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Abstract

We consider random systems of linear equations over GF(2) in which every equation binds k variables.
We obtain a precise description of the clustering of solutions in such systems. In particular, we prove
that with probability that tends to 1 as the number of variables, n, grows: for every pair of solutions σ, τ ,
either there exists a sequence of solutions starting at σ and ending at τ such that successive solutions
have Hamming distance O(logn), or every sequence of solutions starting at σ and ending at τ contains
a pair of successive solutions with distance Ω(n). Furthermore, we determine precisely which pairs of
solutions are in each category. Key to our results is establishing the following high probability property
of cores of random hypergraphs which is of independent interest. Every vertex not in the r-core of a
random k-uniform hypergraph can be removed by a sequence of O(logn) steps, where each step amounts
to removing one vertex of degree strictly less than r at the time of removal.
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1 Introduction

In Random Constraint Satisfaction Problems (CSPs) one has a set of n variables all with the same domain D
and a set of independently chosen constraints, each of which binds a randomly selected subset of k variables.
In the most common setting, both D and k are O(1), while m = Θ(n). Two canonical examples are random
k-SAT and coloring sparse random graphs. A fundamental quantity in the study of random CSPs is the
so-called constraint density, i.e., the ratio of constraints-to-variables m/n.

There has been much non-rigorous evidence from statistical physics that for many random CSPs, if the
constraint density is higher than a specific value, then all but a vanishing proportion of the solutions can
be partitioned into exponentially many sets (clusters) such that each set is: (i) well-separated, i.e., has
linear Hamming distance from all others, and (ii) in some sense, well-connected. The solution clustering
phenomenon has been a central feature of the statistical physics approach to random CSPs and is central to
important algorithmic developments in the area, such as Survey Propagation [23].

The mathematical studying of clustering began in [24, 13] where it was shown that in random k-CNF
formulas, above a certain density there exist constants 0 < αk < βk < 1/2 such that w.h.p. no pair of
satisfying assignments has distance in the range [αkn, βkn]. Let us say that two solutions are adjacent if
they have Hamming distance 1 and consider the connected components under this notion of adjacency. In [4]
it was shown that above a certain density, there exist exponentially many connected components of solutions
and, moreover, in every one of them the majority of variables are frozen, i.e., take the same value in all
assignments in the connected component.

Defining a cluster-region to be the union of one or more connected components, [3] proved that above
a certain density, not only do exponentially many connected components exist, but there are exponentially
many cluster-regions separated from one another by linear Hamming distance. Moreover, asymptotic bounds
were given on the volume, diameter, and separation of these cluster regions. Later, in [2], it was shown for
random k-SAT and random graph colouring that when clustering occurs, the emergent cluster-regions are
also separated by large energetic barriers, i.e., that any path connecting solutions in different cluster-regions
passes through value assignments violating linearly many constraints. This picture of cluster-regions remains
unchanged if one considers two solutions to be adjacent if they have Hamming distance o(n). At the same
time, though, it lends little information regarding the internal organization of cluster-regions, e.g., the
connectivity of each such region.

Until now, it has not been proven that any random CSP model exhibits clustering into sets that are both
well-separated and well-connected. The main contribution of this paper is to prove that this phenomenon
does indeed occur for random k-XOR-SAT, i.e., for systems of random linear equations over GF(2) where
each equation contains precisely k variables. We also obtain a precise description of the clusters. We remark
that the cluster structure for k-XOR-SAT is much simpler than what is hypothesized for most CSPs, e.g., the
clusters are all isomorphic and have the same set of frozen variables (see Section 4). Random k-XOR-SAT
has long been recognized as one of the most accessible of the fundamental random CSP models, in that
researchers have managed to prove difficult results for it that appear to be far beyond our current reach for,
e.g., random k-SAT and random graph coloring. For example, the k-XOR-SAT satisfiability threshold was
established by Dubois and Mandler[14] for k = 3 and by Dietzfelbinger et al. [12] for general k.

1.1 Random systems of linear equations

We consider systems of m = O(n) linear equations over n Boolean variables, where each equation binds a
constant number of variables. Clearly, deciding whether such a system has satisfying assignments (solutions)
can be done in polynomial time by, say, Gaussian elimination. In fact, the set of solutions forms a subspace,
so that the sum of two solutions is also a solution. At the same time, it seems that if one fails to exploit
the underlying algebraic structure everything falls apart. For example, if the system is unsatisfiable, finding
a value assignment σ that satisfies as many equations as possible, i.e., MAX XOR-SAT, is NP-complete.
Moreover, given a satisfiable system and an arbitrary σ ∈ {0, 1}n, finding a solution nearest to σ is also
NP-complete [5]. Finally, random systems of linear equations appear to be extremely difficult both for
generic CSP solvers and for SAT solvers working on a SAT encoding of the instance. Indeed, very recent
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work strongly suggests that among a wide array of random CSPs, random k-XOR-SAT, defined below, is
the most difficult for random walk type algorithms such as WalkSat [16].

In random k-XOR-SAT, which we study here, each equation binds exactly k ≥ 3 variables (the case k = 2
is trivial). To form the random system of equations Ax = b we take A to be the adjacency matrix of a random
k-uniform hypergraph H with n variables and m edges and b ∈ {0, 1}m to be a uniformly random vector. It
is straightforward to see, using e.g., Gaussian elimination, that if two systems have the same matrix A, then
their solution spaces are isomorphic as b ranges over vectors for which the solution space is not empty. Since
we will only be interested in properties of the set of solutions that are invariant under isomorphism, we will
assume throughout that b = 0. As a result, throughout the paper we will be able to identify the system of
linear equations with its underlying hypergraph. Regarding the choice of random k-uniform hypergraphs we
will use both standard models Hk(n,m) and Hk(n, p), which respectively correspond to: including exactly m
out of the possible

(
n
k

)
edges uniformly and independently, and including each possible edge independently

with probability p. (Results transfer readily betwen the two models when m = p
(
n
k

)
.) Our corresponding

models of random k-XOR-SAT are:

Definition 1. Xk(n,m), Xk(n, p) are the systems of linear equations over n boolean variables whose under-
lying hypergraphs are Hk(n,m), Hk(n, p) and where we set b = 0.

The usual model for k-XOR-SAT differs from ours only in that it takes a uniformly random Boolean
vector b. As described above, these models are equivalent up to isomorphisms of the solution space, and
hence we can use our more convenient definition for the purposes of this paper. We will say that a sequence
of events En holds with high probability (w.h.p.) for such a system if limn→∞ Pr[En] = 1. We will analyze
Xk(n, p). All our theorems translate to Xk(n,m) where m = p

(
n
k

)
using a standard argument.

We are interested in the range p = Θ(n1−k) which is equivalent to m = Θ(n). We note that as n→∞,
the degrees of the variables in such a random system tend to Poisson random variables with mean Θ(1).
This implies that w.h.p. there will be Θ(n) variables of degree 0 and 1. Clearly, variables of degree 0 do not
affect the satisfiability of the system. Similarly, if a variable v appears in exactly one equation ei, then we
can always satisfy ei by setting v appropriately for any constant bi. Therefore, we can safely remove ei from
consideration and only revisit it after we have found a solution to the remaining equations. Crucially, this
removal of ei can cause the degree of other variables to drop to 1. This leads us to the definition of the core
of a hypergraph.

Definition 2. The r-core of a hypergraph H is the maximum subgraph of H in which every vertex has degree
at least r.

It is well known [32, 27, 20] that for every fixed r ≥ 2, as p is increased, Hk(n, p) acquires a (massive)
non-empty r-core suddenly, around a critical edge probability p = c∗k,r/n

k−1.
Trivially, removing any vertex of degree less than r and all its incident edges from H does not change

its r-core. Therefore, the r-core is the (potentially empty) outcome of the following procedure: repeatedly
remove an arbitrary vertex of degree less than r until no such vertices remain. In the case of linear equations
we will be particularly interested in 2-cores, as variables outside the 2-core can always be properly assigned.

Definition 3. The 2-core system is the subsystem of linear equations induced by the 2-core of the underlying
hypergraph, i.e., the set of equations whose variables all lie in the 2-core. A 2-core solution is a solution to
the 2-core system. An extension of a 2-core solution, σ, is a solution of the entire system of linear equations
that agrees with σ on all 2-core variables.

We will show that in the absence of a 2-core, while the diameter of the set of solutions is linear, it is
w.h.p. possible to transform any solution to any other solution by changing O(log n) variables at a time. So,
the set of solutions is not only well-connected but pairs of solutions exist at, essentially, every distance-scale.
On the other hand, the emergence of the 2-core signals the onset of clustering, as now every pair of solutions
is either very close with respect to the 2-core variables, or very far.

3



Theorem 1. For every k ≥ 3 and c > c∗k,2, there exists a constant α = α(c, k) > 0 such that in Xk(n, p =

c/nk−1), w.h.p. every pair of solutions either disagree on at least αn 2-core variables, or on at most ξ(n)
2-core variables, for any function ξ(n)→∞ arbitrarily slowly.

We will refine the picture of Theorem 1, to prove that as soon as the 2-core emerges, unless two solutions
agree on essentially all 2-core variables, transforming one into another requires the simultaneous change of
Ω(n) variables. To identify the relevant 2-core disagreements, we need to define the following notion which
is central to our work.

Definition 4. A flippable cycle in a hypergraph H is a set of vertices S = {v1, . . . , vt} where the set of edges
incident to S can be ordered as e1, . . . et such that each vertex vi lies in ei and in ei+1 and in no other edges
of H (addition mod t).

Thus, the vertices v1, . . . , vt must have degree exactly two in the hypergraph. The remaining vertices in
edges e1, . . . , et can have arbitrary degree and are not part of the flippable cycle. The following observation
is a simple exercise:

Observation 5. No vertex can lie in two flippable cycles.

Definition 6. A core flippable cycle in a hypergraph H is a flippable cycle in the subhypergraph H0 ⊆ H
induced by the 2-core of H.

Thus, in a core flippable cycle, the vertices v1, . . . , vt have degree exactly two in the 2-core, but possibly
higher degree in H. Note also that H may contain flippable cycles outside the 2-core.

As discussed above, any 2-core solution can be readily extended to the remaining variables. Indeed, this
can typically be done in numerous ways since the equations not in the 2-core are far less constrained, e.g.,
a constant fraction of the equations outside the 2-core form hypertrees very loosely attached to the 2-core.
In order to understand the emergence of the clustering of solutions, we will focus on whether we can change
the value of a 2-core variable without changing many other 2-core variables.

