticing this
requires considering the new high-probability region of data space containing x,
which is not necessarily close to the observation.

that specifying a workable stationary distribution for the auxiliary variables requires
approximating the parameter posterior before sampling begins.

An optimistic train of thought sees no problem as Z is “just a sum” and summing over
unknowns is a standard feature of MCMC. For example models with latent variables,
z, often have intractable likelihoods. But while it may be difficult to evaluate

p(y|θ) =
∑

z

p(y, z|θ) =
∑

z

p(y|z, θ)p(z|θ), (5.5)

we can jointly sample over p(θ, z|y) as long as this distribution is known up to a con-
stant. Discarding the latents gives samples from the correct marginal p(θ|y). In doubly-
intractable problems the likelihood contains 1/Z(θ), the reciprocal of a sum of terms,
rather than a sum over latent variables. But could there be some similar way of instan-
tiating latent variables to remove the need to compute Z? Section 5.7 provides such a
method with an infinite number of latent variables. But how do we know there is not
a better choice; in general must all simple algorithms fail?

Figure 5.1 shows a hypothetical unnormalized probability function for two settings
of its parameters. An obvious but important observation is that the change in an
unnormalized probability function evaluated at an observation does not necessarily
tell us anything about the change in the likelihood of the parameters. In fact we must
consider the parameters’ effect on the entire observation space. This is in sharp contrast
to MCMC sampling of the y variables for fixed parameters where only two settings need
be considered at a time. If we are not going to compute Z(θ) explicitly then a valid
MCMC algorithm must have some other source of global information that is sensitive
to changes anywhere in observation space.

One of the simplest ways to get information from a probability distribution is, of course,
through a sample. A sample x ∼ f(x; θ′)/Z(θ′) using the same function as figure 5.1b
could easily land in the new region of high probability on the left. Noticing that

Approximation Schemes 127

f(x; θ)� f(x; θ′) gives some indication that any perceived benefit of f(y; θ′) > f(y; θ)
should be penalized. Despite the apparent paucity of such information, surprisingly
these single samples at each parameter setting are sufficient to create valid MCMC
algorithms for p(θ|y) that do not need Z(θ). This is how the approach in Møller et al.
(2004) works, which explains why it requires samples from the target distribution using
an exact or perfect sampling method (section 2.7). Approximate samples from a few
MCMC steps cannot guarantee considering the new bubble in data space in figure 5.1b.
A Markov chain started at (e.g.) the observation will be heavily biased towards a mode
near the starting point and may never consider any other modes.

Are spurious modes in data space a problem in practice? Contrastive divergence learn-
ing (Hinton, 2002) uses very brief MCMC sampling starting at the observed data and
can give useful results on complex problems in machine learning. Sometimes we know
the parameter posterior is simple, it is log-concave for fully-observed exponential-family
distributions. In such cases deterministic approximations to the parameter posterior
perform favorably compared to pseudo-MCMC approaches (Welling and Parise, 2006).
However, if we wish to construct a valid MCMC method, we must formally show that
the entire data space has been properly considered. Exact sampling explicitly tracks
bounds that start off considering the entire observation space (section 2.7), a procedure
with this flavor seems an essential part of samplers for doubly-intractable distributions.
Thus even though a new latent variable approach introduced in section 5.7 does not
use exact sampling as such, the requirements are, and must be, very similar.

Exact sampling is a formidable requirement; deterministic approaches and MCMC
methods that do not use the correct posterior distribution will always have a place.
Some possibilities are studied in the next section. There is also always a place for “gold
standard” methods that given enough time should give correct answers. Those are the
focus of the remainder of the chapter.

5.2 Approximation Schemes

For concreteness this section studies a simple but widespread type of graphical model.
The Boltzmann machine (BM) is a Markov random field which defines a probability
distribution over a vector of binary variables s = [s1, . . . , sk] where si ∈ {0, 1}:

p(s|W) =
1

Z(W)
exp

∑
i<j

Wijsisj ,

 . (5.6)

The symmetric weight matrix W parameterizes this distribution. In a BM there are
usually also linear bias terms

∑
i bisi in the exponent, with these the model is equivalent

to a Potts or Ising model with “magnetic field” parameters. We omit these biases to
simplify notation, although the models in the experiments assume them.

Approximation Schemes 128

The usual algorithm for learning BMs is a maximum likelihood version of the EM
algorithm (assuming some of the variables are hidden sH and some observed sO) (Ackley
et al., 1985). The gradient of the log probability is:

∂ log p(sO|W)
∂Wij

= Ec[sisj]− Eu[sisj] , (5.7)

where Ec[·] denotes expectation under the “clamped” data distribution p(sH |sO,W)
and Eu[·] denotes expectation under the “unclamped” distribution p(s|W). For a data
set S = [s(1) . . . s(n) . . . s(N)] of i.i.d. data the gradient of the log likelihood is simply
summed over n. For Boltzmann machines with large tree-width (see section 1.1) these
expectations would take exponential time to compute, and the usual approach is to
approximate them using Gibbs sampling or one of many more recent approximate
inference algorithms.

5.2.1 Targets for MCMC approximation

Metropolis–Hastings for the parameters of a Boltzmann machine given fully observed
data needs (to bound)

a =
p(S|W ′)p(W ′)q(W←W ′;S)
p(S|W)p(W)q(W ′←W ;S)

=
p(W ′) q(W←W ′;S)
p(W) q(W ′←W ;S)

(
Z(W)
Z(W ′)

)N

exp

∑
n,i<j

(W ′
ij −Wij) s

(n)
i s

(n)
j

 .

(5.8)

The first class of approximation we will pursue is to substitute a deterministic approxi-
mation Z(W) ' Z̃(W) into the above expression. Clearly this results in an approximate
sampler, which does not converge to the true equilibrium distribution over parameters.
Moreover, it seems reckless to take an approximate quantity to the N th power. De-
spite these caveats we explore empirically whether approaches based on this class of
approximation are viable.

Note that above we need only compute the ratio of the partition function at pairs of
parameter settings, Z(W)/Z(W ′). This ratio can be approximated directly by impor-
tance sampling:

Z(W)
Z(W ′)

≡ Ep(s|W ′)

exp

∑
i<j

(Wij −W ′
ij)sisj

 . (5.9)

Thus any method for estimating expectations under p(s|W ′) — sampling-based or
deterministic — can be nested into the Metropolis sampler for W .

For small steps W →W ′ estimating ratios of normalizers and finding gradients with
respect to the parameters are closely related problems. Gradients may be more useful

Approximation Schemes 129

as they provide a direction in which to move, which is useful in algorithms based
on dynamical systems such as Hybrid Monte Carlo (subsection 2.4.3). Hybrid Monte
Carlo would also require a Z ratio for its accept/reject step. This effort may not be
justified when the gradients and Z(W) are only available as approximations. Simpler
schemes that use gradient information also exist (Neal, 1993). The simplest of these is
the “uncorrected Langevin method”. Parameters are updated without any rejections
according to the rule:

θ′i = θi +
ε2

2
∂

∂θi
log p(y, θ) + εni, (5.10)

where ni are independent draws from a zero-mean unit variance Gaussian. Intuitively
this rule performs gradient descent but explores away from the optimum through the
noise term. Strictly this is only an approximation except in the limit of vanishing ε.

Using the above or other dynamical methods, a third target for approximation for
systems with continuous parameters is the gradient of the joint log probability. In the
case of BMs, we have:

∂ log p(S, W)
∂Wij

=
∑

n

s
(n)
i s

(n)
j −NEp(s|W)[sisj] +

∂ log p(W)
∂Wij

. (5.11)

Assuming an easy to differentiate prior, the main difficulty arises, as in equation (5.7),
from computing the middle term: the unclamped expectations over the variables.

Interestingly, although many learning algorithms for undirected models, e.g. the origi-
nal Boltzmann machine learning rule, are based on computing gradients such as equa-
tion (5.11), and it would be simple to plug these into approximate stochastic dynamics
MCMC methods to do Bayesian inference, this approach does not appear to have been
investigated. We explore this approach in our experiments.

This section has considered two existing sampling schemes (Metropolis and Langevin)
and identified three targets for approximation to make these schemes tractable: Z(W),
Z(W)/Z(W ′) and Ep(s|W)[sisj]. While the explicit derivations above focused on Boltz-
mann machines, these same expressions generalize in a straightforward way to Bayesian
parameter inference in a general undirected model as in equation (5.2). In particular,
many undirected models of interest can be parameterized to have potentials in the ex-
ponential family, −Ej(ycj , θj) = uj(ycj)

>θj . For such models, the key ingredients to
an approximation are the expected sufficient statistics, Ep(y|θ)

[
uj(ycj)

]
.

5.2.2 Approximation algorithms

In this section approximations for each of the three target quantities in equa-
tions (5.8), (5.9) and (5.11) are identified. These are used to propose a variety of
approximate sampling methods for doubly-intractable distributions, first outlined in
Murray and Ghahramani (2004).

Approximation Schemes 130

Variational lower bounds were developed in statistical physics, but are also widely
used in machine learning. They use Jensen’s inequality to lower bound the log partition
function in the following way:

logZ(θ) = log
∑

x

f(x; θ) = log
∑

x

q(x)
f(x; θ)
q(x)

≥
∑

x

q(x) log
f(x; θ)
q(x)

logZ(θ) ≥
∑

x

q(x) log f(x; θ) +H(q) ≡ F(θ, q).

(5.12)

The relationship holds for any distribution q(x), provided it is not zero where p(x; θ)
has support. The second term in the bound is called the entropy of the distribution
H(q)≡−

∑
x q(x) log q(x). The over-all bound F is often called the free energy. See

Winn and Bishop (2005) for more details and a framework for automatic construction
and optimization of variational bounds for a large class of graphical models.

The näıve mean field method is a variational method with q constrained to belong to the
set of fully factorized distributions Qmf = {q : q(x) =

∏
i qi(xi)}. For the Boltzmann

machine a local maximum of this lower bound logZmf(θ) = maxq∈Qmf
F(θ, q) can be

found with an iterative and tractable fixed-point algorithm, see for example MacKay
(2003, chapter 33). Let the mean-field Metropolis algorithm be defined by using
Zmf(θ) in place of Z(θ) in the acceptance probability computation, equation (5.8). The
expectations from the näıve mean field algorithm could also be used to compute direct
approximations to the gradients in equation (5.11) for use in a stochastic dynamics
method.

Jensen’s inequality can be used to obtain much tighter bounds than those given by
the näıve mean-field method. For example, when constraining q to be in the set of all
tree-structured distributions Qtree optimizing the lower bound on the partition function
is still tractable (Wiegerinck, 2000), obtaining Ztree(θ) ≤ Z(θ). The tree Metropolis

algorithm is defined through the use of this approximation in equation (5.8). Alterna-
tively, expectations under the tree could be used to form the gradient estimate for a
stochastic dynamics method, equation (5.11).

Bethe approximation. A recent justification for applying belief propagation to
graphs with cycles is the relationship between this algorithm’s messages and the fixed
points of the Bethe free energy (Yedidia et al., 2005). This breakthrough gave a new
approximation for the partition function. In the loopy Metropolis algorithm belief
propagation is run on each proposed system, and the Bethe free energy is used to ap-
proximate the acceptance probability, equation (5.8). Traditionally belief propagation
is used to compute marginals; pairwise marginals can be used to compute the expec-
tations used in gradient methods, e.g. equation (5.11), or in finding partition function
ratios, equation (5.9). These approaches lead to different algorithms, although their

Approximation Schemes 131

approximations are clearly closely related.

Langevin using brief sampling. The pairwise marginals required in equations (5.10)
and (5.11) can be approximated by MCMC sampling. The Gibbs sampler used in
subsection 5.2.4 is a popular choice, whereas in subsection 5.2.5 a more sophisti-
cated Swendsen-Wang sampler is employed. Unfortunately— as in maximum likeli-
hood learning, equation (5.7)— the parameter-dependent variance of these estimates
can hinder convergence and introduce biases. The brief Langevin algorithm, inspired
by work on contrastive divergence (Hinton, 2002), uses very brief sampling starting
from the data, X, which gives biased but low variance estimates of the required expec-
tations. As the approximations in this section are run as an inner loop to the main
sampler, the cheapness of brief sampling makes it an attractive option.

Langevin using exact sampling. Unbiased expectations can be obtained in some
systems using an exact sampling algorithm (section 2.7). Although the gradients from
this method are guaranteed to be unbiased, parameter-dependent variance could lead
to worse performance than the proposed brief Langevin method. Variance could be
reduced by reusing pseudo random numbers. However, we shall see later that there are
much more elegant ways to use an exact sampler if one is available.

Pseudo-Likelihood. Replacing the likelihood of the parameters with a tractable prod-
uct of conditional probabilities is a common approximation in Markov random fields for
image modeling. One of the earliest Bayesian approaches to learning in large systems
of which we are aware was in this context (Wang et al., 2000; Yu and Cheng, 2003).
The models used in the experiments of subsection 5.2.4 were not well approximated by
the pseudo-likelihood, so it is not explored further here.

5.2.3 Extension to hidden variables

So far we have only considered models of the form p(y|θ) where all variables, y, are
observed. Often models need to cope with missing data, or have variables that are
always hidden. These are often the models that would most benefit from a Bayesian
approach to learning the parameters. In fully observed models in the exponential family
the parameter posteriors are often relatively simple as they are log concave if the prior
used is also log concave (as seen later in figure 5.2). The parameter posterior with
hidden variables will be a linear combination of log concave functions, which need not
be log concave and can be multi-modal.

In theory the extension to hidden variables is simple. First consider a model p(y, h|θ),
where h are unobserved variables. The parameter posterior is still proportional to

Approximation Schemes 132

p(y|θ)p(θ), and we observe

p(y|θ) =
∑

h

p(y, h|θ) =
1
Z(θ)

∑
h

∏
j

fj((y, h)cj , θj)

log p(y|θ) = − logZ(θ) + log
∑

h

∏
j

fj((y, h)cj , θj)

= − logZ(θ) + logZy(θ).

(5.13)

That is, the sum in the second term is a partition function, Zy, for an undirected
graph of the variables h. To see this compare to equation (5.2) and consider the fixed
observations y as parameters of the potential functions. In a system with multiple
i.i.d. observations Zy must be computed for each setting of y. Note however that
these additional partition function evaluations are for systems smaller than the original.
Therefore, any method that approximates Z(θ) or related quantities directly from the
parameters can still be used for parameter learning in systems with hidden variables.