If σ is any 2-core solution then flipping the value of all variables in a core flippable cycle readily yields
another solution of the 2-core, since every equation contains either zero or two of the flipped variables. It is
not hard to show that a random hypergraph often contains a handful of short core flippable cycles, implying
that 2-core solutions may have Hamming distance Θ(1). At the same time, though, we will see (Lemma 35)
that, for any ξ(n) → ∞ arbitrarily slowly, the total number of vertices in core flippable cycles w.h.p. does
not exceed ξ(n), placing a corresponding upper bound on the distance between core solutions that differ only
on flippable cycles.

In contrast, we will prove that w.h.p. every pair of core solutions that differ on even one 2-core variable
not in a flippable cycle, differ in at least Ω(n) 2-core variables. In other words, flipping the handful of
variables in potential flippable cycles, w.h.p. is the only kind of movement between 2-core solutions that does
not entail the simultaneous change of a massive number of variables.

The above indicates that the following is the appropriate definition of clusters in random k-XOR-SAT.

Definition 7. Two solutions are cycle-equivalent if on the 2-core they differ only on variables in core
flippable cycles (while they may differ arbitrarily on variables not in the 2-core).

Definition 8. The solution clusters of Xk(n, p = c/nk−1) are the cycle-equivalence classes, i.e., two solutions
are in the same cluster iff they are cycle-equivalent.

Note that in the absence of a 2-core, this definition states that all solutions are in the same cluster. We
can now state our main theorems in terms of connectivity properties of clusters.

Definition 9. Two solutions σ, τ of a CSP are d-connected if there exists a sequence of solutions σ, σ′, . . . , τ
such that the Hamming distance of every two successive elements in the sequence is at most d. A set S of
solutions is d-connected if every pair σ, τ ∈ S is d-connected. Two solution sets S, S′ are d-separated if
every pair σ ∈ S, τ ∈ S′ is not d-connected.
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It appears that for many random CSP’s, there is a constant α > 0 and a function g(n) = o(n) such
that if the constraint density is sufficiently large, then all but a vanishing proportion of the solutions can be
partitioned into clusters S1, . . . , St such that:

• Every Si is g(n)-connected.

• Every pair Si, Sj is αn-separated.

That is the sense in which we said earlier that each cluster is well-connected and that each pair of clusters
is well-separated.

Our main theorems are that for k-XOR-SAT, the clusters we defined in Definition 8 satisfy these condi-
tions with g(n) = O(log n). Note that for this particular CSP, the clusters contain all the solutions, rather
than all but a vanishing proportion of them.

Theorem 2. For any constant c 6= c∗k,2 and k ≥ 3, there exists a constant α = α(c, k) > 0 such that in

Xk(n, p = c/nk−1), w.h.p. every pair of clusters is αn-separated.

In stark contrast, we prove that clusters are internally very well connected.

Theorem 3. For any constant c 6= c∗k,2 and k ≥ 3, there exists a constant Q = Q(c, k) > 0 such that in

Xk(n, p = c/nk−1), w.h.p. every cluster is Q log n-connected.

Theorem 3 is nearly tight due to the following.

Observation 10. W.h.p. every cluster contains a pair of solutions that are not g(n)-connected, for some
g(n) = Ω(log n/ log log n).

Proof. Consider any solution σ to the 2-core, and consider any two extensions σ0, σ1 of σ to the entire system
such that, for some non-core variable v, we have σ0(v) = 0 but σ1(v) = 1. Then σ0, σ1 must differ in at
least one additional variable in every equation containing v implying that their Hamming distance is at least
deg(v) + 1.

If T is an acyclic (tree) component of the underlying hypergraph and v is any vertex in T , then, clearly,
σ can be extended so that v takes any desired value. Therefore, the maximum degree of any vertex in a tree
component is a lower bound for g(n). A tree component T is a d-star if precisely one vertex in T has degree
d and all other vertices have degree 1. Computing the second moment of the number of d-stars in a random
hypergraph implies that w.h.p. there exist g(n)-stars, where g(n) = Ω(logn/ log log n).

So, in a nutshell, we prove that before the 2-core emerges any solution can be transformed to any other
solution along a sequence of successive solutions differing in O(log n) variables. In contrast, after the 2-core
emerges, the set of solutions shatters into clusters defined by complete agreement on the 2-core, except for
the handful of variables in core flippable cycles: any two solutions that disagree on even one 2-core variable
not in a core flippable cycle, must disagree on Ω(n) variables. At the same time, solutions in the same cluster
behave like solutions in the pre-core regime, i.e., one can travel arbitrarily inside each cluster by changing
O(log n) variables at a time.

Our proof of Theorem 3 is algorithmic, giving an efficient method to travel between any pair of solutions
in the same cluster. Indeed, to prove Theorem 3, we draw heavily from the linear structure of the constraints
to: (1) identify a set B of free variables such that the 2|B| solutions in any cluster are determined by the
2|B| assignments to B, (2) prove that we can change these free variables one-at-a-time, each time obtaining
a new solution by changing only O(log n) other variables.

For c < c∗k,2, there is no 2-core, and so all solutions belong to the same cluster. For c > c∗k,2, but below the
k-XOR-SAT satisfiability threshold, the number of 2-core variables exceeds the number of 2-core equations
by Θ(n) (see [14, 12]), and the number of variables on core flippable cycles has expectation O(1) (Lemma 35);
it follows that w.h.p. there are an exponential number of clusters. So Theorems 2, 3 yield:

Corollary 11. For every k ≥ 3 and c below the k-XOR-SAT satisfiability threshold:
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• If c < c∗k,2, then w.h.p. the entire solution-set of Xk(n, p = c/nk−1) is O(log n)-connected.

• If c > c∗k,2, then w.h.p. the solution-set of Xk(n, p = c/nk−1) consists of an exponential number of
Θ(n)-separated, O(log n)-connected clusters.

For k ≥ 3, the threshold for the appearance of a non-empty 2-core was determined in [27, 20] (see also
[11]) to be:

c∗k,2 = min
λ>0

(k − 1)!λ

(1− e−λ)
k−1

.

For example, when k = 3, an exponential number of clusters emerge at c = 0.13... while the satisfiability
threshold[14] is at c = 0.15.... (These values correspond to m/n = 0.818... and m/n = 0.917... in the
Xk(n,m) model.) It is not clear what happens, in terms of clustering, at density c = c∗k,2; see the remarks
following Theorem 5.

Our proof of Theorem 2 easily extends to all uniquely extendable CSPs.

Definition 12 ([10]). A constraint of arity k is uniquely extendable if for every set of k − 1 variables and
every value assignment to those variables there is precisely one value for the unassigned variable that satisfies
the constraint.

Linear equations over GF(2) and unique games are the two most common examples of uniquely extendable
(UE) CSPs, but many others exist (see, eg. [10]). Clearly, any instance of a UE CSP Φ is satisfiable iff its
2-core is satisfiable. Thus, it is natural to define clusters analogously to XOR-SAT, i.e., two solutions are
in the same cluster if and only if their 2-core restrictions differ only on core flippable cycles. Our proof of
Theorem 2 applies readily to any UE CSP, yielding a corresponding theorem, i.e., that there exists α > 0
such that if two solutions are not cycle-equivalent they are not αn-connected (see the remark following
Proposition 48). However, we do not know whether the analogue of Theorem 3 holds under this definition
of clusters, i.e., whether it is possible to travel between cycle-equivalent solutions in small steps. Also, note
that while in XOR-SAT changing all the variables in any flippable cycle results in another solution, this is
not necessarily the case for every UE CSP Φ.

Finally, we note that Theorem 1 follows immediately from Theorem 2 and the fact that w.h.p. there
are fewer than ξ(n) vertices on flippable cycles (Lemma 35). Indeed, if two solutions differ on more than
ξ(n) 2-core variables, then they disagree on a variable that is not on a flippable cycle. Thus, they are in
different clusters and so disagree on at least αn variables, by Theorem 2. So the paper focuses on proving
Theorems 2 and 3.

Remark: Ibrahimi, Kanoria, Kraning and Montanari [17] have, independently, obtained similar results
to ours. Their definition of clusters is equivalent to ours, and they prove that the clusters are well-connected
and well-separated. Their cluster separation result is equivalent to our Theorem 2, but uses a different
technique. Their internal connectivity result differs from our Theorem 3 in that (a) they prove that the
clusters are polylog(n)-connected rather than O(log n)-connected, and (b) they additionally prove that the
clusters exhibit a form of high conductance. Again, their approach is different from the one used here. To
prove high conductance, they show that w.h.p. the solution space contains a basis which is polylog(n)-sparse,
meaning that each vector in the basis has Hamming distance at most polylog(n) from 0. It is easy to see
that the set of free variables B that we choose in Section 4 yields a O(log n)-sparse basis. So our proof,
along with Lemma 1.1 of [17] combine to yield a stronger conductance result by replacing “(log n)C” with
“O(log n)” in their Theorem 1.

1.2 Cores of hypergraphs

The main step in our proof of Theorem 3 is to prove a property of the non-2-core vertices in a random
hypergraph. As this property is of independent interest, we prove it for non-r-core vertices for general r ≥ 2.
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For any integers k ≥ 2, r ≥ 2 such that r+k > 4, the threshold for the appearance of a non-empty r-core
in a k-uniform random hypergraph was determined in [27, 20] to be:

c∗k,r = min
λ>0

(k − 1)!λ[
e−λ

∑∞
i=r−1 λ

i/i!
]k−1

. (1)

For r = k = 2, i.e., for cycles in graphs, the emergence of a 2-core is trivial as any constant-sized cycle has
non-zero probability for all c > 0. On the other hand, for r + k > 4, any r-core has linear size w.h.p. The
threshold for the emergence of a 2-core of linear size in a random graph coincides with the threshold for the
emergence of a giant component [31], so we set c∗2,2 = 1, consistent with the expression above after replacing
min with inf.

Recall that we can reach the r-core of a hypergraph by repeatedly removing any one vertex of degree
less than r, until no such vertices remain. Consider a vertex v not in the r-core, and consider the goal
of repeatedly removing vertices of degree less than r until v is removed. We prove that w.h.p. for every
non-r-core variable v, this can be achieved by removing only O(log n) vertices.

Definition 13. An r-stripping sequence is a sequence of vertices that can be deleted from a hypergraph, one-
at-a-time, along with their incident hyperedges such that at the time of deletion each vertex has degree less
than r. A terminal r-stripping sequence is one that contains all vertices outside the r-core; i.e., a sequence
whose deletion leaves the r-core.

Definition 14. For any vertex v not in the r-core, the depth of v is the length of a shortest r-stripping
sequence ending with v.

Theorem 4. For any integers k ≥ 2, r ≥ 2 and any constant c 6= c∗k,r, let H = Hk(n, p = c/nk−1). There
exists a constant Q = Q(c, k, r) > 0 such that w.h.p., every vertex v in H has depth at most Q log n.

It is easy to show using standard facts about r-cores of random hypergraphs that for every constant
ε > 0, there is a constant T = T (ε) such that w.h.p. all but εn of the non-core vertices have depth at most
T . The challenge here is to prove that w.h.p. all non-core vertices have depth O(log n).

Remark 15. The case k = r = 2, i.e. the 2-core of a random graph, follows easily from previously known
work. The conclusion of Theorem 4 does not hold at c = c∗2,2 = 1. (See the remarks following the statement
of Theorem 5 below.)

2 Related work

To get an upper bound on the random k-XOR-SAT satisfiability threshold, observe that the expected number
of solutions in a random instance with n variables and m constraints is bounded by 2n(1/2)m → 0 if m/n > 1.
As one can imagine, this condition is not tight since variables of degree 0 and 1 only contribute fictitious
degrees of freedom. Perhaps the next simplest necessary condition for satisfiability is mc/nc = γc ≤ 1, where
nc,mc is the number of variables and equations in the 2-core, respectively. In [14] Dubois and Mandler
proved that, for k = 3, this simple necessary condition for satisfiability is also sufficient by proving that for
all γc < 1, the number of core solutions is strongly concentrated around its (exponential) expectation. Thus,
they determined the satisfiability threshold for 3-XOR-SAT. Dietzfelbinger et al. [12] modify and extend the
approach of [14] to determine the satisfiability threshold for general k. A full version of [14] has not been
published, but a proof for all k ≥ 3 appears in [12].

Mézard et al. [25] were the first to study clustering in random k-XOR-SAT. Specifically, they defined
the clusters by saying that two solutions are in the same cluster iff they agree on all variables in the 2-core.
They proved that there exists a constant γ > 0 such that for any θ ∈ (0, γ) and any integer z = θn+ o(n),
w.h.p. no two solutions differ on exactly z variables in the 2-core. Based on this fact, they claimed that
the clusters they defined are Ω(n)-separated, i.e., that every pair of solutions in different clusters is not
γn-connected. As we have already seen, this is false since it does not account for the effect of core flippable
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cycles. Performing the analysis of solutions that differ on o(n) variables is what allows us to establish that
2-core solutions which differ on o(n) variables must differ only on core flippable cycles. Indeed, this is the
most difficult part of our proof of Theorem 2.

Mézard et al. [25] also gave a heuristic argument that if σ is any solution and v is a non-core variable,
then there exists a solution σ′ in which v takes the opposite value from the one in σ such that the distance
between σ and σ′ is O(1). From this they concluded that clusters are well-connected. Regarding internal
connectivity, the clusters of [25] are, indeed, well-connected, i.e., the analogue of Theorem 3 holds for them,
since they are subsets of the clusters defined in this paper. However their proof of this fact is flawed; it implies
that their clusters are O(1)-connected, which is not true by the same argument used as for Observation 10.
Proving that the k-XOR-SAT clusters are well-connected was later listed as an open problem in [26].

Finally, as described above, Ibrahimi, Kanoria, Kraning and Montanari [17] have, independently, obtained
similar results to ours.

3 Proof Outline

3.1 Theorem 2: Cluster separation

Given a solution σ, a flippable set is a set of variables S such that flipping the value of all variables in S
yields another solution τ . Proving Theorem 2 boils down to proving that w.h.p., in the subsystem induced
by the 2-core, every flippable set other than a flippable cycle has linear size.

A common approach to proving analogous statements is to establish that every flippable set, other than a
flippable cycle, must deterministically induce a dense subgraph. In particular, if one can prove that for some
constant ε > 0, every such set is at least 1 + ε times as dense as a flippable cycle, then standard arguments
yield the desired conclusion. Here, though, this is not the case, due to the possibility of arbitrarily long paths
of degree 2 vertices. Specifically, by replacing the edges of any flippable set (that is not a flippable cycle)
by 2-linked paths, one can easily create flippable sets whose density is arbitrarily close to that of a flippable
cycle (for a more more precise statement, see the definition of 2-linked paths in Section 9). Thus, controlling
the number and interactions of these 2-linked paths, an approach similar to that of [1, 29], is crucial to our
argument. In order to work on the 2-core, we carry this analysis out on hypergraphs with a given degree
sequence.

The key to controlling 2-linked paths is to bound a parameter governing the degree to which they tend
to branch. Lemma 32 shows that this parameter is bounded below 1, so while arbitrarily long 2-linked paths
will occur, their frequency decreases exponentially with their length.

We note that if we were working on hypergraphs with minimum degree at least 3, then there would be
no 2-linked paths, and the proof would have been very easy. All of the difficulties arise from the problem of
degree 2 vertices. We note that our approach applies to general degree sequences of minimum degree 2.

3.2 Theorem 3: Connectivity inside clusters

The main step in the proof of Theorem 3 is to prove Theorem 4; i.e. that every vertex outside the r-core
can be removed by an r-stripping sequence of length O(log n).

It is often useful to consider stripping the vertices in several parallel rounds.

Definition 16. The parallel r-stripping process consists of iteratively removing all vertices of degree less
than r at once along with any hyperedges containing any of those vertices, until no vertices of degree less
than r remain.

To prove that all non-core vertices can be removed by a stripping sequence of length O(log n), our
approach is significantly different below and above the threshold, c∗k,r, for the emergence of an r-core in
random k-uniform hypergraphs. In both cases, we begin by stripping down to HB , the hypergraph remaining
after B rounds of the parallel stripping process, for a sufficiently large constant B. A simple argument shows
that for any non-core vertex v, the number of vertices removed during this initial phase that are relevant to
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the removal of v, is bounded. Thus, what remains is to show that any non-core vertex in HB can be removed
from HB by a stripping sequence of length O(log n).

For c < c∗k,r, we prove that there exists a sufficiently large constant B = B(c, k, r) such that all connected
components of HB have size at most W = O(log n); therefore, any remaining vertex can be removed with an
additional W strips. To do this we establish analytic expansions for the degree sequence of HB as B grows
and then apply a hypergraph extension of the main result of Molloy and Reed [28] regarding the component
sizes of a random k-uniform hypergraph with a given degree sequence.

For c > c∗k,r, a lot more work is required. Once again, 2-linked paths are a major problem. Indeed, it is
not hard to see that a long 2-linked path with one endpoint of degree 1, can create a long stripping sequence
leading to the removal of its other endpoint.

We first establish that for any ε > 0, there exists a sufficiently large constant B = B(c, k, r, ε) such that
HB is sufficiently close to the r-core for two important properties to hold in HB : (i) there are at most εn
vertices of degree less than r, and (ii) the “branching” parameter for 2-linked paths, mentioned above, is
bounded below 1. Property (ii) allows us to control long 2-linked paths. However, this does not suffice as
we need to control, more generally, for large tree-like stripping sequences. To do so, we note that any large
tree must either have many leaves, or long paths of degree 2 vertices. Such long paths will correspond to
2-linked paths in the random hypergraph, and so (ii) allows us to control the latter case. Leaves of the tree
will have degree less than r, and so (i) enables us to control the former case.

4 An Algorithm for Traveling Inside Clusters

In this section, we show how we use Theorem 4 to prove Theorem 3. In fact, we require Theorem 5 below,
which is somewhat stronger than Theorem 4.

Given a hypergraph H, we consider any terminal r-stripping sequence, v1, . . . , vt, i.e., one that removes
every vertex outside of the r-core of H. Let Hi denote the hypergraph remaining after removing v1, . . . , vi−1;
so H1 = H and Ht+1 is the r-core of H. Let Ei denote the set of at most r−1 hyperedges in Hi that contain
vi. We form a directed graph, D, as follows:

Definition 17. The vertices of D are the non-r-core vertices v1, . . . , vt, as well as any r-core vertex that
shares a hyperedge with a vertex not in the r-core. For each vertex vi in the stripping sequence, D contains
a directed arc (u, vi) for every vertex u 6= vi contained in the hyperedges of Ei. Note that if vi has degree
zero in Hi, then Ei = ∅, and so vi will have indegree zero in D.

For every vertex v in D, we define R+(v) to be the set of vertices that can be reached from v. Note
that if v is not in the r-core, then the vertices of R+(v) can be arranged into a (not necessarily terminal)
r-stripping sequence ending with v. So to prove Theorem 4, it suffices to show |R+(v)| = O(log n) for every
such v.

Theorem 5. For any integers k ≥ 2, r ≥ 2 and any constant c > 0, c 6= c∗k,r, let H = Hk(n, p = c/nk−1).
There exists a constant Q = Q(k, r, c) > 0 such that w.h.p. there is a terminal r-stripping sequence of H for
which in the digraph D associated with the sequence:

(a) For every vertex v, |R+(v)| ≤ Q log n.

(b) For r = 2, for every core flippable cycle C,∑
v∈C
|R+(v)| ≤ Q log n .

Remark 18. The proof of Theorem 5 can be extended to show that w.h.p. for every vertex v ∈ D, the
subgraph induced by |R+(v)| has at most as many arcs as vertices.
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Remark 19. The case r = k = 2 follows from previously known work. For c < c∗2,2 = 1, it follows from the
fact that w.h.p. every component of Gn,p=c/n has size O(log n) below the giant component threshold c∗2,2.
For c > c∗k,r, it follows from Lemma 5(b) of [31]. Our proof will work for k = r = 2, but it is convenient to
assume (k, r) 6= (2, 2).

Remark 20. We think that the conclusion of Theorem 5 does not hold at c = c∗k,r + o(1). This is known to

be true for the case k = r = 2. Indeed, when c = 1− λ, for λ = n−1/3+ε, ε > 0, w.h.p. the size of the largest
component is Θ(λ−2 log n) and no component has more than one cycle [22]. A simple first moment analysis
yields that w.h.p. there is no cycle of length greater than log n/λ. Furthermore, w.h.p. no vertex has degree
greater than log n. It follows that the largest component must contain an induced subtree, none of whose

vertices are in the 2-core, which has size Θ(λ
−2 logn

log2 n/λ
) = Θ(1/(λ log n)). It is easy to see that such a subtree

will contain vertices with depth Θ(1/(λ log n)), which can be as large as nα for any α < 1/3.