The brief sampling and pseudo-likelihood approximations rely on settings of every vari-
able provided by the data. For systems with hidden variables these methods could use
settings from samples conditioned on the observed data. In some systems this sampling
can be performed easily (Hinton, 2002). In subsection 5.2.5 several steps of MCMC
sampling over the hidden variables are performed in order to apply the brief Langevin
method.

5.2.4 Experiments involving fully observed models

The approximate samplers described in subsection 5.2.2 were tested on three systems.
The first, taken from Edwards and Havránek (1985), lists six binary properties detail-
ing risk factors for coronary heart disease in 1841 men. Modeling these variables as
outputs of a fully-connected Boltzmann machine, we attempted to draw samples from
the distribution over the unknown weights. We can compute Z(θ) exactly in this sys-
tem, which allows us to compare methods against a Metropolis sampler with an exact
inner loop. A previous Bayesian treatment of these data also exists (Dellaportas and
Forster, 1999).

While predictions wouldn’t need as many samples, we performed sampling for 100,000
iterations to obtain reasonable histograms for each of the weights (figure 5.2). The
mean-field, tree and loopy Metropolis methods each proposed changes to one parameter
at a time using a zero-mean Gaussian with variance 0.01. The brief Langevin method
used a step-size ε = 0.01. Qualitatively the results are the same as those reported by
Dellaportas and Forster (1999), parameters deemed important by them have very little
overlap with zero.

The mean-field Metropolis algorithm failed to converge, producing noisy and wide
histograms over an ever increasing range of weights (figure 5.2). The sampler with the

Approximation Schemes 133

−4 −2 0
W

FF

−2 0 2
W

EF

−2 −1 0
W

EE

−2 0 2
W

DF

0 1 2
W

DE

−2 −1 0
W

DD

−2 0 2
W

CF

−2 −1 0
W

CE

−2 0 2
W

CD

−2 0 2
W

CC

−2 0 2
W

BF

−2 0 2
W

BE

−2 0 2
W

BD

−4 −2 0
W

BC

−1 0 1
W

BB

−2 0 2
W

AF

−2 0 2
W

AE

−2 −1 0
W

AD

0 1 2
W

AC

−2 0 2
W

AB

−5 0 5
W

AA

Mean Field Tree

Figure 5.2: Histograms of samples for every parameter in the heart disease risk
factor model. Results from exact Metropolis are shown in solid (blue); loopy
Metropolis dashed (purple); brief Langevin dotted (red). These curves are often
indistinguishable. The mean-field and tree Metropolis algorithms performed very
badly; to reduce clutter these are only shown once each in the plots for WAA and
WAB respectively, shown in dash-dotted (black).

−1 −0.5 0 0.5 1 1.5
0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

Parameters

f

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

Parameters

f

Figure 5.3: Loopy Metropolis is shown dashed (blue), brief Langevin solid
(black). Left: an example histogram as in figure 5.2 for the 204 edge BM; the
vertical line shows the true weight. Also shown are the fractions of samples, f ,
within ±0.1 of the true value for every parameter in the 204 edge system (cen-
ter) and the 500 edge system (right). The parameters are sorted by f for clarity.
Higher curves indicate better performance.

Approximation Schemes 134

tree-based inner loop did not always converge either and when it did, its samples did
not match those of the exact Metropolis algorithm very well. The loopy Metropolis and
brief Langevin methods closely match the marginal distributions predicted by the exact
Metropolis algorithm for most of the weights. Results are not shown for algorithms
using expectations from loopy belief propagation in equation (5.11) or equation (5.9) as
these gave almost identical performance to loopy Metropolis based on equation (5.8).

Our other two test systems are 100-node Boltzmann machines and demonstrate learn-
ing where exact computation of Z(W) is intractable2. We considered two randomly
generated systems, one with 204 edges and another with 500. Each of the parameters
not set to zero, including the 100 biases, was drawn from a unit Gaussian. Experiments
on an artificial system allow comparisons with the true weight matrix. We ensured our
training data were drawn from the correct distribution with an exact sampling method
(Childs et al. (2001), reviewed in subsection 2.7.1). This level of control would not be
available on a natural data set.

The loopy Metropolis algorithm and the brief Langevin method were applied to 100
data points from each system. The model structure was provided, so that only non-zero
parameters were learned. Figure 5.3 shows a typical histogram of parameter samples;
the predictive ability over all parameters is also shown. Short runs on similar systems
with stronger weights show that loopy Metropolis can be made to perform arbitrarily
badly more quickly than the brief Langevin method on this class of system.

5.2.5 Experiment involving hidden variables

Finally we consider an undirected model approach taken from work on semi-supervised
learning in Zhu and Ghahramani (2002). Here a graph is defined using the 2D positions,
X = {(xi, yi)}, of unlabeled and labeled data. The variables on the graph are the class
labels, S = {si}, of the points. The joint model for the l labeled points and u unobserved
or hidden variables is

p(S|X, σ) =
1
Z(σ)

exp

 l+u∑
i=1

∑
i<j

δ(si, sj)Wij(σ)

 , (5.14)

where

Wij(σ) = exp
(
−1

2

(
(xi − xj)2

σ2
x

+
(yi − yj)2

σ2
y

))
. (5.15)

The edge weights of the model, Wij , are functions of the Euclidean distance between
points i and j measured with respect to scale parameters σ = (σx, σy). Nearby points
wish to be classified in the same way, whereas far away points may be approximately
uncorrelated, unless linked by a bridge of points in between.

2These test sets are available online: http://www.gatsby.ucl.ac.uk/∼iam23/04blug/

http://www.gatsby.ucl.ac.uk/~iam23/04blug/

Approximation Schemes 135

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

(a) Data set

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

σ
x

σ y

(b) Brief Langevin

0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

σ
x

σ y

(c) Loopy Metropolis

Figure 5.4: (a) a data set for semi-supervised learning with 80 variables: two
groups of classified points (× and ◦) and unlabeled data (·). (b) 10,000 approx-
imate samples from the posterior of the parameters σx and σy, equation (5.14).
An uncorrected Langevin sampler using gradients with respect to log(σ) approx-
imated by a Swendsen-Wang sampler was used. (c) 10,000 approximate samples
using Loopy Metropolis.

The likelihoods in this model can be interesting functions of σ (Zhu and Ghahramani,
2002), leading to non-Gaussian and possibly multi-modal parameter posteriors with
any simple prior. As the likelihood is often a very flat function over some parameter
regions, the MAP parameters can change dramatically with small changes in the prior.
There is also the possibility that no single settings of the parameters can capture our
knowledge.

When performing binary classification equation (5.14), which is a type of Potts model,
can be rewritten as a standard Boltzmann Machine. The edge weights Wij are now
all coupled through σ, so our sampler will only explore a two-dimensional parameter
space (σx, σy). However, little of the above theory is changed by this: we can still
approximate the partition function and use this in a standard Metropolis scheme, or
apply Langevin methods based on equation (5.11) where gradients include sums over
edges.

Figure 5.4a shows an example data set for this problem. This toy data set is designed
to have an interpretable posterior over σ and demonstrates the type of parameter
uncertainty observed in real problems. We can see intuitively that we do not want σx

or σy to be close to zero. This would disconnect all points in the graph making the
likelihood small (≈ 1/2l). Parameters that correlate nearby points that are the same
will be much more probable under a large range of sensible priors. Neither can both
σx and σy be large: this would force the × and ◦ clusters to be close, which is also
undesirable. However, one of σx and σy can be large as long as the other stays below
around one. These intuitions are closely matched by the results shown in figure 5.4b.
This plot shows draws from the parameter posterior using the brief Langevin method
based on a Swendsen-Wang sampling inner loop described in Zhu and Ghahramani
(2002). We also reparameterized the posterior to take gradients with respect to log(σ)
rather than σ. This is important for any unconstrained gradient method like Langevin.
Note that predictions from typical samples of σ will vary greatly. For example large σx

Approximation Schemes 136

predicts the unlabeled cluster in the top left as mainly ×’s, whereas large σy predicts
◦’s. It would not be possible to obtain the same predictive distribution over labels with
a single ‘optimal’ setting of the parameters as was pursued in Zhu and Ghahramani
(2002). This demonstrates how Bayesian inference over the parameters of an undirected
model can have a significant impact on predictions.

Figure 5.4c shows that loopy Metropolis converges to a very poor posterior distribution,
which does not capture the long arms in figure 5.4b. This is due to poor approximate
partition functions from the inner loop. The graph induced by W contains many
tight cycles, which cause problems for loopy belief propagation. As expected, loopy
propagation gave sensible posteriors on other problems where the observed points were
less dense and formed linear chains.

5.2.6 Discussion

Although MCMC sampling in general undirected models is intractable, there are a vari-
ety of approximate methods that can be brought forth to tackle this problem. We have
proposed and explored a range of such approximations including two variational ap-
proximations, brief sampling and the Bethe approximation, combined with Metropolis
and Langevin methods. Clearly many more approximations could be explored.

The mean field and tree-based Metropolis algorithms performed disastrously even on
simple problems. We believe these failures result from the use of a lower bound as an
approximation. Where the lower bound is poor, the acceptance probability for leaving
that parameter setting will be exceedingly low. Thus the sampler is often attracted
towards extreme regions where the bound is loose, and does not return.

The Bethe free energy based Metropolis algorithm performs considerably better and
gave the best results on one of our artificial systems. However it also performed terribly
on our final application. In general if an approximation performs poorly in the inner
loop then we cannot expect good parameter posteriors from the outer loop. In loopy
propagation it is well known that poor approximations result for frustrated systems,
and systems with large weights or tight cycles.

The typically broader distributions from brief Langevin and its less rapid failure with
strong weights means that we expect it to be more robust than loopy Metropolis.
Another advantage is the cost per iteration: the mean field and belief propagation
algorithms are iterative procedures with potentially large and uncontrolled costs for
convergence. Brief Langevin gave reasonable answers on some large systems where the
other methods failed, although it too can suffer from very large artifacts. Even on the
very simple heart disease data set one of the posterior marginals was very different
under this approximation. This actually means the whole joint distribution is in the
wrong place. We now turn to valid MCMC algorithms, which are clearly required if
correct inferences are important.

The Exchange Algorithm 137

θ θ′

y x

q(θ′; θ, y)

f(y; θ)

Z(θ)

f(x; θ′)

Z(θ′)

Figure 5.5: An augmented model with the original generative model for obser-
vations p(y, θ) as a marginal. The exchange algorithm is a particular sequence of
Metropolis–Hastings steps on this model.

5.3 The Exchange Algorithm

The standard Metropolis–Hastings algorithm proposes taking the data y away from
the current parameters θ, which would remove a factor including 1/Z(θ) from the joint
probability p(θ, y). The proposal also suggests giving the data to the new parameters
θ′, which introduces a new factor including 1/Z(θ′). If each parameter setting always
owned a data set under the model’s joint distribution then we would not need to keep
adding and removing these 1/Z factors.

We bring the proposed parameter θ′ into the model and give it a data set of its own, x.
This augmented distribution illustrated in figure 5.5 has joint probability:

p(y, θ, x, θ′) = p(θ)
f(y; θ)
Z(θ)

q(θ′←θ; y)
f(x; θ′)
Z(θ′)

. (5.16)

Given a setting of (θ, y), a second setting of parameters is generated from an arbi-
trary distribution, q(θ′ ← θ; y). A fantasy dataset is then generated from p(x|θ′) =
f(x; θ′)/Z(θ′), where the function f is the same as in the data-generating likelihood,
equation (5.3). The original joint distribution p(θ, y) is evidently maintained on adding
these ‘child’ variables to the graphical model. As long as we can generate fantasies
from this prior model, two Monte Carlo operators are now feasible.

Operator one resamples (θ′, x) from its distribution conditioned on (y, θ). This is a
block-Gibbs sampling operator, which is naturally implemented by sampling θ′ from
the proposal followed by generating a fantasy for that parameter setting. Thus we are
able to change θ′, as long as we can sample from p(x|θ′). Resampling x at the same
time removes the need to evaluate the change in Z(θ′), although this does require an
exact sample. This will need a method like coupling from the past (section 2.7). Just
having a Markov chain with stationary distribution p(x|θ′) is not sufficient.

Operator two is a Metropolis move that proposes swapping the values of the two
parameter settings: θ↔θ′. As the proposal is symmetric the acceptance ratio is simply

The Exchange Algorithm 138

the ratio of joint probabilities before and after the swap:

a =
q(θ←θ′; y) p(θ′) f(y; θ′) f(x; θ)

Z(θ)Z(θ′)

/
q(θ′←θ; y) p(θ) f(y; θ) f(x; θ′)

Z(θ)Z(θ′)

=
p(θ′) q(θ←θ′; y) f(y; θ′) f(x; θ)
p(θ) q(θ′←θ; y) f(y; θ) f(x; θ′)

(5.17)

Combining the two operators gives algorithm 5.2, the exchange algorithm.

Algorithm 5.2 Exchange algorithm
Input: initial θ, number of iterations S

1. for s = 1 . . . S

2. propose θ′ ∼ q(θ′←θ; y)
3. generate an auxiliary variable x ∼ f(x; θ′)/Z(θ′)
4. compute acceptance ratio:

a =
q(θ←θ′; y) p(θ′) f(y; θ′)
q(θ′←θ; y) p(θ) f(y; θ)

· f(x; θ)
f(x; θ′)

5. draw r ∼ Uniform[0, 1]
6. if (r < a) then set θ←θ′

7. end for

Each step tries to take the data y from the current parameter setting θ. We speculate
that a better parameter setting is θ′, which was generated by q(θ′← θ; y). How can
we persuade θ to give up the data to the rival parameter setting θ′? We offer it
a replacement data set x from the θ′ distribution. If f(x; θ)/f(y; θ) > 1 then this
replacement is preferred by θ to the real data y, which is a good thing. We have to
consider both sides of the exchange: the ratio f(y; θ′)/f(x; θ′) measures how much θ′

likes the trade in data sets. Only by liking the data and generating good replacements
can a parameter enter the set of the posterior samples. Parameters that spread high
f settings over many data sets will like the swap, but tend to generate unacceptable
fantasies. This penalty replaces the need to compute Z.