The proof of Theorem 5 occupies Sections 7 and 8, after we set out some basic facts about cores in
Section 5 and some basic calculations in Section 6. But first, we show that it yields Theorems 3 and 4:

Proof of Theorem 4. This follows immediately from Theorem 5 because the depth of v is at most |R+(v)|.

We are now ready to give our algorithm for traveling between any two assignments in the same cluster
while changing O(log n) variables at a time.

Proof of Theorem 3. Given an arbitrary system of linear equations consider a terminal 2-stripping sequence
v1, . . . , vt of its associated hypergraph and let D be the digraph formed from the sequence. For each core
flippable cycle, C, we choose an arbitrary vertex vC ∈ C. Let B be the set consisting of each vertex vC and
every non-2-core vertex with indegree zero in D.

Consider any 2-core solution σ. Consider the system of equations formed from our system by fixing the
value of every 2-core variable that does not belong to a core flippable cycle to its value in σ; we call such
vertices fixed vertices. Recall from Definition 4 that the edges of a flippable cycle contain vertices that are
not considered to be vertices of the flippable cycle; such vertices will be fixed. Note that the solutions of
this system form a cluster, and that every cluster can be formed in this way from some σ.

We will perform Gaussian elimination on this system in a manner such that B will be the set of free
variables that we obtain. Importantly, this set of free variables does not depend on σ, i.e., it will be the
same for every cluster.

For each v ∈ B and for each fixed vertex v, set χ(v) = {v}. For each core flippable cycle C, we process
all of the edges (i.e., equations) in C except for one of the edges containing vC . For each vertex v ∈ C,
we obtain the equation v = vC + zv where zv is a constant (0 or 1) depending only on the assignment to
the fixed vertices in the edges of C; we set χ(v) = {vC}. By Observation 5, the core flippable cycles are
edge-disjoint, and so we can carry this out for each core flippable cycle C.

Next, we process the edges not in the 2-core, in reverse removal order, i.e., Et, . . . , E1. Note that, since
r = 2, each Ei contains at most one edge. When processing Ei, we set χ(vi) to the symmetric difference of
the sets χ(u), over all u ∈ Ei other than vi. That is, a variable z is in χ(vi) iff z ∈ χ(u) for an odd number of
variables u ∈ Ei other than vi. Since Ei is the equation vi =

∑
u∈Ei;u6=v u, this is equivalent (by induction)

to vi =
∑
w∈χ(vi)

w + zvi , where zvi is the sum of zu over all vertices u ∈ χ(vi) that belong to core flippable

cycles. We now note that every non-2-core vertex vi /∈ B has indegree at least 1 in D and so |Ei| = 1 and
thus χ(vi) is defined. For each vertex u 6= vi in Ei, either u ∈ B, or u is fixed, or u = vj for some j > i, or u
is in a core flippable cycle. Therefore, by induction, χ(vi) contains only vertices that are in B or are fixed.

Finally, note that possibly χ(vi) = ∅; in that case, vi =
∑
w∈χ(vi)

w + zvi = zvi in every solution. (It is

not hard to adapt the proof of Theorem 5 to show that w.h.p. for every i, χ(vi) 6= ∅. But that is not required
for the purposes of this paper.)

At this point, all non-fixed vertices are either in B or have been expressed as the sum of vertices in B and
fixed vertices. Therefore, the vertices in B are the free variables for the system obtained by fixing the values
of the fixed vertices to σ. Thus, there are exactly 2|B| solutions to that system, one for each assignment to
B. We can move between any two such solutions by changing the assignments to the vertices of B, one at a

10



time. Each time we change the value of a non-2-core vertex v ∈ B, in order to get to another solution, we
only need to change a subset of R+(v) in the digraph D, because only vertices u ∈ R+(v) can have v ∈ χ(u).
Similarly, each time we change the value of some vC ∈ B, we only need to change a subset of ∪v∈CR+(v).
Thus, by Theorem 5, we can move between any two such solutions changing at most Q log n variables at a
time. This implies Theorem 3, since each cluster is such a solution set.

We close this section by showing how the preceding proof extends to determine all of the frozen variables.
A variable is said to be frozen in a cluster, if it takes the same value in all assignments of the cluster. In
general random CSPs it is hypothesized that the set of frozen variables can differ from cluster to cluster. In
random k-XOR-SAT, though, the set of frozen variables depends only on the underlying hypergraph, i.e., is
the same for all clusters.

Theorem 6. In every cluster, the frozen variables consist of the 2-core vertices not in core flippable cycles,
and the non-2-core variables v for which χ(v) ∩B = ∅.

Proof. This follows immediately from the fact that B is the set of free variables in a system of linear equations
whose solution set is the cluster.

5 Random hypergraphs and their cores

We will use the configuration model of Bollobás [6] to generate a random k-uniform hypergraph H with a
given degree sequence. Suppose we are given the degree d(v) for each vertex v; thus

∑
d(v) = kE where E is

the number of hyperedges. We take d(v) copies of each v, and we take a uniformly random partition of these
kE vertex-copies into E sets of size k. This naturally yields a k-uniform hypergraph, by mapping each k-set
to a hyperedge on the vertices whose copies are in the k-set. Note that the hypergraph may contain loops
(two copies of the same vertex in one hyperedge) and multiple edges (two identical hyperedges). It is well
known that the probability that this partition yields a simple hypergraph (i.e., one with no loops or multiple
edges) is bounded below by a constant for degree sequences1 satisfying certain conditions. Specifically:

Definition 21. Say that a degree sequence S is nice if E = Θ(n),
∑
v d(v)2 = O(n) and d(v) = o(n1/24) for

all v.

Every degree sequence we will consider will correspond to some subgraph of Hk(n, p) with a linear
expected number of edges. Since, as is well known, the degree sequence of such random hypergraphs is nice
w.h.p., all the degree sequences we will consider will be nice. With this in mind, we will make heavy use
of the following standard proposition (see eg. [11]) and corollary, as working in the configuration model is
technically much easier than working with uniformly random hypergraphs with a given degree sequence.

Proposition 22. If S is a nice degree sequence, then there exists ε > 0 such that the probability that a
random hypergraph with degree sequence S drawn from the configuration model is simple is at least ε.

This immediately yields:

Corollary 23. If S is a nice degree sequence then:

(a) If property Q holds w.h.p. for k-uniform hypergraphs with degree sequence S drawn from the configu-
ration model, then Q holds w.h.p. for uniformly random simple hypergraphs with degree sequence S.

(b) For any random variable X, if E(X) = O(1) for k-uniform hypergraphs with degree sequence S drawn
from the configuration model, then E(X) = O(1) for uniformly random simple hypergraphs with degree
sequence S.

The following lemma will be very useful. Its exponential term is not tight, but will suffice for our purposes.

1Clearly, we are referring to a sequence of degree sequences Sn so that asymptotic statements are meaningful. We suppress
this point though, throughout, to streamline exposition.
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Lemma 24. Consider a random k-uniform hypergraph drawn from the configuration model with E edges,
i.e., with total degree kE. For each i = 2, . . . , k, specify `i sets of i vertex-copies, and set L =

∑k
i=2 `i. The

probability that each of these sets appears in some hyperedge, and no two appear in the same hyperedge is
less than

exp

(
kL2

E − L

) k∏
i=2

(
(k − 1)(k − 2) · · · (k − i+ 1)

(kE)i−1

)`i
.

Proof. We choose the partition of the vertex-copies by processing the specified sets one-at-a-time. To process
one of the `i sets of size i, we first choose one set member γ arbitrarily and then randomly select the remaining
k− 1 vertex-copies of the part containing γ. Every time we do this there are at least kE−kL yet unselected
vertex-copies. Thus, the probability we chose all other i− 1 members of the specified set is at most

(k − 1)(k − 2) · · · (k − i+ 1)

(kE − kL)i−1
<

(k − 1)(k − 2) · · · (k − i+ 1)

(kE)i−1
×
(

E

E − L

)i−1

<
(k − 1)(k − 2) · · · (k − i+ 1)

(kE)i−1
× ekL/(E−L),

since i ≤ k. So the probability that each of the L tuples is chosen to be in a hyperedge is less than

k∏
i=2

(
(k − 1)(k − 2) · · · (k − i+ 1)

(kE)i−1

)`i
× e(kL/(E−L))`i = ekL

2/(E−L)×
k∏
i=2

(
(k − 1)(k − 2) · · · (k − i+ 1)

(kE)i−1

)`i
.

5.1 Cores

Recall from Section 4 that Theorem 5 is already known for k = r = 2. So we will assume that k + r > 4.
It is well known that the r-core of a random k-uniform hypergraph is uniformly random conditional on its
degree sequence. See [32] for the case k = 2, and [27] for the nearly identical proof for general k. In fact,
the same is true of the graph remaining after any number of iterations of the parallel stripping process.

Let H = Hk(n, p) be a random k-uniform hypergraph and let H = H0, H1, . . . be the sequence of
hypergraphs produced by the parallel r-stripping process. It is well known how (see e.g., [27]) to show the
following propositions.

Proposition 25.

(a) For every i ≥ 0, Hi is uniformly random with respect to its degree sequence.

(b) There exist functions ρ0, ρ1, . . . such that for any fixed integer i, w.h.p. Hi contains ρj(i)n + o(n)
vertices of degree j and 1

k (
∑
j≥1 jρj(i))n+ o(n) edges.

Remark 26. The functions ρj(i) have explicit recursive expressions, which we give in Section 8. An
approximation is stated in Proposition 31 below.

Proposition 25 allows us to use the configuration model to study Hi. We will begin by showing that we
can uniformly approximate the total degree of Hi.

Lemma 27. For every fixed integer i ≥ 0,

∑
v∈Hi

degHi(v) =

∑
j≥1

jρj(i)

n+ o(n) .
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Proof. Proposition 25 implies that
∑
j≥1 jρj(i) is convergent, else w.h.p. Hi, and hence H, would have a

superlinear number of edges.
Consider any fixed J . By Proposition 25, w.h.p.

∑
v:degHi (v)≤J degHi(v) =

∑J
j=1 jρj(i)n + o(n). For

any θ > 0, the convergence of
∑
j≥1 jρj(i) implies that we can choose J = J(θ) sufficiently large that∑

j>J jρj(i) <
1
2θ. Since Hi ⊆ H0 = H, we have

∑
v:degHi (v)>J degHi(v) ≤

∑
v:degH(v)>J degH(v). The

fact that the latter sum is less than 1
2θn for J sufficiently large is well known and follows from the facts

that (i) for each constant `, the number of vertices of degree ` in H is w.h.p. λ`n + o(n) for a particular
λ` = λ`(c) and (ii) the number of hyperedges in H is highly concentrated around 1

k

∑
`≥1 `λ`n. Thus,∣∣∣∑v∈Hi degHi(v)−

(∑
j≥1 jρj(i)

)
n
∣∣∣ < θn for every θ > 0, which establishes the lemma.

The following similar bound will also be useful:

Lemma 28. For every constant d and fixed integer i > 0:

∑
v:degHi (v)≥d

degHi(v)!

(degHi(v)− d)!
=

∑
j≥d

j!

(j − d)!
ρj(i)

n+ o(n) .

Proof. The proof is almost identical to that of Lemma 27 but exploits the concentration of the number of
d-stars in H, rather than of the number of hyperedges. (A d-star is a set of d hyperedges which contain a
common vertex.) The concentration of the number of d-stars in H is easily established, e.g., by the Second
Moment Method or Talagrand’s Inequality. (Indeed, Lemma 27 and its proof are special cases of this lemma
and its proof for d = 1.)

For any fixed integers k, r and real number λ > 0, we write

Ψr(λ) = e−λ
∑
i≥r−1

λi/i! and fk,r(λ) = f(λ) =
(k − 1)!λ

Ψr(λ)k−1
.

Recall that for k + r > 4, the threshold for the appearance of an r-core in a random k-uniform hypergraph
Hk(n, p) with p = c/nk−1 is

c∗k,r = min
λ>0

fk,r(λ).

We will see that f ′ has a unique root and, thus, for c > c∗k,r the equation f(λ) = c has two solutions.

Definition 29. For c > c∗k,r, let µ = µ(c) denote the larger of the two solutions of f(λ) = c.

The following two propositions are standard; see e.g., [27] for proofs.

Proposition 30. For every fixed j ≥ r, w.h.p. the r-core contains (e−µµj/j!)n+ o(n) vertices of degree j.
Furthermore, w.h.p. the r-core contains (µ/k)Ψr(µ)n+ o(n) edges.

Proposition 31. For every c 6= c∗k,r and θ > 0, there exists B = B(θ) such that w.h.p.

(a) HB contains fewer than θn vertices not in the r-core;

(b) For each j ≥ r, |ρj(B)− e−µµj/j!| < θ.

The following lemma will be critical for our analysis.

Lemma 32. For every c > c∗k,r, there exists ζ = ζ(k, r, c) > 0 such that

(k − 1)
µr−1

(r − 2)!
< (1− ζ)

∑
i≥r−1

µi

i!
, (2)

where µ is the larger of the two roots of the equation fk,r(λ) = c.
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Proof.

f ′(λ) = 0 ⇐⇒ Ψr(λ) = λ(k − 1)Ψr(λ)k−2Ψ′r(λ) ⇐⇒
∑
i≥r−1

λi

i!
= (k − 1)

λr−1

(r − 2)!
. (3)

Equation (3) yields c∗k,r = f(λ∗) for some λ∗ satisfying the last equation in (3). For c > c∗k,r, since µ = µ(c)
is the larger of the two roots of f(λ) = c, it follows that µ > λ∗. The lemma now follows by noting that the

RHS of (2) divided by the LHS is proportional to
∑
i≥r−1

µi−r+1

i! , which is clearly increasing with µ.

6 Preliminaries to the proof of Theorem 5

Recall that we assume k+ r > 4 and let H = Hk(n, p) be a random k-uniform hypergraph with p = c/nk−1.
Let H = H0, H1, . . . be the sequence of hypergraphs produced by the parallel r-stripping process.

As we said above, we will choose a sufficiently large constant B, strip down to HB , and then focus on
R+(u) ∩HB , making use of the fact that HB is very close to the 2-core (by Proposition 31). The following
will be used to bound the number of vertices that are removed from R+(u) when stripping down to HB . For
integer s ≥ 0, we use Ns(v) to denote the s-th neighborhood of v, i.e., the set of vertices within distance s
from v. For any set of vertices A, Ns(A) =

⋃
v∈AN

s(v). We consider a single vertex to be a connected set.
A straightforward induction yields the following.

Proposition 33. For any integer i and vertex u ∈ Hi, R
+(u) ⊆ N i(R+(u) ∩Hi).

Lemma 34. For any c, s ≥ 0, there exists Γ = Γ(c, s) such that in a random graph G(n, p) with p = c/n,
w.h.p. for every connected subset A of vertices |Ns(A)| ≤ Γ(|A|+ log n).

Proof. We prove this for the case s = 1, i.e., that there is a constant γ > 1 such that w.h.p. every connected
subset of vertices A satisfies |N(A)| ≤ γ(|A| + log n). By iterating, we obtain that for every s ≥ 1, every
connected subset of vertices A satisfies |Ns(A)| ≤ fs(|A|) where

f1(x) = γ(x+ log n)

fi+1(x) = γ(fi(x) + log n), for i ≥ 1.

A simple induction yields fi(x) ≤ γi(x+ i log n) and that yields the lemma with Γ = sγs.
Given any set A of size a, the probability that A is connected is at most the expected number of spanning

trees of A which is aa−2(c/n)a−1. After conditioning that A is connected, the number of neighbors outside
of A is distributed as Bin(a(n− a), c/n). The probability that this exceeds z is at most(

a(n− a)

z

)( c
n

)z
<
(eca
z

)z
< 2−z, for z > 2eca.

For any γ > 2, if |N(A)| > γ(|A|+ log n), then we must have |N(A)\A| > 1
2γ(|A|+ log n). Taking γ > 4ec,

the expected number of connected sets A satisfying this last inequality is at most(
n

a

)
aa−2

( c
n

)a−1

2−
1
2γ(a+logn) <

en

a2
(ec)

a−1
2−

1
2γ(a+logn) <

en

a2

( ec

2γ/2

)a−1

2−
1
2γ logn = n−Θ(γ) ,

for γ sufficiently large. Multiplying by the n choices for a yields the lemma.

Lemma 35. Fix k ≥ 3 and let H = Hk(n, p) be a random k-uniform hypergraph with p = c/nk−1, where
c > c∗k,2. The expected number of vertices in core flippable cycles of H is O(1).

Proof. Let D be the degree sequence of the 2-core of H. By Corollary 23, we can work in the configuration
model. Recalling Definition 29, Proposition 30 and Lemma 32, w.h.p.
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(i) D has total degree γn+ o(n), where γ = µΨr(µ),

(ii) D has λ2n+ o(n) vertices of degree 2, where λ2 = e−µµ2/2,

(iii) there exists ζ > 0 such that 2(k − 1)λ2 < (1− ζ)γ.

We first bound the expected number of core flippable cycles of size a. Let Λ = γn + o(n) be the total
number of vertex copies, and let L = λ2n+ o(n) be the number of copies of degree 2 vertices.

There are
(
L
a

)
choices for the connecting vertices, (a−1)!

2 ways to order them into a cycle, and 2a ways to
align their vertex-copies. This yields a pairs {y1, z1}, . . . , {ya, za} of vertex copies, each of which must land
in a hyperedge. We process these pairs one-at-a-time, halting if we ever find that the pair does not land in a
hyperedge. To process pair i, we ask only whether zi lands in the same hyperedge as yi; if it does we do not
expose the other vertex-copies in that hyperedge. Thus, prior to processing pair i, we have exposed exactly
2i − 2 vertex-copies, all of degree 2. There are k − 1 other copies appearing in the same hyperedge as yi.
Each of the Λ− (2i− 1) unexposed copies (not including yi) is equally likely to be one of those copies (and,
for k ≥ 3, the exposed copies also have positive probability). So the probability that zi is one of them is at
most (k − 1)/(Λ− 2i+ 1). So the expected number of core flippable cycles of length a is at most:(

L

a

)
(a− 1)!

2
2a

a∏
i=1

k − 1

Λ− 2i+ 1
< 1

2a

a∏
i=1

2(k − 1)(L− i+ 1)

Λ− 2i+ 1
.

By condition (iii) above, 2(k−1)L/(Λ−1) < 1− 1
2ζ, and so 2(k−1)(L− i+1)/(Λ−2i+1) < 1− 1

2ζ for each
i, since L ≤ 1

2 (Λ− 1). So the expected number is at most 1
2a (1− 1

2ζ)a, and so the expected total number of
vertices on core flippable cycles is at most 1

2

∑
a≥1(1− 1

2ζ)a = O(1).

7 Proof of Theorem 5 above the r-core threshold

Recall that we can assume k + r > 4. We let H = Hk(n, p) be a random k-uniform hypergraph with
p = c/nk−1. Let H = H0, H1, . . . be the sequence of hypergraphs produced by the parallel r-stripping
process. We will choose a terminal r-stripping sequence that is consistent with the parallel process; i.e., in
our stripping sequence: for every i < j, the vertices deleted in round i of the parallel process come before
the vertices deleted in round j of the parallel process.

Let D be the digraph associated with this terminal r-stripping sequence and recall that R+(u) denotes
the set of vertices reachable from a vertex u in D.

7.1 Bound on the length of stripping sequences

Our main challenge is to prove the following lemma. The idea is that we will take B large enough so that by
stripping down to HB , Proposition 31 gives us control of the degree sequence that remains, and Lemma 32
allows us to prove that a certain branching process involving long paths in a graph constructed from HB

dies out.

Lemma 36. For every c > c∗k,r there exists B = B(c, k, r) and Q = Q(c, k, r) such that w.h.p. for every

vertex u, |R+(u) ∩HB | ≤ Q log n.

Proof of Theorem 5(a). Consider any vertex u. If u /∈ HB , then by Proposition 33, R+(u) ⊆ NB(u) in which
case Lemma 34 immediately implies that |R+(u)| < Γ(1 + log n) for some constant Γ = Γ(c,B).

If u ∈ HB , then R+(u) ⊆ NB(R+(u) ∩HB), by Proposition 33. Since, by Lemma 36, |R+(u) ∩HB | ≤
Q log n, Lemma 34 now implies that |R+(u)| < Γ(Q log n + log n) = Z log n for Z = ΓQ + 1 = Z(c,B) =
Z(c, k, r).