Comparing the acceptance ratio to the infeasible M–H algorithm’s ratio in algo-
rithm 5.1, we identify that the exchange algorithm replaces the ratio of normalizers
with a one-sample unbiased importance sampling estimate (cf equation (1.13)):

Z(θ)
Z(θ′)

≈ f(x; θ)
f(x; θ′)

, x ∼ f(x; θ′)/Z(θ′). (5.18)

This gives an interpretation of why the algorithm works. But it is important to re-
member that arbitrary estimators based on importance sampling or other methods for
computing Z and its ratios are unlikely to give a transition operator with the correct
stationary distribution. We emphasize the exchange motivation because the algorithm
is simply Metropolis–Hastings, which is already well understood, here applied to an
augmented model. For more mathematical detail see subsection 5.3.3 which provides a
proof of the stationary distribution for a more general version of the algorithm.

The Exchange Algorithm 139

θ = θ1 θ = θ2 θ = θ3 θ = θ4

x1 x2 x3 x4

y

i

Figure 5.6: An alternative representation of the generative model for observa-
tions y. All possible parameter settings, {θj}, are instantiated, fixed and used to
generate a set of data variables {xj}. The indicator i is used to set y = xi. The
posterior over θi, the parameter chosen by the indicator variable i, is identical to
p(θ|y) in the original model.

5.3.1 Product space interpretation

The exchange algorithm was originally inspired by Carlin and Chib (1995), which gives
a general method for model comparison by MCMC. In this approach every model is
instantiated in the sampler, which explores a product space of all the models’ parameter
settings. An indicator variable, which is also sampled, specifies which model was used to
generate the data. The posterior probability distribution over the indicator variable is
the posterior distribution over models. Exchange moves in product spaces are common
in the parallel or replica tempering methods in the physics literature, e.g. Swendsen
and Wang (1986) and Geyer (1991).

By temporarily assuming that there is only a finite discrete set of possible parameters
{θj}, each setting can be considered as a separate model. This suggests a somewhat
strange joint distribution (see also figure 5.6):

p({xj}, y, θi) = p(θi)I(y=xj)
∏
j

f(xj ; θj)
Z(θj)

, (5.19)

where I(y=xi) is an indicator function enforcing y=xi. This corresponds to choosing
a parameter setting, θi, from the prior and generating the observed data as before; but
then also generating unobserved data sets using every other setting of the parameters.
Although this only appears to be a convoluted restatement of the original generative
process, all Z(θj) terms are now always present; Z is a constant again.

Each of the unobserved datasets {xj 6=i} can be updated by standard MCMC methods
such as Gibbs sampling. Conditioned on i, the remaining dataset xi =y is not updated,
because it has a single known, observed value. To update i we notice that an isolated
M–H proposal i→ i′ will not work; it is exceedingly unlikely that xi′ = y. Instead we
couple i→ i′ proposals with an exchange of datasets xi =y and xi′ . The M–H acceptance

The Exchange Algorithm 140

ratio for this proposal is simple; much of the joint distribution in equation (5.19) cancels
leaving:

a =
q(i← i′; y) p(θi′) f(y; θi′) f(xi′ ; θi)
q(i′← i; y) p(θi) f(y; θi) f(xi′ ; θi′)

. (5.20)

The only remaining problem is that if the number of parameter settings is very large,
we require huge amounts of storage and a very long time to reach equilibrium. In
particular the method seems impractical if θ is continuous.

The solution to these problems recreates the exchange algorithm of the previous section.
We declare that at each time step all of the x variables are at equilibrium conditioned
on the indicator variable i. But we do not need to store these values; only when
a swap of ownership between θ and θ′ is proposed do we need to know the current
setting of θ′’s data. We can then draw the value from its equilibrium distribution:
x ∼ p(x|θ′)=f(x; θ′)/Z(θ′), pretending that this had already been computed. After the
exchange has been accepted or rejected the intermediate quantity x can be discarded.
We redraw any unobserved data set from its stationary distribution as required. This
retrospective sampling trick has been used in a variety of other MCMC algorithms for
infinite-dimensional models (Papaspiliopoulos and Roberts, 2005; Beskos et al., 2006).

An infinite-dimensional model and retrospective sampling are not required to describe
the exchange algorithm, but provide connections to the literature, which might be
useful for some readers. The product model works without exact sampling for models
with a small number of parameter settings and is also how the algorithm was originally
conceived. Other readers may prefer the explanation in the previous section: even on
continuous parameters it uses Metropolis–Hastings on a finite auxiliary system, which
is more established theoretically.

5.3.2 Bridging Exchange Algorithm

The Metropolis–Hastings acceptance rule has the maximum acceptance rate for any
reversible transition operator that may only accept or reject proposals from q (see
subsection 2.1.1). As the exchange algorithm is only approximately the same as the
direct M–H approach, in some sense it rejects moves that it should not. As we have
much better approximations of normalizing constant ratios than equation (5.18), better
methods should be possible.

How can good parameter proposals get rejected? It may be that θ′ is a much better
explanation of the data y than the current parameters θ and would be accepted under
M–H. However, the exchange algorithm can reject the swap because x∼f(x; θ′)/Z(θ′)
is improbable under θ. This makes movement unnecessarily slow and suggests searching
for a way to make swaps look more favorable.

The exchange algorithm with bridging draws a fantasy as before, x0∼f(x0; θ′)/Z(θ′),
but then applies a series of modifications x0→ x1→ · · ·xK such that xK is typically

The Exchange Algorithm 141

more appealing to θ. To describe the precise form of these modifications we specify a
new augmented joint distribution.

p(y, θ, {xk}Kk=0, θ
′) = The augmented model combines:

p(θ)
f(y; θ)
Z(θ)

the original model,

× q(θ′←θ; y) a parameter proposal,

× f(x0; θ′)
Z(θ′)

generating a fantasy

×
K∏

k=1

Tk(xk←xk−1; θ, θ′) and bridging steps.

(5.21)

We choose the Tk to be Markov chain transition operators with corresponding stationary
distributions pk. A convenient choice is

pk(x; θ, θ′) ∝ f(x; θ′)(1−βk)f(x; θ)βk ≡ fk(x; θ, θ′),

where βk =
k

K + 1
,

(5.22)

giving K intermediate distributions that bridge between p0(x; θ, θ′)≡f(x; θ′)/Z(θ′) and
pK+1(x; θ, θ′)≡ f(x; θ)/Z(θ). Other bridging schemes could be used. In what follows
we only assume the directional symmetry pk(x; θ, θ′)≡ pK+1−k(x; θ′, θ). Similarly we
require

Tk(xk←xk−1; θ, θ′) = TK+1−k(xk←xk−1; θ′, θ), (5.23)

which is easily achieved by always using the same transition operator for the same
underlying stationary distribution. As before there are two possible Markov chain
operators.

Operator one: block Gibbs sample from

p(θ′, {xk}|y, θ) = q(θ′←θ; y)
f(x0; θ′)
Z(θ′)

K∏
k=1

Tk(xk←xk−1; θ, θ′). (5.24)

Operator two: propose swapping θ′↔θ whilst simultaneously reversing the order of
the {xk} sequence, as illustrated in figure 5.7.

If the Tk operators satisfy detailed balance, i.e.

Tk(x′←x; θ, θ′)pk(x; θ, θ′) = Tk(x←x′; θ, θ′)pk(x′; θ, θ′), (5.25)

then the M–H acceptance ratio for operator two does not depend on the details of Tk

and is easily computed. The concatenation of the two operators results in algorithm 5.3,
figure 5.7. Note that K =0 reduces to the previous exchange algorithm.

As before the
∏K

k=0 fk+1(xk; θ, θ′)/fk(xk; θ, θ′) term in the acceptance ratio corresponds

The Exchange Algorithm 142

θ

θ′

y

q(θ′; θ, y)

f(y; θ)

Z(θ)

x0

x1

xK−1

xK

f(x0; θ
′)

Z(θ′)

T1(x1; x0, θ, θ
′)

TK(xK; xK−1, θ, θ
′)

↘

θ′

θ

y

q(θ; θ′, y)

f(y; θ′)

Z(θ′)

x0

x1

xK−1

xK

f(xK ; θ)

Z(θ)

T1(xK−1; xK, θ′, θ)

= TK(xK−1; xK, θ, θ′)

TK(x0; x1, θ
′, θ)

= T1(x1; x0, θ, θ
′)

Figure 5.7: The proposed change under a bridged exchange. Given a current
parameter θ the algorithm generated θ′, an exact sample x0 from its distribution
and a sequence of data sets that come from distributions closer and closer to p(x|θ).
The swap move proposes making θ′ the current parameter and θ the owner of a
fantasy. As x0 was typical of θ′ not θ the stack of auxiliary variables is reversed
so it looks like it might have been generated under the original process.

Algorithm 5.3 Exchange algorithm with bridging
Input: initial θ, #iterations S, #bridging levels K

1. for s = 1 . . . S

2. propose θ′ ∼ q(θ′←θ; y)
3. generate an auxiliary variable by exact sampling:

x0 ∼ p0(x0; θ, θ′) ≡ f(x0; θ′)/Z(θ′)

4. generate K further auxiliary variables with transition operators:

x1 ∼ T1(x1←x0; θ, θ′)
x2 ∼ T2(x2←x1; θ, θ′)

· · ·
xK ∼ TK(xK←xK−1; θ, θ′)

5. compute acceptance ratio:

a =
q(θ←θ′; y) p(θ′) f(y; θ′)
q(θ′←θ; y) p(θ) f(y; θ)

·
K∏

k=0

fk+1(xk; θ, θ′)
fk(xk; θ, θ′)

(5.26)

6. draw r ∼ Uniform[0, 1]
7. if (r < a) then set θ←θ′

8. end for

The Exchange Algorithm 143

to an unbiased estimate of Z(θ)/Z(θ′). Proof: it is an annealed importance sampling
(AIS) weight, equation (2.24). This is the natural extension to the simple importance
estimate, equation (5.18), in the original exchange algorithm. Linked importance sam-
pling (Neal, 2005) could also be used as a drop-in replacement.

The bridging extension to the exchange algorithm allows us to improve its implicit
normalization constant estimation and improve the acceptance rate, for some additional
cost. Fortunately no further expensive exact sampling, on top of that needed by the
original algorithm, is required per iteration. The performance as a function of K is
explored in section 5.6.

5.3.3 Details for proof of correctness

It turns out that the algorithm as stated is also valid when the operators Tk do not
satisfy detailed balance. We give the details of a proof for this more general case.

We define a set of reverse Markov chain operators

T̃k(x←x′; θ, θ′) ∝ Tk(x′←x; θ, θ′) pk(x; θ, θ′) =
Tk(x′←x; θ, θ′) pk(x; θ, θ′)

pk(x′; θ, θ′)
. (5.27)

Define the transition operator T by steps 2–7 of algorithm 5.3. Let T̃ be defined by
the same algorithm but using {T̃k} rather than {Tk}. We now prove that both T and
T̃ leave p(θ|y) stationary:

T (x0, . . ., xK , θ′←θ)p(θ|y) = Probability of transition is

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

f(y; θ)p(θ)
Z(θ)p(y)

probability of being at θ,

× q(θ′←θ; y) proposing a move to θ′,

× f(x0; θ′)
Z(θ′)

≡ f0(x0; θ, θ′)
Z(θ′)

generating x0,

×
K∏

k=1

Tk(xk←xk−1; θ, θ′) generating (x1, . . ., xK)

× min

[
1,

q(θ←θ′; y) p(θ′) f(y; θ′)
q(θ′←θ; y) p(θ) f(y; θ)

K∏
k=0

fk+1(xk; θ, θ′)
fk(xk; θ, θ′)

]
and finally accepting.

Rearranging and using fK+1(xK ; θ, θ′) ≡ f(xK ; θ):

= min

[
p(θ) f(y; θ) q(θ′←θ; y) f(x0; θ′)

p(y)Z(θ)Z(θ′)

K∏
k=1

Tk(xk←xk−1; θ, θ′) ,

p(θ′) f(y; θ′) q(θ←θ′; y) f(xK ; θ)
p(y)Z(θ′)Z(θ)

K∏
k=1

Tk(xk←xk−1; θ, θ′) fk(xk−1; θ, θ′)
fk(xk; θ, θ′)

]
.

The Single Auxiliary Variable Method 144

We substitute equation (5.27) and equation (5.23) into the second product and reorder
its terms:

= min

[
p(θ) f(y; θ) q(θ′←θ; y) f(x0; θ′)

p(y)Z(θ)Z(θ′)

K∏
k=1

Tk(xk←xk−1; θ, θ′) ,

p(θ′) f(y; θ′) q(θ←θ′; y) f(xK ; θ)
p(y)Z(θ′)Z(θ)

K∏
k=1

T̃k(xK−k←xK+1−k; θ′, θ)

]
.

(5.28)

Now swapping θ and θ′, reversing the order of the auxiliary variables, i.e. mapping
(x0, x1, . . . , xK)→ (xK , . . . , x1, x0) and swapping T and T̃ throughout, only swaps the
arguments of the min leaving the value of the expression unchanged. Therefore, the
probability of the reverse transition under T̃ , via the same intermediate values, is the
same as in equation (5.28). That is, for any values of {xk}

T ((x0, . . ., xK), θ′←θ) p(θ|y) = T̃ ((xK , . . ., x0), θ←θ′) p(θ′|y) . (5.29)

Summing over all possible intermediate values {xk} gives

T (θ′←θ) p(θ|y) = T̃ (θ←θ′) p(θ′|y) . (5.30)

Further summing over θ or θ′ shows that both T and T̃ leave p(θ|y) stationary. If, as
was originally proposed, T is reversible then T ≡ T̃ and the bridged exchange algorithm
also satisfies detailed balance.

As an aside we mention that the bridging scheme is very similar to that found in the
method of dragging fast variables (Neal, 2004a). Although dragging was presented
using reversible transition operators, a similar proof to the one above shows that it too
can use non-reversible transition operators.

5.4 The Single Auxiliary Variable Method

The first valid MCMC algorithm for doubly-intractable distributions was discovered by
Møller et al. (2004, 2006). For comparison this section reviews their method, which we
call the Single Auxiliary Variable Method (SAVM).