Definition 37. For any i, we define Di to be the subdigraph of D induced by the vertices in Hi.
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Consider a particular constant i. Let T+ be a directed tree in Di with edges directed away from a root u
that spans the vertices of R+(u) ∩Hi; e.g., T+ could be a Breadth First Search or Depth First Search tree
from u. Thus, each vertex has indegree at most 1 in T+, implying:

Proposition 38. No two arcs of T+ were formed during the removal of the same hyperedge.

Definition 39. A deletion tree rooted at u is the undirected tree, T , formed by removing the directions from
a tree T+ rooted at u.

To prove Lemma 36, we will bound the expected number of deletion trees T of size greater than Q log n.
The following technical lemma bounds the density of small subgraphs of Hk(n, p). It is of a standard flavour
and has a standard proof. Given a subset S of the vertices of Hk(n, p), we let `j(S) denote the number of

hyperedges that contain exactly j of the vertices of S, and we let L(S) =
∑k
j=2(j − 1)`j .

Lemma 40. For every c, ζ > 0, there is θ > 0, such that w.h.p. every S ⊆ Hk(n, p = c/nk−1) with |S| ≤ θn
has L(S) < (1 + ζ)|S|.

Proof. Rather than working in the Hk(n, p) model, it will be convenient to work in the Hk(n,m) model, where
exactly m = (c/k!)n edges are selected uniformly, independently and with replacement (note that m = p

(
n
k

)
).

Standard arguments imply that high probability properties in this model transfer to the Hk(n, p) model.
Let Ya = Ya(ζ) denote the number of sets S with |S| = a and L(S) = (1 + ζ)|S|. We will bound E(Ya)

as follows. Define

La =

(`2, . . . , `k) :

k∑
j=2

(j − 1)`j ≥ (1 + ζ)a

 .

Choose a vertices and some (`2, . . . , `k) ∈ La, pick `j edges for each j, and then multiply by the probability
that each edge chooses (at least) the appropriate number of vertices from S. This yields

E(Ya) ≤
(
n

a

) ∑
(`2,...,`k)∈La

k∏
j=2

(
m

`j

)[(
k

j

)(a
n

)j]`j

<
(en
a

)a ∑
(`2,...,`k)∈La

(a
n

)∑k
j=2(j−1)`j

k∏
j=2

(Ja)`j

`j !
, for some constant J = J(c, k) > 0

<
(en
a

)a (a
n

)(1+ζ)a k∏
j=2

∑
`j≥0

(Ja)`j

`j !


< ea

(a
n

)ζa
e(k−1)Ja

=

(
∆a

n

)ζa
, for some constant ∆ = ∆(c, k, ζ) > 0 .

Choosing θ = 1
2∆ , it is standard and straightforward to show E

(∑θn
a=1 Ya

)
= o(1).

In order to carry out our first moment calculation, we will bound the difference between the degrees of
the vertices of T and their degrees in Hi.

Lemma 41. For any δ > 0, if i is sufficiently large in terms of δ then w.h.p.: For every vertex u ∈ Di, if
T is a deletion tree rooted at u, then degHi(v) ≤ degT (v) + r− 2 for all but at most δ|T |+ 3 vertices v ∈ T .

Proof. Define S to be the hypergraph with edge set {e ∩ R+(u) : e ∈ Hi, |e ∩ R+(u)| ≥ 2}. In other words,
for each hyperedge e ∈ Hi that contains at least two vertices of R+(u), S contains the edge obtained by
removing all vertices outside of R+(u) from e.
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Since V (T ) = R+(u) ∩ Hi, the r-stripping sequence that yields D contains an r-stripping subsequence
which removes from Hi only vertices of T , such that all vertices of T except possibly u are removed. Consider
v ∈ T, v 6= u. At the point that v is removed, it has degree at most r− 1 in what remains of Hi. Every other
hyperedge of Hi containing v is removed before v, and thus must contain another member of R+(u). At least
one of those r − 1 hyperedges contains another vertex of R+(u), namely the parent of v in T . Therefore:

degHi(v) ≤ degS(v) + r − 2.

For 2 ≤ j ≤ k, let `j denote the number of hyperedges with j vertices in S. All vertices of S, except
possibly u, are not in the r-core. So, by Lemma 31(a), we know that for any θ > 0 we can select i sufficiently
large in terms of θ so that |S| < θn. If we pick θ sufficiently small in terms of δ, then Lemma 40 implies

that w.h.p.,
∑k
j=2(j − 1)`j < (1 + δ/2)|S|. So

∑
v∈R+(u)

degS(v) =

k∑
j=2

j`j ≤ 2

k∑
j=2

(j − 1)`j < (2 + δ)|S| = (2 + δ)|T |.

Now the total T -degree of the vertices in R+(u) is 2|T | − 2, since T is a tree with edges of size 2 that spans
R+(u). So for i sufficiently large in terms of δ,∑

v∈R+(u)

degS(v)− degT (v) ≤ (2 + δ)|T | − (2|T | − 2) = δ|T |+ 2.

So degT (v) 6= degS(v) for at most δ|T |+ 2 vertices v ∈ R+(u). Also, degHi(v) ≤ degS(v) + r − 2 for all but
at most one v ∈ R+(u) (namely v = u). This proves the lemma.

Proof of Lemma 36. We will fix a constant δ > 0 that is sufficiently small for various bounds to hold. We
also take B sufficiently large for various bounds to hold, including Lemma 41 for i ≥ B. Let Xa = Xa(B) be
the number of deletion trees T in DB with a vertices. Our goal is to show that there exists some constant
Q > 0 such that w.h.p. Xa = 0 for a > Q log n, so in the following we may allow ourselves to assume that a
is greater than some sufficiently large constant.

To prove Lemma 36 we first observe that, by Proposition 31, we can assume HB is uniformly random
conditional on its degree sequence. Since Lemma 36 asserts a property to hold with high probability, it
suffices to establish this property in the configuration model for HB (by Corollary 23(a)). Moreover, recall
that by Proposition 31(b), as B is increased w.h.p. the degree sequence of HB tends to that of the r-core.

Let v1, . . . , va be the vertices of T . We first specify di = degT (vi) for each i, noting that these degrees
must sum to 2a − 2. The number of ways to arrange these a vertices into a tree with a specified degree
sequence is (a− 2)!/

∏
(di− 1)! and there are a choices for the root, u, of the tree. So, the number of choices

for this step is:
a(a− 2)!∏

(di − 1)!
.

Next we choose the vertices of T . Then for each edge of T , we choose a vertex-copy of each of its
endpoints. To do so, for each vi, we choose a copy of vi for each of the di edges in T incident with vi. If
degHB (vi) = j, then there are j!/(j − di)! choices for the di copies of vi. Since degHB (vi) ≥ di, the number
of choices corresponding to vi is at most

∑
w:degHB

(w)≥di degHB (w)!/(degHB (w)− di)!. By Lemma 28, this

number is at most (Y (di) + 1
2δ)n where

Y (d) = YB(d) =
∑
j≥d

j!

(j − d)!
ρj(B) .

Furthermore, if di ≤ degHB (v) ≤ di + r − 2, then we can use Y ′(di) rather than Y (di) where

Y ′(d) = Y ′B(d) =

d+r−2∑
j=d

j!

(j − d)!
ρj(B) .
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Using Y ′(di) instead of Y (di) will be particularly useful when di ≤ 2. By Lemma 41, for any δ > 0 we
can take B = B(δ) > 0 sufficiently large, so that we must use Y (di) for at most δa + 3 vertices vi. For
convenience, we will assume a > 3/δ so we can take δa+ 3 ≤ 2δa.

We will upper bound E(Xa) by using Y (di) for every vertex vi with di ≥ 3 and for exactly 2δa vertices
of degree d ≤ 2. Let t1, t2, t3 denote the number of vertices vi for which di = 1, di = 2, di ≥ 3, respectively.
We note that for sufficiently large d, Y (d) is decreasing and so there is a constant d∗ such that for all d ≥ 3,
Y (d) ≤ Y (d∗). So, if we were to use Y ′(d) for every vertex of degree d ≤ 2 then the overall contribution of
the Y, Y ′ terms would be at most:

[(Y ′(1) +
1

2
δ)n]t1 · [(Y ′(2) +

1

2
δ)n]t2 · [(Y (d∗) +

1

2
δ)n]t3 .

We correct for the 2δa vertices of degree d ≤ 2 for which we use Y (d). To do so, we multiply by the(
t1+t2
2δa

)
≤
(
a

2δa

)
choices for those vertices, and we multiply by Υ2δa where, for δ sufficiently small,

Υ = max

(
Y (1) + 1

2δ

Y ′(1) + 1
2δ
,
Y (2) + 1

2δ

Y ′(2) + 1
2δ

)
= O(1) .

This brings the overall contribution of the Y, Y ′ terms to at most:(
a

2δa

)
Υ2δa[(Y (1) +

1

2
δ)n]t1 [(Y (2) +

1

2
δ)n]t2 [(Y (d∗) +

1

2
δ)n]t3 .

Having chosen d1, . . . , da and the vertices v1, . . . , va, we divide by the number of rearrangements of those
vertices; i.e. we multiply by

1

a!
.

Finally, we multiply by the probability that each of the a − 1 pairs of vertex-copies corresponding to
edges of T , lands in a hyperedge of the configuration. By Proposition 38, no two such pairs lie in the same
hyperedge of HB . So, we can apply Lemma 24 to the a− 1 specified pairs of vertex-copies and multiply by(

k − 1

kE

)a−1

eka
2/(E−a)

to get an overall bound, where E is the number of edges in HB .
Recall that for c > c∗k,r, µ = µ(c) denotes the larger of the two solutions of f(λ) = c. By Proposition 31

and Lemma 27 for any δ > 0, we can take B sufficiently large so that∣∣∣∣∣∣kE − µ
∑
j≥r−1

e−µµj

j!
n

∣∣∣∣∣∣ ≤ δn .

Our key Lemma 32 now yields that by taking B sufficiently large, we can have δ sufficiently small in
terms of ζ that various bounds below hold, including(

e−µµr

(r − 2)!
+ δ

)
k − 1

kE/n
< 1− ζ

2
. (4)

By Lemma 31, for any δ > 0, we can take B sufficiently large so that Y ′(1) ≤ δ/2 and Y ′(2) ≤ e−µµr

(r−2)! +δ/2.

So, Y ′(1) + 1
2δ, Y

′(2) + 1
2δ are bounded above by δ and e−µµr

(r−2)! + δ, respectively. We let

Ψ = 2Y (d∗) > Y (d∗) +
1

2
δ ,

for δ sufficiently small.
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Putting all this together, and recalling that t1 + t2 + t3 = a, yields

E(Xa) ≤
(
a

2δa

)
Υ2δa

(
k − 1

kE

)a−1

eka
2/(E−a)

×
∑

d1+···+da=2a−2

(δn)t1
[(

e−µµr

(r − 2)!
+ δ

)
n

]t2
(Ψn)t3

a(a− 2)!

a!
∏a
i=1(di − 1)!

(5)

≤ O(n/a)eka
2/(E−a)

(
Υ2δ

(2δ)2δ(1− 2δ)1−2δ

)a(
k − 1

kE/n

)a ∑
d1+···+da=2a−2

δt1
(
e−µµr

(r − 2)!
+ δ

)t2
Ψt3 .

Note that in the last line, we dropped the
∏a
i=1(di − 1)! term. We can afford to do so, since this is equal to

1 for di = 1 or 2, which are the most sensitive values.
For δ sufficiently small in terms of ζ,

Υ2δ

(2δ)2δ(1− 2δ)1−2δ
< 1 +

ζ

10
.

Since we are dealing with the degree sequence of a tree, we have t1 > t3. Since δ < 1, we have√
δ
t1
<
√
δ
t3

, yielding:

E(Xa) < O(n/a)eka
2/(E−a)

(
1 +

ζ

10

)a
×

∑
d1+···+da=2a−2

(√
δ
k − 1

kE/n

)t1 ([ e−µµr
(r − 2)!

+ δ

]
k − 1

kE/n

)t2 (√
δΨ

k − 1

kE/n

)t3
.

Recalling that E/n = Ω(1) and Ψ = O(1), we choose δ sufficiently small in terms of ζ so that

√
δ
k − 1

kE/n
,
√
δΨ

k − 1

kE/n
<

ζ

100
.

This and (4) yield

E(Xa) ≤ O(n/a)eka
2/(E−a)

(
1 +

ζ

10

)a ∑
d1+···+da=2a−2

(
1− ζ

2

)t2 ( ζ

100

)a−t2
.

Now we fix t2 and count the number of choices for d1, . . . , da. There are
(
a
t2

)
choices for the values of

i with di = 2. The remaining a − t2 degrees sum to 2a − 2 − 2t2. The number of choices for sequences of
y non-negative integers that sum to z is

(
y+z−1
y−1

)
, so the number of choices for these degrees is bounded by(

2(a−t2)−3
a−t2−1

)
< 22(a−t2)−3 < 4a−t2 . Thus,

E(Xa) ≤ O(n/a)eka
2/(E−a)

(
1 +

ζ

10

)a a∑
t2=0

(
a

t2

)
4a−t2

(
1− ζ

2

)t2 ( ζ

100

)a−t2
= O(n/a)eka

2/(E−a)

(
1 +

ζ

10

)a(
1− ζ

2
+

ζ

25

)a
< O(n/a)eka

2/(E−a)

(
1− ζ

4

)a
< O(n/a)

(
1− ζ

16

)a
, (6)
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where the last inequality holds for all a small enough that eka/(E−a) < 1 + ζ
4 . Thus, there are constants

Q, ξ > 0 such that E(
∑ξn
a=Q lognXa) = o(1) and, therefore, w.h.p. there are no deletion trees of size between

Q log n and ξn. Note now that Q, ξ depend only on ζ, c, k, r and ζ depends only on c, k, r.
Using Proposition 31(a), we chose B large enough that w.h.p. HB contains fewer than ξn vertices outside

of the r-core. Since a deletion tree can have at most one vertex in the r-core, this implies that there are
no deletion trees of size at least ξn. Therefore, w.h.p. there are no deletion trees in HB of size greater than
Q log n. Therefore, w.h.p. for all u ∈ DB , |R+(u) ∩HB | ≤ Q log n. �

7.2 Summing over a core flippable cycle for r = 2

Recall that for Theorem 5(b), we have r = 2; i.e., we consider 2-cores for random k-uniform hypergraphs
where k ≥ 3.

Consider any core flippable cycle C with vertices u1, . . . , u`. In our directed graph D, add edges from
uj to uj+1 for each j (addition mod `). Thus, R+(u1) = ∪`j=1R

+(uj). We modify the arguments from the
proof of part (a) for this setting.

We define T as in the previous section, this time rooted at u1.
We follow the proof of Lemma 41. Since u1, . . . , u` are the only 2-core vertices in S, we still have

|S| ≤ θn. Since each ui has degree 2 in the 2-core, it is easy to see that degHB (ui) = degS(ui) + 1. The
proof of Lemma 41 still holds, yielding

degHB (v) ≤ degT (v) + 1 , for all but at most δ|T |+ 3 vertices v ∈ T.

(In fact, this time we actually get δ|T |+ 2, but that is inconsequential.)
As in Section 7.1, we bound the expected number of such trees of size a; u1 is the root and hence plays

the role of u from Section 7.1. This time, T has the additional property that there is an edge in D from a
vertex of T (i.e. u`) to u1. To account for this additional property, we adjust (5) as follows: (i) multiply by
the number of choices of one of the a− 1 other vertices to be u`; (ii) choose vertex-copies for the extra edge

from u` to u1; (iii) adjust the term
(
k−1
kE

)a−1
eka

2/(E−a) which, by Lemma 24, bounded the probability that
the a− 1 pairs of vertex-copies corresponding to edges of T each landed in a hyperedge of the configuration.

For (ii), we use Y (d(uj) + 1) instead of Y (d(uj)) or Y ′(d(uj)) for j = 1, `. For j = 1, `, the adjustment
for uj is an increase of a multiplicative factor of at most (Y (d(uj) + 1) + 1

2δ)/(Y
′(deg(uj)) + 1

2δ) < (Y (d∗) +
1
2δ)/(Y

′(1) + 1
2δ) = O(1). So the overall effect for (ii) is a multiplicative O(1).

For (iii), the hyperedge containing u1, u` is in the 2-core and so is distinct from the other a−1 hyperedges.
This results in another multiplicative factor of k−1

kE to account for that edge, when applying Lemma 24.

The net result is to multipy E(Xa) by O(a/n), and so the bound on E(Xa) in (6) becomes O(1)
(

1− ζ
16

)a
.

Summing over all a yields that the expected number of core flippable cycles C such that |
⋃
u∈C R

+(u)∩HB | >
ξ(n) is o(1) for any ξ(n) → ∞, in particular for ξ(n) = O(log n). Proposition 33 and Lemma 34 yield
Theorem 5(b). �

8 Proof of Theorem 5 below the r-core threshold

Recall that Theorem 5 is already known for r = k = 2, so we will assume r + k > 4. As in the case for
c > c∗k,r, we will carry out a large but fixed number, I, of rounds of the parallel r-stripping process, ending
up with a hypergraph HI . Because we are below the r-core threshold, this will delete all but a very small,
albeit linear, number of vertices. Proposition 25 asserts that the remaining hypergraph is uniformly random
conditional on its degree sequence. We will determine this degree sequence and apply the technique from [28]
to show that the maximum component size in the remaining hypergraph has size O(log n). Thus, for every
v, we must have |R+(v)∩HI | = O(log n). Proposition 33 and Lemma 34 then imply that |R+(v)| = O(log n)
as required.
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Let Po(µ) denote a Poisson variable with mean µ. Recursively define the following quantities:

φ0 = 1

λt = cφk−1
t /(k − 1)!

φt = Pr[Po(λt−1) ≥ r − 1] .

Write P (µ, j) = Pr[Po(µ) = j].

Lemma 42. For any constants d, t, the number of vertices of degree d after t rounds of the parallel r-stripping
process, w.h.p. is ρt(d)n+ o(n) , where

ρt(d) =


P (λt, d) for d ≥ r,

P (λt, d) · Pr [Po(λt−1 − λt) ≥ r − d] for d < r.

Proof. We consider a branching process introduced in [32] and analyze it as in [27]. Consider any hypergraph
H and any vertex v ∈ H. For each 0 ≤ i ≤ t+ 1, let Li(v) be the vertices of distance at most i from v (thus
L0(v) = {v}). For any u ∈ Li(v) with 0 ≤ i ≤ t, a child edge of u is an edge containing u and k− 1 members
of Li+1(v); thus if the distance t+ 1 neighbourhood of v induces a hypertree, then all but at most one of the
edges containing u are child edges of u.

We define the process STRIP(v, t) as follows:

For j from t down to 1 do
Remove all vertices in Lj(v) with fewer than r − 1 child edges;
Remove all edges that contain a removed vertex.

Let Xt denote the number of child edges of v that survive STRIP(v, t), and let Yt denote the number of child
edges of v that survive STRIP(v, t − 1) but not STRIP(v, t). If the hypergraph induced by the vertices in
Lt+1(v) induces a hypertree, then we see that

(A) For d ≥ r: v survives the first t rounds of the parallel r-stripping process, and has degree d in what
remains iff Xt = d.

(B) For 1 ≤ d < r: v survives the first t rounds of the parallel r-stripping process, and has degree d in
what remains iff Xt = d and Yt ≥ r − d.

To analyze STRIP(v, t) on H = Hk(n, p = c/nk−1), we make use of the fact that w.h.p. the distance t+1
neighbourhood of v induces a hypertree, and so both (A) and (B) hold.

We will argue by induction on t that the probability a particular child u of v survives STRIP(v, t) is
φt + o(1). Suppose u ∈ L1(v) and w ∈ L2(v) is in a child edge of u. Note that w survives STRIP(v, t) iff w
survives STRIP(u, t−1) the probability of which, by induction on t, is easily seen to be φt−1 +o(1). It follows

that the expected number of child edges of u that survive STRIP(v, t) is c
nk−1

(
n−O(1)
k−1

)
(φt−1 + o(1))k−1 =

λt−1+o(1). Standard arguments show that for any fixed i the probability that the number of such edges is i is
P (λt−1, i) + o(1) (we elaborate more below on similar arguments for Xt, Yt). Therefore, the probability that
u survives STRIP(v, t) is φt+o(1), thus completing the induction. By the same argument, E(Xt) = λt+o(1).
Noting that Yt = Xt−1 −Xt, this yields E(Yt) = λt−1 − λt + o(1).