SAVM extends the original model to include a single auxiliary variable, x, which shares
the same state space as y (figure 5.8):

p(x, y, θ) = p(x|θ, y)
f(y; θ)
Z(θ)

p(θ). (5.31)

The joint distribution p(y, θ) is unaffected. No known method of defining auxiliary
variables removes Z(θ) from the joint distribution. However, through careful choice

The Single Auxiliary Variable Method 145

θ

y

(a)

y

θ

x

(b)

Figure 5.8: (a) the original model, unknown parameters θ generated observed
variables y, (b) the SAVM augmented model. The conditional distribution of x
must have a tractable θ dependence. In existing approaches this distribution is
only a function of one of y or θ, e.g. f(x; θ̂(y))/Z(θ̂) or a normalizable function
of (x, θ).

of q, explicit Z(θ) dependence can be removed from the M–H ratio

a =
p(x′, θ′|y) q(x, θ←x′, θ′; y)
p(x, θ|y) q(x′, θ′←x, θ; y)

. (5.32)

A convenient form of proposal distribution is

q(x′, θ′←x, θ; y) = q(θ′←θ; y) q(x′; θ′), (5.33)

which corresponds to the usual change in parameters θ → θ′, followed by a choice for
the auxiliary variable. If this choice, which happens to ignore the old x, uses

q(x′; θ′) = f(x′; θ′)/Z(θ′) , (5.34)

where f and Z are the same functions as in p(y|θ), equation (5.3), then the M–H
acceptance ratio becomes

a =
p(x′|θ′, y)
p(x|θ, y)

p(θ′|y)
p(θ|y)

q(x; θ)
q(x′; θ′)

q(θ←θ′; y)
q(θ′←θ; y)

=
p(x′|θ′, y)
p(x|θ, y)

Z(θ)f(y; θ′)p(θ′)
Z(θ′)f(y; θ)p(θ)

f(x; θ)Z(θ′)
f(x′; θ′)Z(θ)

q(θ←θ′; y)
q(θ′←θ; y)

=
f(y; θ′)p(θ′)
f(y; θ)p(θ)

q(θ←θ′; y)
q(θ′←θ; y)

· p(x′|θ′, y)
p(x|θ, y)

f(x; θ)
f(x′; θ′)

.

(5.35)

Now every term can be computed. As with the exchange algorithm, the big assump-
tion is that we can draw independent, exact samples from the proposal distribution,
equation (5.34).

The missing part of this description was the conditional distribution of the auxiliary
variable p(x|θ, y). This choice is not key to constructing a valid M–H algorithm but our
choice will have a strong impact on the efficiency of the Markov chain. Normally we have
a choice over the proposal distribution. Here that choice is forced upon us and instead

MAVM: a tempered-transitions refinement 146

we choose the target distribution p(x|y, θ) to match the proposals as closely as possible.
We cannot maximize the acceptance rate by choosing p(x|y, θ) = f(x; θ)/Z(θ), as that
would reintroduce explicit Z(θ) terms into the M–H ratio. Møller et al. suggested
two possibilities: 1) use a normalizable approximation to the ideal case, 2) replace θ

with a point estimate θ̂, such as the maximum pseudo-likelihood estimate based on the
observations y. This gives an auxiliary distribution

p(x|θ, y) = p(x|y) = p(x|θ̂(y)) =
f(x; θ̂)

Z(θ̂)
, (5.36)

with a fixed normalization constant Z(θ̂), which will cancel in equation (5.35). The
broken lines in figure 5.8b indicate that while x could be a child of θ and y, in practice
previous work has only used one of the possible parents. For concreteness we assume
p(x|θ, y) = f(x|θ̂)/Z(θ̂) for some fixed θ̂(y) in all that follows, but our results are
applicable to either case.

5.4.1 Reinterpreting SAVM

Seen in the light of the product model in figure 5.6, Møller et al.’s SAVM method
appears slightly strange. SAVM can be reproduced by augmenting our joint model in
figure 5.6, containing variables x1, x2, . . . , with an additional arbitrary latent, x with
no subscript, as used in SAVM. Then we can define the following proposal:

1. Draw j ∼ q(j← i)

2. Perform the deterministic three-way swap (x, xi, xj)← (xj , x, xi).
Before the swap xi was equal to the observed data y, so after the swap xj will be equal
to the data, now “owned” by θj . The acceptance ratio for this proposal is precisely as
in SAVM, equation (5.35). If we want to take y from θi and give it to rival setting θj

why involve a third parameter θ̂? In section 5.6 we will see that the third party can
make the transaction harder or mediate it. The bridging steps in subsection 5.3.2 were
specifically designed to make the swap more palatable. In the next section we propose
an extension of SAVM which has similar bridging steps.

5.5 MAVM: a tempered-transitions refinement

As with the exchange algorithm, SAVM’s acceptance ratio, equation (5.35), can be seen
as an approximation to the exact normalization constant evaluation in algorithm 5.1.
SAVM uses the following two unbiased one-sample importance-sampling estimators:

Z(θ̂)
Z(θ′)

≈ f(x′; θ̂)
f(x′; θ′)

x′ ∼ f(x; θ′)/Z(θ′), (5.37)

Z(θ̂)
Z(θ)

≈ f(x; θ̂)
f(x; θ)

x ∼ f(x; θ)/Z(θ). (5.38)

MAVM: a tempered-transitions refinement 147

A biased estimate of Z(θ)/Z(θ′) is obtained by dividing equation (5.37) by equa-
tion (5.38). The unknown constant Z(θ̂) fortuitously cancels and amazingly substi-
tuting this elementary approximation into the M–H algorithm 5.1 gave a valid method.

As with the exchange algorithm, SAVM’s “importance sampling” estimators are very
crude. A large mismatch between p(x|θ, y) and q(x; θ, y) can cause a high M–H rejection
rate. Bridging between these two distributions might help, which suggests replacing
the two importance sampling estimators with annealed importance sampling estimates.
This gives algorithm 5.4. Our new algorithm has K+1 auxiliary variables and collapses
to SAVM for K = 0. We call this method with K ≥ 1 the multiple auxiliary variable
method (MAVM).

Algorithm 5.4 Multiple auxiliary variable method (MAVM)
Input: initial (θ, X), #iterations S, #bridging levels K

1. for s = 1 . . . S

2. propose θ′ ∼ q(θ′←θ; y)
3. propose the first component of X ′ by exact sampling:

x′0 ∼ p0(x′0; θ̂(y), θ′) ≡ f(x′0; θ
′)/Z(θ′)

4. propose remainder of X ′ using K transition operator steps:

x′1 ∼ T1(x′1←x′0; θ̂(y), θ′)

x′2 ∼ T2(x′2←x′1; θ̂(y), θ′)
· · ·

x′K ∼ TK(x′K←x′K−1; θ̂(y), θ′)

5. compute acceptance ratio:

a =
f(y; θ′) p(θ′)
f(y; θ) p(θ)

q(θ←θ′; y)
q(θ′←θ; y)

·
K∏

k=0

fk(xk; θ̂, θ)

fk+1(xk; θ̂, θ)

fk+1(x′k; θ̂, θ
′)

fk(x′k; θ̂, θ
′)

6. draw r ∼ Uniform[0, 1]
7. if (r < a) then set (θ, X)←(θ′, X ′)
8. end for

As in the bridged exchange algorithm, ratios involving the auxiliary variables can be
computed online as they are generated; there is no need to store the whole X ensemble.
The Tk are any convenient transition operators that leave corresponding distributions
pk stationary where

pk(x; θ̂, θ) ∝ f(x; θ)(1−βk)f(x; θ̂)βk ≡ fk(x; θ̂, θ), (5.39)

and βk =
k

K + 1
. (5.40)

Other sequences of stationary distributions are possible. They must start at p0 =
f(x; θ)/Z(θ), as we are forced to draw an exact sample from this as part of the proposal.
From there they should bridge towards the approximate or estimator-based distribution
used by SAVM.

MAVM: a tempered-transitions refinement 148

θ

y

xK
xK−1 x1 x0

Figure 5.9: The joint distribution for the annealing-based multiple auxiliary
variable method (MAVM). Here it is assumed that p(xK |θ, y) is based only on
a data-driven parameter estimate as in equation (5.36). The auxiliary variables
bridge towards the distribution implied by θ. The gray-level and thickness of the
arrows from y and θ indicate the strengths of influence on the auxiliary variables.
These are controlled by {βk} in equation (5.39).

To motivate and validate this algorithm we extend the auxiliary variables x to an en-
semble of variables X ={x0, x1, x2, ...xK}, figure 5.9. We give xK the same conditional
distribution as the single auxiliary variable x in SAVM, equation (5.36). The distribu-
tion over the remaining variables is defined by a sequence of Markov chain transition
operators T̃k(xk−1←xk) with k = K . . . 1:

p(xK−1|xK , θ, y) ∼ T̃K(xK−1←xK ; θ̂(y), θ)

· · ·

p(x1|x2, θ, y) ∼ T̃2(x1←x2; θ̂(y), θ)

p(x0|x1, θ, y) ∼ T̃1(x0←x1; θ̂(y), θ),

(5.41)

where as usual
Tk(x′←x) pk(x) = T̃k(x←x′) pk(x′) . (5.42)

This defines a stationary distribution over the ensemble p(X|θ, y)p(θ|y). Treating the
procedure in algorithm 5.4 as a proposal, q(X ′, θ′;X, θ), the acceptance rule is that of
standard Metropolis–Hastings. As in other bridging schemes the details of the transi-
tion operators cancel after substituting equation (5.42).

While we started by replacing SAVM’s importance sampling estimators with AIS, the
resulting algorithm is more closely related to “Tempered Transitions” (Neal, 1996a).
Our approach has cheaper moves than standard tempered transitions, which would
regenerate xK . . . x0 from p(X|θ, y) before every M–H proposal. This is exploiting the
generalization of tempered transitions introduced in subsection 2.5.4.2.

As with adding bridging to the exchange algorithm, MAVM makes SAVM a closer
match to ideal Metropolis–Hastings sampling. There is an additional cost of K Markov

Comparison of the exchange algorithm and MAVM 149

chain steps per iteration, but no additional exact sampling, which might need many
Markov chain steps. We have also provided an answer to an open question in Møller
et al. (2004) on how to use both θ and y in the auxiliary distribution p(x|θ, y). We use
y in coming up with a point estimate of the parameters to get a distribution in roughly
the right place. Then we bridge towards a better fit to f(x; θ)/Z(θ) using ideas from
annealing.

5.6 Comparison of the exchange algorithm and MAVM

We first consider a concrete example for which all computations are easy. This allows
comparison with exact partition function evaluation (algorithm 5.1) and averaging over
chains starting from the true posterior. We consider sampling from the posterior of a
single precision parameter θ, which has likelihood corresponding to N i.i.d. zero-mean
Gaussian observations y = {y1, y2, . . . yN}, with a conjugate prior:

p(yn|θ)=N (0, 1/θ), p(θ|α, β)=Gamma(α, β). (5.43)

The corresponding posterior is tractable

p(θ|y) = Gamma
(
N/2 + α,

∑
n y2

n/2 + β
)
, (5.44)

but we pretend that the normalizing constant in the likelihood is unknown. We compare
the average acceptance rate of the algorithms for two choices of proposal distribution
q(θ′←θ; y).

All of the algorithms require N exact Gaussian samples, for which we used standard
generators. For large N one could also generate the sufficient statistic

∑
n x2

n with a
Chi-squared routine. We also draw directly from the Gaussian stationary distributions,
pk, in the bridging algorithms. This simulates an ideal case where the energy levels are
close, or the transition operators mix well. More levels would be required for the same
performance with less efficient operators. We now report results for α=1, β=1, N =1
and y=1.

The first experiment uses proposals drawn directly from the parameter posterior, equa-
tion (5.44). The M–H acceptance probability becomes a≡1; all proposals are accepted
when Z(θ) is computed exactly. Therefore any rejections are undesirable by-products
of the auxiliary variable scheme, which can only (implicitly) obtain noisy estimates of
the normalizing constants. Figure 5.10a shows that both MAVM and the exchange al-
gorithm improve over the SAVM baseline of Møller et al. (2006). It appears that a large
number, K, of bridging levels are required to bring the acceptance rate close to the
attainable a=1. However, significant benefit is obtained from a relatively small number
of levels, after which there are diminishing returns. As each algorithm requires an exact

Comparison of the exchange algorithm and MAVM 150

sample, which in applications can require many Markov chain steps, the improvement
from a few extra steps (K >0) can be worth the cost (see subsection 5.6.1).

In this artificial situation the performance of MAVM was similar to the exchange algo-
rithm. This result favors the exchange algorithm, which has a slightly simpler update
rule and does not need to find a maximum (pseudo)-likelihood estimate before sampling
begins. In figure 5.10a we had set θ̂ = 1. Figure 5.10b shows that the performance of
MAVM falls off when this estimate is of poor quality. For moderate K, the exchange
algorithm automatically obtains an acceptance rate similar to the best possible perfor-
mance of MAVM; only for K =0 was performance considerably worse than SAVM. For
this simple posterior θ̂ sometimes manages to be a useful intermediary, but by K = 1
the exchange algorithm has caught up with MAVM.

More importantly, the exchange algorithm performs significantly better than SAVM
and MAVM in a more realistic situation where the parameter proposal q(θ′← θ; y) is
not ideal. Figure 5.10c shows results using a Gaussian proposal centered on the current
parameter value. The exchange algorithm exploits the local nature of the proposal,
rapidly obtaining the same acceptance rate as exactly evaluating Z(θ). MAVM per-
forms much worse, although adding bridging levels does rapidly improve performance
over the original SAVM algorithm. SAVM is now hindered by θ̂, which is more rarely
between θ and θ′.

The posterior distribution over θ, equation (5.44), becomes sharper for N > 1. This
makes the performance of SAVM and MAVM fall off more rapidly as θ̂ is moved away
from its optimum value. These methods require better estimates of θ with larger
datasets.

5.6.1 Ising model comparison

We have also considered the Ising model distribution with yi ∈ {±1} on a graph with
nodes i and edges E:

p(y|θ) =
1
Z(θ)

exp
(∑

(i,j)∈E

θJyiyj +
∑

i

θhyi

)
. (5.45)

We used the summary states algorithm (subsection 2.7.1) for exact sampling and a
single sweep of Gibbs sampling for the transition operators T . Results are reported for
y drawn from a model with θh =0 and θJ =0.3.

Møller et al. (2004) used uniform priors over |θh|< 1 and 0 < θJ < 1. This only works
(or seems to) for a q(θ′←θ) with small step sizes. The algorithms hang if θJ >0.44 is
proposed because CFTP based on Gibbs sampling takes a very long time to return a
sample in this regime. We used a uniform prior over 0<θJ <0.4 and larger, closer-to-
optimal step sizes.

Comparison of the exchange algorithm and MAVM 151

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300

a
v
e.

a
cc

ep
ta

n
ce

p
ro

b
a
b
il
it
y

K

Exchange

MAVM
SAVM

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 1 10

a
v
e.

a
cc

ep
ta

n
ce

p
ro

b
a
b
il
it
y

θ̂

MAVM, K=100
MAVM, K=10

SAVM

(b)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0 50 100 150 200 250 300

a
v
e.

a
cc

ep
ta

n
ce

p
ro

b
a
b
il
it
y

K

Exchange

MAVM
SAVM

(c)

Figure 5.10: Comparison of MAVM and the exchange algorithm learning a Gaus-
sian precision. (a) Average acceptance rate as a function of K. MAVM with K =0
corresponds to SAVM, the method of Møller et al. (2004). Exact normalizing con-
stant evaluation in would give an acceptance rate of one. (b) Average acceptance
rate as a function of the initial parameter estimate required by SAVM (K =0) and
the extended version, MAVM. Horizontal bars show the results for the exchange
algorithm, which has no θ̂, for K = 0, 10, 100. (c) As in (a) but with a Gaus-
sian proposal distribution of width 0.1 centered on the current parameter setting.
The horizontal line shows the maximum average acceptance rate for a reversible
transition operator, this is obtained by exact normalizing constant evaluation.

Comparison of the exchange algorithm and MAVM 152

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

effi
ci

en
cy

/
1
0−

4

K

Exchange
MAVM
SAVM

(a) σ = 0.04

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

effi
ci

en
cy

/
1
0−

4

K

Exchange
MAVM
SAVM

(b) σ = 0.10

Figure 5.11: Performance on a 10×30 toroidal square Ising lattice. The data
were generated from an exact sample with θJ = 0.3 and θh = 0. Proposals were
Gaussian perturbations of width σ. The plot shows efficiency: effective number of
samples, estimated by R-CODA (Cowles et al., 2006), divided by the total number
of Gibbs-sampling sweeps (computer time). All the algorithms are expensive:
SAVM requires 104 Gibbs sweeps of the Ising model to obtain one effective sample
of the parameters. This could be improved by using more advanced exact sampling
methods.

Figure 5.11 gives some example results for two different step sizes. For both methods the
number of effective samples obtained per iteration will tend to the maximum possible
as K→∞. In practice the performance of the two methods does converge. However,
these bridging steps come at a cost; the best K is a compromise between the computer
time per iteration and the mixing time of the chain. In the examples we tried the
exchange algorithm provided better mixing times than SAVM/MAVM for all finite K.
Bridging provided good improvements over SAVM, but only gave appreciable benefits
to the exchange algorithm for larger step sizes.

5.6.2 Discussion

MCMC methods typically navigate complicated probability distributions by local diffu-
sion — longer range proposals will be rejected unless carefully constructed. It is usually
the case that as the step-size of proposals are made sufficiently small the acceptance
rate of a M–H method tends to one. However, SAVM does not have this property, it
introduces rejections even when θ′=θ. While the exchange algorithm has a→1 for all
K as the step-size tends to zero, MAVM will only recover a = 1 as K →∞. This is
because the third party in the proposed swap (see subsection 5.4.1) is not necessarily
close to θ. Even in a simple unimodal 1-dimensional posterior distribution, figure 5.10c,
this is a significant disadvantage in comparison with the exchange algorithm. We found
the exchange algorithm performs better than the only other existing MCMC method
for this problem and is simpler to implement.

Latent History methods 153

5.7 Latent History methods

Both MAVM and the exchange algorithm require exact samples, and use them to
compute similar Metropolis–Hastings acceptance ratios. In this section we propose new
algorithms, which are also valid MCMC methods for doubly-intractable distributions
but which do not draw exact samples. They do follow a very similar coupling procedure,
but the properties of the resulting algorithms are quite different.

We start with an inspiring but impractical rejection sampling algorithm for the param-
eters θ, given for example by Marjoram et al. (2003, Algorithm B):

Algorithm 5.5 Simple rejection sampling algorithm for θ ∼ p(θ|y)

1. Generate θ ∼ p(θ)
2. Simulate y′ ∼ p(y′|θ)
3. Accept θ if y′ = y.

On real problems where the data can take on many values this algorithm will rarely
accept. Marjoram et al. suggest relaxing the equality in step 3 by accepting data
sets that are close in some sense. They also suggest MCMC algorithms, which diffuse
the parameters in step 3 rather than drawing from the prior. These algorithms are
valid samplers for the wrong distribution: p(θ|y is near observed value). This section
will introduce an alternative approach, which tries to make it more probable that the
fantasy data in step 2 is equal to the observed data, while keeping the validity of the
original algorithm.

A generative model specifies a likelihood p(y|θ) but not necessarily the details of an
algorithm to sample from this distribution. The latent history representation brings
a particular sampling procedure into the description of the model. We declare that a
stationary ergodic Markov chain T was simulated for an infinite number of time steps,
generating an arbitrarily-initialized sequence X ={x−∞, . . ., x−2, x−1, x0} and that we
observed the data y ≡ x0. The marginal probability of any xt, including x0, is the
stationary distribution of the Markov chain, which we set to the target model’s p(y|θ).
Unraveling a Markov chain and writing it down as a generative model was a trick
employed by Hinton et al. (2006).

Our latent history representation is illustrated in figure 5.12. As in coupling from the
past (section 2.7) we also consider the random variables U = {u−∞, . . ., u−2, u−1, u0}
used by the Markov chain transition operator at each time step. Given θ and the ut

variables, which provide T with its source of randomness, each state is a deterministic
function of the previous: xt = τ(xt−1, ut, θ).

Latent History methods 154

θ

x−∞ x−3 x−2 x−1 y

u−∞ u−3 u−2 u−1 u0

Figure 5.12: The latent history representation augments the observed data y
and parameters θ with the history of a Markov chain, {x−∞, . . ., x−2, x−1}, with
stationary distribution p(y|θ). If we can (effectively) sample over all unknowns in
this graphical model we have, by discarding {xt, ut}, an algorithm to sample θ.

5.7.1 Metropolis–Hastings algorithm

The latent history representation is a distribution with an infinite number of latent
variables. Although we can not explicitly update all of these variables, MCMC sampling
is notionally straightforward. Algorithm 5.6 would be a valid MCMC procedure if we
had an oracle to perform the infinite number of computations in steps 2 and 5 on our
behalf. As an aside we note that this algorithm is similar to Algorithm F in Marjoram
et al. (2003) for “Approximate Bayesian Computation” (ABC)3.

Algorithm 5.6 Template for a latent history sampler
Input: initial setting θ, number of iterations S

1. for s = 1 . . . S

2. block Gibbs sample from p(x<0, u≤0|x0 =y, θ)
3. propose θ′ ∼ q(θ′←θ; y)

4. with probability min
(

1,
p(θ′) q(θ←θ′; y)
p(θ) q(θ′←θ; y)

)
5. follow deterministic map x′t = τ(x′t−1, ut, θ

′) to find y′≡x′0.
6. if y′=y then accept move θ←θ′

7. end for

The algorithm can feasibly be implemented if T provably coalesces to a single final state
from any start state given the sequence of random numbers {ut}. This allows step 5
of algorithm 5.6 to be replaced with the procedure used by coupling from the past
(CFTP, see section 2.7) to identify y′ while only examining some of the ut’s. Further,

3There are two differences. Firstly the equivalent of the generation in step 5 is always performed
before checking the equivalent to step 4. Our version would also be advisable in the original ABC setting,
assuming data simulation is more expensive than evaluation of prior probabilities. Secondly, the major
difference, we sample the fantasy y′ in a way that has a bias towards reproducing y. The algorithms are
not directly comparable however: the ABC community assumes that they cannot evaluate a function
proportional to p(y|θ), which would make it difficult to construct the transition operators needed by
our algorithm.

Latent History methods 155

by combining steps 5 and 6 the coupling from the past can be terminated early if at
any point it becomes clear that y′ 6=y.

All we require now is an oracle that can return any ut on request. Creating this service
can replace the block Gibbs sampling in step 2, as long as we are consistent with its
infinite computation. Markov properties in the model imply

p(x<0, u≤0|x0, θ) =
∏
t<0

p(xt−1|xt, θ)
∏
t<0

p(ut|xt, xt−1). (5.46)

This structure allows resampling of x−1, x−2, . . . in sequence from

p(xt−1|xt, θ) =
p(xt|xt−1, θ) p(xt−1|θ)

p(xt|θ)

=
T (xt←xt−1; θ) p(xt−1|θ)

p(xt|θ)
= T̃ (xt−1←xt; θ),

(5.47)

the reverse transition operator corresponding to T . As long as p(ut|xt, xt−1) is known
for operator T , any ut value can be sampled after the corresponding xt and xt−1 are
available. This means that step 2 in algorithm 5.6 can be implemented lazily: “con-
struct an object that will provide ut values on request consistent with block Gibbs
sampling the entire model”. This object will respond to a request for ut by returning
the value from memory if it has previously been sampled, or if necessary by sampling
back to xt−1 from the furthest back x value that is known and returning a sample from
p(ut|xt, xt−1). Within each iteration all samples are stored for future use to ensure
consistency.

The practical implementation of a latent history Metropolis–Hastings sampler is sum-
marized in algorithm 5.7. This includes an optional refinement, ‘version b’, which
analytically integrates out u0. This requires computing the transition probability for
one step of T , which is usually possible and should increase the acceptance rate. The
refinement also makes the algorithm feasible for Markov chains that do not completely
coalesce, for example on continuous state spaces. A disadvantage of version b) is that
step 8 may be difficult to implement without always identifying x′−1, whereas step 5 in
version a) will be able to prematurely halt CFTP whenever y 6= x′0, which is often easy
to prove.

5.7.2 Performance

A simple special case highlights large differences between latent history samplers and
the previous auxiliary variable algorithms.

We first consider version a) of the sampler applied to a large collection of D independent
Bernoulli variables sharing a single unknown parameter θ. This is an Ising model in
the limit of zero connection strengths. Assume that the transition operator in use, T ,

Latent History methods 156

Algorithm 5.7 Metropolis–Hastings latent history sampler
Input: initial setting θ, number of iterations S and an algorithm CFTP that can

use a finite number of random numbers to prove where an infinitely long
Markov chain ends (see section 2.7).

1. for s = 1 . . . S

2. create lazy ut generator consistent with p(x<0, u≤0|x0 =y, θ)
3. Propose θ′ ∼ q(θ′←θ; y)

Either (version a):

4. with probability min
(

1,
p(θ′) q(θ←θ′; y)
p(θ) q(θ′←θ; y)

)
5. identify whether y′≡x′0 is y using CFTP and ut generator
6. if y′=y then accept move θ←θ′

Or (version b):
7. Draw r ∼ Uniform[0, 1]
8. identify (enough about) x′−1 for acceptance rule using CFTP and ut’s

9. if r<
T (x0 =y←x′−1; θ

′) p(θ′) q(θ←θ′; y)
T (x0 =y←x−1; θ) p(θ) q(θ′←θ; y)

then accept move θ←θ′

10. end for

is Gibbs sampling, which for these independent variables draws from the stationary
distribution in one sweep. The sampler is implemented as follows: for each of the
observed spins yd, the corresponding u0,d random variate is uniformly distributed in
[0, θ] if the spin is up, and [θ, 1] if the spin is down. Now updates to θ are constrained
to lie within the two closest surrounding u0,d values. This range has a typical scale of
1/D. The posterior over parameters has a width that scales as 1/

√
D. This suggests

that it will take at least O(D) steps to equilibrate the single scalar parameter θ by
random walk sampling. Disappointing given the ideal conditions!

Notice that the performance of the algorithm depends on the details of the tran-
sition operators. An unreasonably clever transition operator could generate y if
u0 < p(y|θ) and some other data set otherwise. Then the probability of finding y′= y

is min(1, p(y|θ)/p(y|θ′)), giving an overall algorithm similar to the ideal Metropolis–
Hastings algorithm (actually the “two stage” rule described in algorithm 2.2). Neither
MAVM nor the exchange algorithm have such dependence on the transition operators
— how the exact sample was obtained is irrelevant.

We now turn to version b) of the sampler with the same independent Bernoulli model
and Gibbs sampling operators. Here the transition probabilities in step 9 are equal
to the parameters’ likelihoods under the model. The algorithm reduces to standard
Metropolis–Hastings for θ, which has the best possible acceptance rate for a given
proposal distribution q. Rapidly mixing operators are rewarded by this version of
latent histories, operators that move very slowly will perform as in version a).

We have implemented both versions of the sampler and applied them to the same Ising

Slice sampling doubly-intractable distributions 157

model problem as in subsection 5.6.1. We used Gibbs sampling for the y variables
combined with the summary states algorithm (subsection 2.7.1) to perform inferences
required by the algorithm. The summary states code required some modification so
that its transitions were driven by the latent history sampler’s u-generator rather than
a generic random number generator, then the state at time t=0 or t=−1 was identified
as in subsection 2.7.1. The parameter proposals were Gaussian with width σ = 0.04,
which preliminary runs indicated was roughly optimal. In version a) we terminated each
iteration as soon as the summary state algorithm identified the state at time zero or a
non-? state at time zero was incompatible with the data. In version b) we always waited
until x′−1 had been identified. More elaborate code could terminate earlier based on
bounds of the acceptance ratio, but this is also true for the exchange algorithm, MAVM
and most standard Metropolis–Hastings algorithms.

As a result of early terminations version a) was roughly five times cheaper per iteration
than our implementation of version b). Even with this advantage the number of effective
samples per Gibbs-sampling-like sweep through the system was around ten times worse
for version a). The efficiency of version b) was 4×10−5 effective samples per Gibbs sweep,
about half that obtained by SAVM. The latent history efficiency computations included
the Gibbs-like sweeps needed to compute the u’s, while SAVM was given its random
numbers for free. This makes the real computation time of the methods comparable.
Which method is actually faster will come down to implementation details. However,
both the bridged exchange and MAVM algorithms are clearly faster than either variant
of latent histories on this Ising problem.

We might hope that latent histories will perform better on other problems. A more
realistic reason to be excited by latent histories is that they might be a much better
route to approximate methods than any of the previous algorithms in this chapter.
We return to this issue in section 5.9. First we turn to the original motivation for
developing latent histories: constructing slice samplers.

5.8 Slice sampling doubly-intractable distributions

All of the algorithms for doubly-intractable distributions described so far are based
on Metropolis–Hastings. Such algorithms always require step-size parameters that
need to be set well. Overly large step-sizes lead to almost all proposals’ being re-
jected; overly small step-sizes give lengthy random-walk-like exploration of the poste-
rior over θ. It would be nice to be able to use a self-tuning method like slice sampling
(subsection 2.4.2), which has less-important or even no step-size parameters.

Slice sampling doubly-intractable distributions 158

5.8.1 Latent histories

The latent history representation naturally allows slice sampling. It also has the prop-
erty, like the exchange algorithm, that small steps in θ are always accepted, so moves
will always be possible. The trick is to identify the variables in the joint distribution
(figure 5.12) as θ and U , while thinking of the X quantities as just a deterministic
function of these variables.

Conditioned on the U variables any standard slice sampling algorithm (subsection 2.4.2)
can be applied to the parameter θ. The stationary distribution p(θ|U) is simply the prior
over the parameters conditioned on x0(θ, U)=y. Any point not satisfying the constraint
is off the slice and discarded by the slice sampling procedure. This description gives a
slice sampler corresponding to version a) of latent history algorithm 5.7. A slice sam-
pling implementation of version b) sets the stationary distribution to T (y←x−1; θ)p(θ).
After each iteration U is (effectively) updated in a block-Gibbs update. This involves
resetting a lazy ut generator as in the Metropolis–Hastings algorithm.

5.8.2 MAVM

Standard slice sampling cannot be applied to the θ parameter in the MAVM joint
distribution, because this would involve computing Z(θ). As with Metropolis–Hastings
the auxiliary variables must be changed simultaneously. It turns out that, with an
appropriate definition of a slice, algorithm 5.4 can be converted into a slice sampler.

We first describe the new algorithm. Ostensibly we do just use a standard slice sam-
pling procedure (subsection 2.4.2) to update the parameters θ. However, the range of
auxiliary heights 0<h<H is defined in terms of the following quantity:

H(X, θ) = p(θ, y)
p(X|θ, y)
q(X; θ, y)

Z(θ̂) = f(y; θ)p(θ)
K∏

k=0

fk+1(xk; θ̂, θ)

fk(xk; θ̂, θ)
. (5.48)

After drawing the slice-sampling auxiliary quantity h∼Uniform[0,H(X, θ)] we consider
new parameter settings using any of the normal slice sampling procedures. However,
whenever a new setting of the parameters θ′ is considered a new setting of auxiliary
X ′ variables is generated in the same way as algorithm 5.4. Then, as usual, slice
membership is assertained by checking H(X ′, θ′)≥h.

We now show that this procedure satisfies detailed balance with respect to the desired
stationary distribution. As in subsection 2.4.2 we use the label S for all rejected points
and other ancillary points generated while exploring the slice in a stepping-out proce-
dure. The probability of starting at a setting (X, θ), generating a particular setting of

Discussion 159

h, generating intermediate quantities S and finally an acceptable new pair (X ′, θ′) is

p(θ|y) p(X|θ, y) · p(h|X, θ, y) · q(S; θ, h) · q(θ′;S, h) q(X ′; θ′, y)

= p(θ|y) p(X|θ, y) · q(X; θ, y)

p(X|θ, y) p(θ, y)Z(θ̂)
· q(S; θ, h) · q(θ′;S, h) q(X ′; θ′, y)

=
1

p(y)Z(θ̂)
q(θ′;S, h) q(S; θ, h) q(X; θ, y) q(X ′; θ′, y).

(5.49)

All of the slice-sampling bracketing procedures mentioned in subsection 2.4.2 ensure
that

q(θ′;S, h) q(S; θ, h) = q(θ;S, h) q(S; θ′, h). (5.50)

Therefore equation (5.49) is invariant to exchanging (X, θ) ↔ (X ′, θ′) and the overall
procedure satisfies detailed balance.

This derivation closely follows that of standard slice sampling. This is possible be-
cause conditioned on h, the decision to reject intermediate parameters in S is the same
whether generating S forwards from θ or backwards from θ′. In contrast the accept-
ability of a proposal in the exchange algorithm cannot be summarized by a scalar slice
height h. A move depends on giving a new data set to the old parameter, which will
have different probabilities depending on whether the move started at θ or θ′. We don’t
currently see any way to define a slice sampler for the exchange representation.

As noted in subsection 5.6.2, even very small moves in θ can be rejected when using the
MAVM auxiliary system. The usual slice bracketing procedures work on an assump-
tion that nearby regions will always be accepted and exponentially shrink towards the
current point. Unless a large number of bridging levels are used this behavior could
lead to overly small step sizes. Care would be needed in applying stock slice-sampling
code.

5.9 Discussion

We established in subsection 5.1.1 that global information like that provided by ex-
act sampling must be found as part of a strictly valid MCMC algorithm for doubly-
intractable distributions. Given this, it seems likely that the exchange algorithm per-
forms about as well as is possible. On the problems we have tried the acceptance rate
approaches that of Metropolis–Hastings with moderate K, leaving exact sampling as
the dominant cost. We would generally recommend this algorithm if a valid MCMC
procedure is required. Møller et al. (2004) pointed out that good deterministic approx-
imations to p(θ|y) could make SAVM perform very well. Our results firmly support the
use of bridging, and we would recommend always considering MAVM instead.

There is an unresolved issue concerning doubly-intractable distributions when learning

Discussion 160

from N i.i.d. data points:

p(y|θ) =
N∏

n=1

p(y(n)|θ) =
1

Z(θ)N

N∏
n=1

f
(
y(n); θ

)
. (5.51)

All of the known valid MCMC algorithms for p(θ|y) require drawing an exact sample
from p(y|θ). This means drawing a fantasy containing N data sets x={x(n)}Nn=1. But
perhaps there is enough information about Z(θ) in a single exact sample from the data
distribution? Drawing N exact samples may be prohibitively expensive with large data
sets. Whether this problem can be avoided is an open question.

Sadly it is not possible to draw exact samples from all distributions; approximate
relaxations must be used for some situations. Section 5.2 observed that a bad choice
of approximations applied to the inner loop of standard Metropolis–Hastings can have
surprising and disastrous consequences on the quality of the approximate samples. The
valid algorithms discussed in this chapter are an alternative target for approximation.
The obvious relaxation of methods requiring exact sampling from the data distribution
is to use a brief run of MCMC, possibly starting from the observed data. Møller et al.
(2004) report that a fixed length of sampling can be more inefficient than exact sampling
for similar levels of performance. However, this idea would be worth exploring further
in cases where exact sampling is not possible.

A natural relaxation of the latent history representation is truncating the history to
some finite length of time K. This would require specifying an explicit prior distribution
for x−K , perhaps an approximation to the original model. One could optionally replace
the stationary Markov chain operator T with a sequence of operators Tk bridging
between the approximate distribution used for x−K and the target model distribution.
This finite model could be simulated using the latent history algorithms with explicit
computations, or any standard MCMC technique.

We believe that truncated latent history representations are a promising direction for
future research in approximate inference for doubly-intractable distributions. Running
finite Markov chains within the exchange algorithm or MAVM is an inner-loop approx-
imation, somewhat like those explored in section 5.2. The consequences of approxi-
mating MCMC procedures is hard to predict — it is possible that very unreasonable
inferences will result. In contrast a truncated latent history representation is a model
on which we can apply standard MCMC algorithms. The model will not describe ex-
actly the same beliefs as the original distribution, but all of the inferences performed on
it will be self-consistent. Thus if prior draws from the truncated model look reasonable
it is likely that the inferences will also be sensible.

This line of reasoning is really suggesting that we throw out the original doubly-
intractable model and replace it with a more tractable latent variable model. If the
model was originally introduced as an ad hoc way to introduce dependencies, then us-

Discussion 161

ing an alternative that can be treated consistently may be preferable. In particular
we can look at draws from the prior and see if they actually reflect our beliefs. Heck-
erman et al. (2000) follow a related thought process. They discuss circumstances in
which undirected graphical models may not be a natural representation and provide an
alternative replacement.

Changing the model doesn’t seem attractive when an undirected model was derived
directly from physical considerations. An example of such a model is recent work on
learning protein structure (Podtelezhnikov et al., 2007), which learns the parameters
of an energy function using contrastive divergence (Hinton, 2002). A full Bayesian
treatment of these parameters with MCMC seems daunting; exact sampling from the
configurational-distribution of a protein chain seems infeasibly difficult. However, using
the wrong model could still be used as an approximation technique and doing so may
be more stable than inner-loop approximations.

This chapter has not addressed computing marginal likelihoods p(y|M) for Bayesian
model comparison of different undirected graphical models4. Evidently the standard
methods discussed in chapter 4 will apply in theory, although such computations are
likely to be demanding.

4A triply-intractable problem?

Chapter 6

Summary and future work

The Markov chain Monte Carlo method introduced by Metropolis et al. (1953) was
one of the earliest applications of electronic computers. Today it continues to be an
important technique for approximate numerical integration in a growing number of
applications. Chapter 1 provided an introduction to the challenges involved, while
chapter 2 described some of the current literature along with some minor extensions.

In chapter 3 we explored the promising ideas of using multiple particles and multiple
proposals in Markov chain simulations. As with other authors we found that mod-
est improvements are possible, largely derived from the basic length-scale information
given by a few samples from a distribution. However drawing multiple proposals can
easily cost more to compute than the statistical benefit. It remains to be seen if im-
plementations leveraging caching of intermediate results or parallel computations can
gain advantage in real applications. Other authors in the literature remain hopeful that
they can, and our pivot-based approaches seem to bring unique benefits to this area of
the field.

Chapter 4 investigated methods for computing normalizing constants. One of these, AIS
is actually an importance sampling method rather than MCMC, and nested sampling
offers a new sampling paradigm in its own right. However, both of these algorithms
use Markov chains in their practical implementation. We extended existing techniques
for nested sampling on discrete distributions. We then compared three fundamentally
different algorithms based on the same Markov chain. Our theoretical and empirical
results show that the algorithms perform very differently and that no method is ap-
propriate for all distributions. It would seem wise to use more than one algorithm as
standard practice. We proposed one practical approach to realize this: a method for
tuning AIS based on preliminary runs of nested sampling.

Chapter 5 serves to highlight the limitations of MCMC. Sampling from doubly-
intractable distributions is exceedingly difficult, yet these distributions are found in
a large class of ‘undirected’ statistical models and have received a great deal of at-

163

tention in recent years. We have introduced three new algorithms for this problem:
MAVM, the exchange algorithm and latent history samplers. These improve the ex-
isting state of the art, remove the need for separate deterministic approximations and
offer new directions for approximating this difficult problem. Exploring truncations of
latent histories is a possible area for further work.

This thesis has concentrated on investigating new Markov chains and new algorithms
for the better use of existing MCMC operators. These have been investigated em-
pirically and sometimes theoretically on simple problems designed to demonstrate the
algorithms’ key properties. One limitation of the presentation here has been the focus
on stationary distributions — little has been said about the chains’ formal conver-
gence rates. This is partly because making meaningful statements about convergence
for general statistical problems seems difficult (section 2.3). Also, wherever possible,
we have reduced new algorithms to the Metropolis–Hastings algorithm applied to an
auxiliary system. This passes some of the burden of deriving rates of convergence onto
an established literature.

While we have focused on MCMC methodology and proposed a number of novel algo-
rithms, ultimately the computational advantages of these methods has to be proven on
challenging real-world applications. This is an area I hope to spend more time on in
my future research.

Bibliography

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9(1):147–169, 1985. (page 128)

J. Albert. Bayesian selection of log-linear models. Technical Report Working Paper
95-15, Duke University, Institute of Statistics and Decision Sciences, 1995. (page 124)

N. Balakrishnan and A. Clifford Cohen. Order statistics & inference: estimation meth-
ods. Academic Press, San Diego, 1991. ISBN 0120769484. (page 93)

T. Bayes. An essay towards solving a problem in the doctrine of chances. Philosoph-
ical Transations, 53:370–418, 1763. Communicated by Richard Price, in a letter to
John Canton. Also available edited by G. A. Barnard in Biometrika 45(3/4):293–315,
December 1958. (page 20)

M. J. Beal. Variational algorithms for approximate Bayesian inference. PhD thesis,
Gatsby computational neuroscience unit, University College London, 2003. (page 104)

M. J. Beal and Z. Ghahramani. The variational Bayesian EM algorithm for incomplete
data: with application to scoring graphical model structures. In J. M. Bernardo, M. J.
Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West,
editors, Bayesian statistics 7, pages 453–464. Oxford University Press, 2003. (page 82)

M. Beltrán, J. Garćıa-Bellido, J. Lesgourgues, A. R. Liddle, and A. Slosar. Bayesian
model selection and isocurvature perturbations. Physical Review D, 71(6):063532,
2005. (pages 109, 118, and 119)

C. H. Bennett. Efficient estimation of free energy differences from Monte Carlo data.
Journal of Computational Physics, 22(2):245–268, October 1976. (page 117)

B. A. Berg and T. Neuhaus. Multicanonical ensemble: a new approach to simulate
first-order phase transitions. Phys. Rev. Lett., 68(1):9–12, January 1992. (page 50)

J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of
the Royal Statistical Society, 36(2):192–236, 1974. (page 124)

J. Besag and P. J. Green. Spatial Statistics and Bayesian Computation. Journal of the
Royal Statistical Society B, 55(1):25–37, 1993. (page 37)

BIBLIOGRAPHY 165

J. Besag, P. Green, D. Higdon, and K. Mengersen. Bayesian computation and stochastic
systems. Statistical Science, 10(1):3–41, 1995. (page 77)

A. Beskos, O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead. Exact and compu-
tationally efficient likelihood-based estimation for discretely observed diffusion pro-
cesses (with discussion). Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68:333–382, 2006. (page 140)

C. Bischof and M. Bücker. Computing derivatives of computer programs. In Modern
Methods and Algorithms of Quantum Chemistry, volume 3, pages 315–327, 2000.

(page 41)

C. M. Bishop. Pattern recognition and machine learning. Springer-Verlag, New York,
2006. ISBN 0387310738. (page 20)

O. Cappé, A. Guillin, J.-M. Marin, and C. P. Robert. Population Monte Carlo. Journal
of Computational & Graphical Statistics, 13(4):907–929, December 2004.

(pages 9, 58, 59, 60, and 61)

B. P. Carlin and S. Chib. Bayesian model choice via Markov chain Monte Carlo meth-
ods. Journal of the Royal Statistical Society B (Methodological), 57(3):473–484, 1995.

(page 139)

G. Casella and C. P. Robert. Rao-Blackwellisation of Sampling Schemes. Biometrika,
83(1):81–94, 1996. (page 35)

S. Chib. Marginal likelihood from the Gibbs output. Journal of the American Statistical
Association, 90(432):1313–1321, December 1995. (page 84)

A. M. Childs, R. B. Patterson, and D. J. C. MacKay. Exact sampling from nonattractive
distributions using summary states. Physical Review E, 63:036113, 2001.

(pages 54 and 134)

A. Christen and C. Fox. MCMC using an approximation. Journal of Computational
and Graphical Statistics, 14(4):795–810, 2005. (page 31)

J. A. Christen and C. Fox. A self-adjusting multi-scale MCMC algorithm, 2006. Poster
presented at Valencia Bayesian meeting, Benidorm 2006. Pre-print available from
jac@cimat.mx; code available from http://www.cimat.mx/∼jac/twalk/. (page 58)

P. Clifford et al. Discussion on the meeting on the Gibbs sampler and other Markov
chain Monte Carlo methods. Journal of the Royal Statistical Society. Series B
(Methodological), 55(1):53–102, 1993. (page 30)

M. K. Cowles, N. Best, K. Vines, and M. Plummer. R-CODA 0.10-5, 2006. Available
from http://www-fis.iarc.fr/coda/. (pages 64 and 152)

http://www.cimat.mx/~jac/twalk/
http://www-fis.iarc.fr/coda/

BIBLIOGRAPHY 166

R. T. Cox. Probability, frequency and reasonable expectation. American Journal of
Physics, 14(1):1–13, January 1946. (pages 20 and 120)

R. V. Craiu and C. Lemieux. Acceleration of the multiple-try Metropolis algorithm
using antithetic and stratified sampling. Statistics and Computing, 2007. (page 79)

P. Damien, J. Wakefield, and S. Walker. Gibbs sampling for Bayesian non-conjugate
and hierarchical models by using auxiliary variables. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), 61(2):331–344, 1999. (page 40)

S. Della Pietra, V. J. Della Pietra, and J. D. Lafferty. Inducing features of random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–
393, 1997. (page 124)

P. Dellaportas and J. J. Forster. Markov chain Monte Carlo model determination
for hierarchical and graphical log-linear models. Biometrika, 86(3):615–633, 1999.

(pages 124 and 132)

L. Devroye. Non-uniform random variate generation. Springer-Verlag, New York, 1986.
ISBN 0-387-96305-7. Out of print. Available from
http://cg.scs.carleton.ca/∼luc/rnbookindex.html. (page 22)

A. Dobra, C. Tebaldi, and M. West. Data augmentation in multi-way contingency
tables with fixed marginal totals. Journal of statistical planning and inference, 136
(2):355–372, 2006. (page 124)

P. Dostert, Y. Efendiev, T. Y. Hou, and W. Luo. Coarse-gradient Langevin algorithms
for dynamic data integration and uncertainty quantification. Journal of Computa-
tional Physics, 217:123–142, 2006. (page 31)

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Physics Letters B, 195(2):216–222, September 1987. (page 41)

D. Edwards and T. Havránek. A fast procedure for model search in multidimensional
contingency tables. Biometrika, 72(2):339–351, August 1985. (page 132)

R. G. Edwards and A. D. Sokal. Generalizations of the Fortuin-Kasteleyn-Swendsen-
Wang representation and Monte Carlo algorithm. Physical Review, 38:2009–2012,
1988. (pages 37 and 39)

J. Ferkinghoff-Borg. Monte Carlo methods in complex systems. Ph.D. Thesis, Graduate
School of Biophysics Niels Bohr Institute and Rise National Laboratory Faculty of
Science, University of Copenhagen, May 2002. (page 52)

C. M. Fortuin and P. W. Kasteleyn. On the random-cluster model. I. Introduction and
relation to other models. Physica, 57:536–564, 1972. (page 37)

http://cg.scs.carleton.ca/~luc/rnbookindex.html

BIBLIOGRAPHY 167

D. Frenkel. Speed-up of Monte Carlo simulations by sampling of rejected states. Pro-
ceedings of the National Academy of Sciences, 101(51):17571–17575, 2004.

(pages 34 and 35)

D. Frenkel and B. Smit. Understanding molecular simulation. Academic Press Inc.,
2nd edition, 2001. (pages 65 and 67)

A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410):398–409, 1990.

(page 33)

A. Gelman and X.-L. Meng. Simulating normalizing constants: from importance sam-
pling to bridge sampling to path sampling. Statistical Science, 13(2):163–185, 1998.

(pages 86 and 120)

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis, Second
Edition. Chapman & Hall/CRC, 2003. ISBN 1-58488-388-X. (page 20)

D. Geman and S. Geman. Stochastic relaxation, Gibbs distribution and Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6:721–741, 1984. (pages 30 and 124)

J. Geweke. Getting it right: joint distribution tests of posterior simulators. Journal of
the American Statistical Association, 99(467):799–804, 2004. (pages 36 and 83)

C. J. Geyer. Markov chain Monte Carlo maximum likelihood. In Computing Science
and Statistics: Proceedings of the 23rd Symposium on the Interface, pages 156–163,
1991. (page 139)

C. J. Geyer. Practical Markov chain Monte Carlo. Statistical Science, 7(4):473–483,
November 1992. (page 32)

W. R. Gilks. Derivative-free adaptive rejection sampling for Gibbs sampling. In
J. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics
4. Oxford University Press, 1992. (page 22)

W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied
Statistics, 41(2):337–348, 1992. (page 22)

W. R. Gilks, G. O. Roberts, and E. I. George. Adaptive direction sampling. The
Statistician, 43(1):179–9, 1994. Special Issue: Conference on Practical Bayesian
Statistics, 1992 (3). (page 57)

V. K. Gore and M. R. Jerrum. The Swendsen-Wang process does not always mix
rapidly. In Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 674–681. ACM Press New York, NY, USA, 1997. (page 117)

BIBLIOGRAPHY 168

V. K. Gore and M. R. Jerrum. The Swendsen–Wang process does not always mix
rapidly. Journal of Statistical Physics, 97(1):67–86, 1999. (page 117)

P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4):711–732, December 1995. (pages 55 and 119)

F. Hamze and N. de Freitas. Hot coupling: a particle approach to inference and
normalization on pairwise undirected graphs. In Y. Weiss, B. Schölkopf, and J. Platt,
editors, Advances in Neural Information Processing Systems (NIPS*18): Proceedings
of the 2005 Conference. MIT Press, 2006. (page 119)

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika, 57(1), April 1970. (pages 27, 49, 50, and 55)

D. Heckerman, D. M. Checkering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency
networks for inference, collaborative filtering, and data visualization. Journal of
Machine Learning Research (JMLR), 1:49–75, 2000. (page 161)

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, August 2002. (pages 124, 127, 131, 132, and 161)

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006. (page 153)

J. D. Hobby. A user’s manual for MetaPost. Technical Report 162, AT&T Bell Labo-
ratories, Murray Hill, New Jersey, 1992. (page 4)

K. S. V. Horn. Constructing a logic of plausible inference: a guide to Cox’s theorem.
International Journal of Approximate Reasoning, 34(1):3–24, 2003. (page 20)

M. Huber. Exact sampling and approximate counting techniques. In 30th ACM Sym-
posium on the Theory of Computing, pages 31–40, 1998. (page 54)

M. Huber. A bounding chain for Swendsen–Wang. Random Structures & Algorithms,
22(1):53–59, 2002. (page 55)

Y. Iba. Population Monte Carlo algorithms. Transactions of the Japanese Society for
Artificial Intelligence, 16(2):279–286, 2001a. (page 58)

Y. Iba. Extended ensemble Monte Carlo. International Journal of Modern Physics C,
12(05):623–656, 2001b. (page 44)

W. Janke and S. Kappler. Multibondic cluster algorithm for Monte Carlo simulations of
first-order phase transitions. Physical Review Letters, 74(2):212–215, 1995. (page 109)

C. Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements:
a master-equation approach. Physical Review E, 56(5):5018–5035, November 1997.

(page 46)

BIBLIOGRAPHY 169

E. T. Jaynes. Probability theory: the logic of science: principles and elementary appli-
cations vol 1. Cambridge University Press, April 2003. (page 120)

H. Jeffreys. Theory of probability. Oxford University Press, 3rd edition edition, 1961.
Republished in Oxford Classic Texts in the Physical Sciences, 1998. (page 82)

M. H. Kalos and P. A. Whitlock. Monte Carlo methods, volume I: basics. John Wiley,
1986. ISBN 0-471-89839-2. (page 34)

R. E. Kass and A. E. Raftery. Bayes Factors. Journal of the American Statistical
Association, 90(430):773–795, 1995. (page 82)

R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal. Markov chain Monte Carlo in
practice: a roundtable discussion. American Statistician, 52(2):93–100, 1998.

(page 36)

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983. (page 42)

M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian
process classification. Journal of Machine Learning Research, 6:1679–1704, 2005.

(pages 82 and 104)

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems (with discussion). Journal of
the Royal Statistical Society, Series B, 50(2):157–224, 1988. (page 18)

J. S. Liu. Metropolized independent sampling with comparisons to rejection sampling
and importance sampling. Statistics and Computing, 6(2):113–119, 1996. (page 49)

J. S. Liu. Monte Carlo strategies in scientific computing. Springer, 2001. ISBN
0387952306. (page 31)

J. S. Liu, W. H. Wong, and A. Kong. Covariance structure of the Gibbs sampler with
applications to the comparisons of estimators and augmentation schemes. Biometrika,
81(1):27–40, 1994. (page 33)

J. S. Liu, F. Liang, and W. H. Wong. The use of multiple-try method and local
optimization in Metropolis sampling. Journal of American Statistical Association,
95(449):121–134, 2000. (pages 60, 62, 64, and 65)

A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-
Velyaminov. New approach to Monte Carlo calculation of the free energy: method
of expanded ensembles. J. Chem. Phys., 96(3):1776–1783, 1992. (page 43)

D. MacKay. Nested sampling explanatory illustrations, 2004. Available from
http://www.inference.phy.cam.ac.uk/bayesys/box/nested.pdf. (page 91)

http://www.inference.phy.cam.ac.uk/bayesys/box/nested.pdf

BIBLIOGRAPHY 170

D. J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge
University Press, 2003. Available from
http://www.inference.phy.cam.ac.uk/mackay/itila/.

(pages 20, 23, 28, 41, 57, 82, 107, and 130)

E. Marinari and G. Parisi. Simulated tempering: a new Monte Carlo scheme. Euro-
physics Letters, 19(6):451–458, 1992. (page 43)

P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo without
likelihoods. Proceedings of the National Academy of Sciences, 100(26):15324–15328,
2003. (pages 153 and 154)

A. McCallum and B. Wellner. Toward conditional models of identity uncertainty with
application to proper noun coreference. In IJCAI Workshop on Information Integra-
tion on the Web, 2003. (page 124)

I. R. McDonald and K. Singer. Machine calculation of thermodynamic properties of a
simple fluid at supercritical temperatures. J. Chem. Phys., 47(11):4766–4772, 1967.

(page 88)

N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science, 15:
125–130, 1987. (page 21)

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculation by fast computing machines. J. Chem Phys, 21:1087,
1953. (pages 3, 28, 55, and 162)

J. Møller, A. N. Pettitt, K. K. Berthelsen, and R. W. Reeves. An efficient Markov chain
Monte Carlo method for distributions with intractable normalising constants. Tech-
nical Report R-2004-02, Department of Mathematical Sciences, Aalborg University,
2004. (pages 122, 125, 127, 144, 149, 150, 151, 159, and 160)

J. Møller, A. N. Pettitt, R. Reeves, and K. K. Berthelsen. An efficient Markov
chain Monte Carlo method for distributions with intractable normalising constants.
Biometrika, 93(2):451–458, 2006. (pages 122, 125, 144, 146, and 149)

P. Mukherjee, D. Parkinson, and A. R. Liddle. A nested sampling algorithm for cos-
mological model selection. The Astrophysical Journal, 638:L51, 2006. (page 109)

I. Murray and Z. Ghahramani. Bayesian learning in undirected graphical models: ap-
proximate MCMC algorithms. In M. Chickering and J. Halpern, editors, Proceedings
of the 20th Annual Conference on Uncertainty in Artificial Intelligence, pages 392–
399. AUAI Press Arlington, Virginia, United States, 2004. (pages 125 and 129)

http://www.inference.phy.cam.ac.uk/mackay/itila/

BIBLIOGRAPHY 171

I. Murray and E. Snelson. A pragmatic Bayesian approach to predictive uncertainty. In
J. Quiñonero-Candela, I. Dagan, B. Magnini, and F. D’Alché-Buc, editors, Machine
Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification,
and Recognising Textual Entailment.: First PASCAL Machine Learning Challenges
Workshop, Southampton, UK, April 11–13, 2005, Revised Selected Papers., Springer
Lecture Notes in Computer Science. 2006. (page 55)

I. Murray, Z. Ghahramani, and D. J. C. MacKay. MCMC for doubly-intractable distri-
butions. In R. Dechter and T. S. Richardson, editors, Proceedings of the 22nd Annual
Conference on Uncertainty in Artificial Intelligence (UAI-06), pages 359–366. AUAI
Press, 2006a. (page 123)

I. Murray, D. MacKay, Z. Ghahramani, and J. Skilling. Nested sampling for Potts mod-
els. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems (NIPS*18): Proceedings of the 2005 Conference, pages 947–954.
MIT Press, 2006b. (pages 89 and 97)

R. M. Neal. Bayesian training of backpropagation networks by the hybrid Monte Carlo
method. Technical Report CRG-TR-92-1, Connectionist Research Group, Depart-
ment of Computer Science, University of Toronto, April 1992. (page 41)

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Techni-
cal Report CRG-TR-93-1, Department of Computer Science, University of Toronto,
September 1993. (pages 41, 120, and 129)

R. M. Neal. Sampling from multimodal distributions using tempered transitions. Tech-
nical Report 9421, Department of Statistics, University of Toronto, October 1994.

(pages 46 and 110)

R. M. Neal. Suppressing random walks in Markov chain Monte Carlo using ordered
overrelaxation. Technical Report No. 9508, Department of Statistics, University of
Toronto, 1995. (page 68)

R. M. Neal. Sampling from multimodal distributions using tempered transitions. Statis-
tics and Computing, 6(4):353–366, 1996a. (pages 46, 47, 48, 110, and 148)

R. M. Neal. Bayesian learning for neural networks. Number 118 in Lecture Notes in
Statistics. Springer-Verlag, 1996b. (page 41)

R. M. Neal. Markov chain Monte Carlo methods based on ‘slicing’ the density function.
Technical Report 9722, Department of Statistics, University of Toronto, 1997.

(page 39)

R. M. Neal. Annealed importance sampling. Technical Report No. 9805, Department
of Statistics, University of Toronto, 1998a. (pages 45 and 110)

BIBLIOGRAPHY 172

R. M. Neal. Suppressing random walks in Markov chain Monte Carlo using ordered
overrelaxation. In M. I. Jordan, editor, Learning in graphical models, pages 205–228.
Kluwer Academic Publishers, 1998b. (pages 68 and 69)

R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models.
Technical Report 9815, Department of Statistics, University of Toronto, September
1998c. (page 55)

R. M. Neal. Erroneous results in “Marginal likelihood from the Gibbs output”, 1999.
Available from http://www.cs.toronto.edu/∼radford/chib-letter.html.

(page 84)

R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139,
2001. (pages 45, 49, 103, and 110)

R. M. Neal. Slice sampling. Annals of Statistics, 31(3):705–767, 2003.
(pages 39, 40, 59, 79, and 107)

R. M. Neal. Taking bigger Metropolis steps by dragging fast variables. Technical Report
No. 0411, Department of Statistics, University of Toronto, October 2004a. (page 144)

R. M. Neal. Improving asymptotic variance of MCMC estimators: non-reversible chains
are better. Technical Report 0406, Department of Statistics, University of Toronto,
July 2004b. (page 73)

R. M. Neal. Estimating ratios of normalizing constants using linked importance sam-
pling. Technical Report No. 0511, Department of Statistics, University of Toronto,
2005. (pages 119 and 143)

M. E. J. Newman and R. M. Ziff. Fast Monte Carlo algorithm for site or bond perco-
lation. Physical Review E, 64(016706), June 2001. (page 37)

M. A. Newton and A. E. Raftery. Approximate Bayesian inference with the weighted
likelihood bootstrap. Journal of the Royal Statistical Society, Series B (Methodolog-
ical), 56(1):3–48, 1994. (page 83)

A. O’Hagan. Monte Carlo is fundamentally unsound. The Statistician, 36(2/3):247–249,
1987. In special issue: Practical Bayesian Statistics. (page 120)

O. Papaspiliopoulos and G. O. Roberts. Retrospective MCMC methods for Dirichlet
process hierarchical models, 2005. Submitted manuscript. (page 140)

J. Pearl. Evidential reasoning using stochastic simulation of causal models. Artificial
Intelligence, 32(2):245–257, 1987. (page 34)

P. Peskun. Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60(3):
607–612, 1973. (pages 29 and 31)

http://www.cs.toronto.edu/~radford/chib-letter.html

BIBLIOGRAPHY 173

A. A. Podtelezhnikov, Z. Ghahramani, and D. L. Wild. Learning about protein hydro-
gen bonding by minimizing contrastive divergence. Proteins: Structure, Function,
and Bioinformatics, 66:588–599, 2007. (page 161)

J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures and Algorithms, 9(1&2):
223–252, 1996. (pages 52 and 55)

Y. Qi and T. P. Minka. Hessian-based Markov chain Monte-Carlo algorithms. In First
Cape Cod Workshop on Monte Carlo Methods, September 2002. (pages 65 and 67)

Z. S. Qin and J. S. Liu. Multipoint Metropolis method with application to hybrid
Monte Carlo. Journal of Computational Physics, 172:827–840, 2001. (page 80)

A. E. Raftery, M. A. Newton, J. M. Satagopan, and P. N. Krivitsky. Estimating the
integrated likelihood via posterior simulation using the harmonic mean identity. In
J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M.
Smith, and M. West, editors, Bayesian Statistics 8, Proceedings of the Valencia /
ISBA 8th World Meeting on Bayesian Statistics. Oxford University Press, 2007.

(page 83)

C. E. Rasmussen and Z. Ghahramani. Bayesian Monte Carlo. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing Systems
(NIPS*15): Proceedings of the 2002 Conference. MIT Press, 2003. (page 120)

C. Ritter and M. A. Tanner. Facilitating the Gibbs sampler: the Gibbs stopper and
the griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419):
861–868, 1992. (page 30)

C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer Texts in
Statistics. Springer, 2nd edition, 2004. ISBN 0-387-21239-6. (pages 58, 59, and 61)

M. Seeger. Low rank updates for the Cholesky decomposition. Technical re-
port, September 2005. http://www.kyb.tuebingen.mpg.de/bs/people/seeger/

papers/cholupdate.pdf. (page 18)

J. Seward and N. Nethercote. Using valgrind to detect undefined value errors with
bit-precision. In Proceedings of the USENIX’05 Annual Technical Conference, April
2005. (page 4)

R. Shaw, M. Bridges, and M. P. Hobson. Clustered nested sampling: efficient Bayesian
inference for cosmology, 2007. Preprint available from
http://arxiv.org/pdf/astro-ph/0701867. (pages 109, 116, 118, and 119)

D. S. Sivia and J. Skilling. Data analysis: a Bayesian tutorial. Oxford Science Publi-
cations, 2006. ISBN 0-19-856832-0. (page 20)

http://www.kyb.tuebingen.mpg.de/bs/people/seeger/papers/cholupdate.pdf
http://www.kyb.tuebingen.mpg.de/bs/people/seeger/papers/cholupdate.pdf
http://arxiv.org/pdf/astro-ph/0701867

BIBLIOGRAPHY 174

J. Skilling. Nested sampling. In R. Fischer, R. Preuss, and U. von Toussaint, editors,
Bayesian inference and maximum entropy methods in science and engineering, AIP
Conference Proceeedings 735, pages 395–405, 2004. (page 88)

J. Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1
(4):833–860, 2006. (pages 88 and 96)

J. Skilling. Nested sampling for Bayesian computations. In J. M. Bernardo, M. J.
Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West,
editors, Bayesian Statistics 8, Proceedings of the Valencia / ISBA 8th World Meeting
on Bayesian Statistics. Oxford University Press, 2007. (pages 88 and 97)

J. Skilling and D. J. C. MacKay. Slice sampling — a binary implementation. Annals
of Statistics, 31(3), 2003. In discussion: Slice Sampling, Radford M. Neal. (page 40)

G. R. Smith. The measurement of free energy by Monte Carlo computer simulation.
PhD thesis, University of Edinburgh, September 1995. (pages 52 and 121)

A. Sokal. Monte Carlo methods in statistical mechanics: foundations and new algo-
rithms, 1996. Lectures at the Cargèse Summer School on “Functional Integration:
Basics and Applications”. (page 21)

D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks. BUGS examples volumes
1 and 2, 1996. Available from http://www.mrc-bsu.cam.ac.uk/bugs/. (page 30)

D. Stern, T. Graepel, and D. J. C. MacKay. Modelling uncertainty in the game of
go. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information
Processing Systems (NIPS*17): Proceedings of the 2004 Conference. MIT Press,
2005. (page 37)

K. Stormark. Multiple proposal strategies for Markov chain Monte Carlo. MSc thesis,
Department of Mathematical Sciences, Norwegian University of Science and Tech-
nology, 2006. (page 79)

R. H. Swendsen and J.-S. Wang. Replica Monte Carlo simulation of spin-glasses. Phys-
ical Review Letters, 57(21):2607–2609, 1986. (page 139)

R. H. Swendsen and J. S. Wang. Nonuniversal critical dynamics in Monte Carlo simu-
lations. Physical Review Letters, 58(2):86–88, 1987. (pages 36 and 37)

C. J. F. Ter Braak. A Markov chain Monte Carlo version of the genetic algorithm
differential evolution: easy Bayesian computing for real parameter spaces. Statistical
Computing, pages 239–249, 2006. (page 58)

L. Tierney. Markov chains for exploring posterior distributions. The Annals of Statis-
tics, 22(4):1701–1728, 1994. (page 25)

http://www.mrc-bsu.cam.ac.uk/bugs/

BIBLIOGRAPHY 175

L. Tierney and A. Mira. Some adaptive Monte Carlo methods for Bayesian inference.
Statistics in Medicine, 18(17–18):2507–2515, 1999. (page 59)

H. Tjelmeland. Using all Metropolis–Hastings proposals to estimate mean values. Tech-
nical Report 4/2004, Department of Mathematical Sciences, Norwegian University
of Science and Technology, 2004. (pages 34 and 79)

Z. Tu and S.-C. Zhu. Image segmentation by data-driven Markov chain Monte Carlo.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):657–673,
2002. (page 29)

J.-S. Wang and R. H. Swendsen. Low-temperature properties of the ±J Ising spin glass
in two dimensions. Physical Review B, pages 4840–4844, September 1988. (page 45)

L. Wang, J. Liu, and S. Z. Li. MRF parameter estimation by MCMC method. Pattern
recognition, 33:1919–1925, 2000. (page 131)

G. R. Warnes. The normal kernel coupler: an adaptive MCMC method for efficiently
sampling from multi-modal distributions. PhD thesis, Department of Biostatistics,
University of Washington, 2000. (page 59)

M. Welling and S. Parise. Bayesian random fields: the Bethe-Laplace approximation. In
Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence
(UAI-06). AUAI Press, 2006. (page 127)

W. Wiegerinck. Variational approximations between mean field theory and the junction
tree algorithm. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, pages 626–633. Morgan Kaufmann, 2000. (page 130)

D. B. Wilson. Annotated bibliography of perfectly random sampling with Markov
chains. In DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, volume 41. American Mathematical Society, 1998. Updated version available
online http://dbwilson.com/exact/. (page 52)

J. Winn and C. M. Bishop. Variational message passing. Journal of Machine Learning
Research, 6:661–694, 2005. (page 130)

O. Winther and A. Krogh. Teaching computers to fold proteins. Physical Review E, 70
(3):30903, 2004. (page 124)

C. Yanover and Y. Weiss. Approximate inference and protein folding. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing
Systems (NIPS*15): Proceedings of the 2002 Conference. MIT Press, 2003. (page 124)

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information
Theory, 51(7):2282–2312, July 2005. (page 130)

http://dbwilson.com/exact/

BIBLIOGRAPHY 176

Y. Yu and Q. Cheng. MRF parameter estimation by an accelerated method. Pattern
Recognition Letters, 24:1251–1259, 2003. (page 131)

X. Zhu and Z. Ghahramani. Towards semi-supervised classification with Markov ran-
dom fields. Technical Report CMU-CALD-02-106, School of Computer Science,
Carnegie Mellon University, June 2002. (pages 124, 134, 135, and 136)

	Abstract
	Acknowledgments
	Contents
	List of algorithms
	List of figures
	List of tables
	Notes on notation
	Introduction
	Graphical models
	Directed graphical models
	Undirected graphical models
	The Potts model
	Computations with graphs

	The role of summation
	Simple Monte Carlo
	Sampling from distributions
	Importance sampling

	Markov chain Monte Carlo (MCMC)
	Choice of method

	Markov chain Monte Carlo
	Metropolis methods
	Generality of Metropolis--Hastings
	Gibbs sampling
	A two stage acceptance rule

	Construction of estimators
	Conditional estimators (``Rao-Blackwellization'')
	Waste recycling

	Convergence
	Auxiliary variable methods
	Swendsen--Wang
	Slice Sampling
	Hamiltonian Monte Carlo

	Annealing methods
	Simulated tempering / Expanded Ensembles
	Parallel tempering
	Annealed importance sampling (AIS)
	Tempered transitions
	Generalization to only forward transitions
	Generalization to a single pass

	Multicanonical ensemble
	Exact sampling
	Exact sampling example: the Ising model

	Discussion and Outlook

	Multiple proposals and non-reversible Markov chains
	``Population Monte Carlo''
	Multiple-Try Metropolis
	Efficiency of MTM
	Multiple-Importance Try
	Waste-recycled MTM

	Ordered overrelaxation
	Adapting K automatically

	Pivot-based transitions
	Ordered overrelaxation with pivot-based transitions
	Persistence with pivot states

	Pivot-based Metropolis
	Summary
	Related and future work

	Normalizing constants and nested sampling
	Starting at the prior
	Bridging to the posterior
	Aside on the `prior' factorization
	Thermodynamic integration

	Multicanonical sampling
	Nested sampling
	A change of variables
	Computations in the new representation
	Nested sampling algorithms
	MCMC approximations
	Integrating out x
	Degenerate likelihoods

	Efficiency of the algorithms
	Nested sampling
	Multicanonical sampling
	Importance sampling

	Constructing annealing schedules
	Markov chains for normalizing constants
	Randomize operator orderings
	Changes in length-scale and energy
	A new version of Swendsen--Wang

	Experiments
	Description of slice sampling experiments
	Discussion of slice sampling results
	The Potts model

	Discussion and conclusions
	Summary
	Related work
	Philosophy

	Doubly-intractable distributions
	Bayesian learning of undirected models
	Do we need Z for MCMC?

	Approximation Schemes
	Targets for MCMC approximation
	Approximation algorithms
	Extension to hidden variables
	Experiments involving fully observed models
	Experiment involving hidden variables
	Discussion

	The Exchange Algorithm
	Product space interpretation
	Bridging Exchange Algorithm
	Details for proof of correctness

	The Single Auxiliary Variable Method
	Reinterpreting SAVM

	MAVM: a tempered-transitions refinement
	Comparison of the exchange algorithm and MAVM
	Ising model comparison
	Discussion

	Latent History methods
	Metropolis--Hastings algorithm
	Performance

	Slice sampling doubly-intractable distributions
	Latent histories
	MAVM

	Discussion

	Summary and future work
	References