Consider any child edge e of v in Lt+1(v). Whether e counts towards Xt, Yt or neither is determined
entirely by the subtrees of Lt+1(v) rooted at the vertices of e other than v. In other words, Xt, Yt are
determined by the edges containing v in Hk(n, p = c/nk−1), and some local information about each edge
where the information for any two edges is w.h.p. disjoint. Also, no edge counts towards both Xt and
Yt. From this, it is straightforward to show, using e.g., the Method of Moments, (see [19]) that the joint
distribution of Xt, Yt is asymptotic to independent Poisson variables; specifically, for any fixed integers
x, y, Pr(Xt = x ∧ Yt = y) is o(1) plus the probability that two independent Poisson variables with means
E(Xt),E(Yt) are equal to x, y.
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(A) and (B) now yield that the probability that v survives the first t rounds of the parallel stripping
process and has degree d in Ht is ρt(d) + o(1), and so the expected number of such vertices is ρt(d)n+ o(n).
The lemma now follows as in [27] from a straightforward concentration argument, e.g., a second moment
calculation. We omit the details.

The main result of [28] states: Consider a random graph on a fixed degree sequence where Λ(d) ·n+ o(n)
vertices have degree d, and where the degree sequence satisfies certain well-behaved conditions. If∑

d≥1

d(2− d)Λ(d) > 0 , (7)

and then w.h.p. all connected components have size O(log n). A simple adaptation of the proof in [28]
provides a generalization to hypergraphs. Specifically, for k > 2 it suffices to replace d(2− d) in (7) with

fk(d) = d[1− (d− 1)(k − 1)] .

Proposition 25 allows us to model Ht as a random hypergraph on degree sequence ρ0(t), ρ1(t), .... Using
Lemma 28, it is straightforward to verify that this degree sequence satisfies the well-behaved conditions from
[28], and so deduce that if ∑

d≥1

ρt(d)fk(d) > 0 , (8)

then w.h.p. all components of Ht have size O(log n).
Since Pr[Po(λ) ≥ r − 1] is a strictly increasing function of λ, the sequences φt, λt are strictly decreasing.

If they do not tend to zero, then there must be a positive fixed point to the recursion defining them, i.e., a
positive solution to

λ = cPr[Po(λ) ≥ r − 1]k−1/(k − 1)! .

Rearranging yields
c = (k − 1)!λ/Pr[Po(λ) ≥ r − 1]k−1 .

Recall now that c∗k,r was defined in (1) as the smallest value of c for which there is such a solution. Since
c < c∗k,r, we can conclude that φt, λt → 0 as t→∞ and we can develop the following asymptotics in t, using
Ot() and Θt() to denote asymptotics are with respect to t:

λt =
c

(k − 1)!
φk−1
t =

c

(k − 1)!
(Pr[Po(λt−1) ≥ r − 1])

k−1
= Θt(λ

(k−1)(r−1)
t−1 ) . (9)

Let λ := λt and θ := λt−1 − λt. Since (k − 1)(r− 1) ≥ 2 for k + r > 4, we see that (9) implies λ = ot(θ).
We apply Lemma 42, noting that as θ → 0, Pr[Po(θ) ≥ r − d] → P (θ, r − d). Therefore, as t → ∞,

inequality (8) is equivalent to

(1 + ot(1))

r−1∑
d=1

P (λ, d)P (θ, r − d)fk(d) +

∞∑
d=r

P (λ, d)fk(d) > 0 . (10)

Note that fk(1) = 1 and fk(d) ≤ 0 for d ≥ 2. So the first sum in (10) is at least

P (λ, 1)P (θ, r − 1)−
r−1∑
d=2

P (λ, d)P (θ, r − d)|fk(d)| . (11)

For 1 ≤ d ≤ r − 1, we have fk(d) = Ot(1), so the first term in (11) is Θt(λθ
r−1) while the sum in (11) is

Θt(
∑r−1
d=2 λ

dθr−d) = Θt(λ
2θr−2), since λ = ot(θ). Therefore, the first sum in (10) is positive and of order

Θt(λθ
r−1).

22



At the same time, since −fk(d) = kd2 − d2 − kd < kd2 we get

−
∞∑
d=r

P (λ, d)fk(d) ≤ k
∞∑
d=r

P (λ, d)d2 = Ot(λ
r) , as λ→ 0 .

Thus, the first sum in (10) is positive Θt(λθ
r−1), whereas the second sum is Ot(λ

r). Since λ = ot(θ) it
follows that (8) holds for t sufficiently large and, therefore, for I sufficiently large, every component of HI

has size O(log n). Theorem 5(b) now follows from Proposition 33 and Lemma 34. �

9 Proof of Theorem 2

Given a solution, recall that a set S of variables is flippable if changing the assignment of every variable
in S results in another solution. Note that flippable sets can be characterized in terms of the underlying
hypergraph.

Proposition 43. S is flippable iff every hyperedge contains an even number of members of S.

So we define:

Definition 44. A flippable set in a hypergraph, H, is a nonempty set of vertices, S, such that every edge
in H contains an even number of vertices of S.

Recalling Definition 4, we see that a flippable cycle is a flippable set. A flippable set is minimal if it does
not contain a flippable proper subset. Note that every flippable set contains a minimal flippable subset.

Lemma 45. Let H be a random k-uniform hypergraph Hk(n, p), where p = c/nk−1. For every c > c∗k,2 there
exists α > 0 such that w.h.p. every minimal flippable set in the hypergraph induced by the 2-core of H either
is a core flippable cycle or has size at least αn.

Lemma 45 follows immediately from Lemma 51 below, and yields Theorem 2 as follows:

Proof of Theorem 2. Consider any two solutions σ1, σ2 in different clusters. Let S be the variables in the
2-core on which these solutions disagree. Thus, S is a flippable set in the hypergraph induced by the 2-
core. Remove all core flippable cycles from S, and let S′ be what remains (recall from Definition 4 that a
flippable cycle is a set of vertices). Note that S′ must also be a flippable set in the hypergraph induced by
the 2-core. By the definition of clusters, S′ 6= ∅ as otherwise σ1, σ2 would be cycle-equivalent. Let S′′ be a
mimimal flippable subset of S′. Since S′′ contains no core flippable cycles, Lemma 45 implies that |S′′| ≥ αn.
Therefore |S| ≥ αn and so σ1, σ2 differ on at least αn variables.

Any sequence σ, σ′, . . . , τ where σ, τ are in different clusters must contain two consecutive solutions that
are in different clusters. As argued above, those two solutions differ on at least αn variables. It follows that
if σ, τ are in different clusters then σ, t are not αn-connected.

If we could show (deterministically) that the hypergraph induced by any minimal flippable set in a 2-core
that is not a core flippable cycle is sufficiently dense, then Lemma 45 would follow by a rather standard
argument. Unfortunately, there is no useful lower bound on the density, mainly because of the possibility of
very long 2-linked paths in S (defined below). Instead, we follow an approach akin to that of [29], forming
a graph Γ(S) by contracting those long paths, and making use of the fact that Γ(S) is dense (Lemma 50).
The main difference from [29] is that here we need to work in the configuration model.

To prove Lemma 45, we first require a few definitions. Note that these concern any hypergraph, not just
a 2-core of a random hypergraph.

A hyperedge is simple if it is not a loop, i.e., if it does not contain any vertex more than once.

Definition 46. Let H be a k-uniform hypergraph. A 2-linked path P of a set S ⊆ V (H) is a set of vertices
v0, . . . , vt ∈ S and simple hyperedges e1, . . . , et, where t ≥ 1, such that
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(i) v0, . . . , vt are all distinct except that when t ≥ 2 we allow v0 = vt. (Note that if v0 = vt then these
vertices actually form a cycle and so 2-linked path is somewhat of a misnomer.)

(ii) Each ei contains vi−1, vi and no other vertices of S.

(iii) v1, . . . , vt−1 all have degree 2 in H; i.e. they do not lie in any edges outside of P .

(iv) If v0 = vt then degH(v0) > 2. If v0 6= vt then S is maximal w.r.t. (ii) and (iii); i.e. each of v0, vt either
has degree 6= 2 in H, or lies in a hyperedge e/∈ P with |e ∩ S| 6= 2.

We call v0, vt the endpoints of the path and v1, . . . , vt−1 its connecting vertices.

Note that if v0 = vt then by (iv), degH(v0) > 2 and hence v0, . . . , vt do not form a flippable cycle.

v1 v2

v3

v0

v1 v2

v3v0

Figure 1: 2-linked paths with t = 3. On the left v0 6= v3, while on the right v0 = v3. Vertices in S are
marked with a square.

Definition 47. We say that S ⊆ V (H) is a linked set if (i) S does not contain a flippable cycle as a subset,
(ii) no hyperedge of H contains exactly one element of S and (iii) every hyperedge e of H with |e ∩ S| = 2
is in a 2-linked path of S.

Proposition 48. Suppose S is a flippable set in a hypergraph where all hyperedges are simple, and S does
not contain a flippable cycle as a subset. Then S is a linked set.

Proof. By Proposition 43, we only need to check condition (iii) of Definition 47. Consider any hyperedge e
with |e ∩ S| = 2. Since e is simple, either e itself forms a 2-linked path in S, or it is easily seen that e can
be extended into such a path, unless e lies in a flippable cycle.

Remark: It is easy to see that in any Uniquely Extendible CSP, the set of disagreeing variables of any
two solutions must be a flippable set. Since Proposition 48 was derived by only considering the underlying
hypergraph (and not the specific constraints), it applies to any UE CSP. Therefore, our Theorem 2 extends
readily to every UE CSP since its proof amounts to proving that for some constant α > 0, all linked sets are
either flippable cycles or contain at least αn variables.

Given a linked set, S, we consider the mixed hypergraph (containing both hyperedges and normal edges)
Γ(S) formed as follows:

(a) The vertices of Γ(S) are the endpoints of the 2-linked paths in S along with all vertices of S that do
not lie in any 2-linked paths.

(b) There is an edge in Γ(S) between the endpoints of each 2-linked path in S. That edge is a loop if the
two endpoints are the same vertex, and so Γ(S) is not necessarily simple.
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(c) For every hyperedge e of H with |e ∩ S| > 2, e ∩ S is a hyperedge of Γ(S).

Thus V (Γ(S)) ⊆ S, and since no hyperedge of C contains exactly one element of S, for every v ∈ V (Γ(S))
we have degΓ(S)(v) = degH(v). Any vertex of S that is not in Γ(S) is a connecting vertex of a 2-linked path
in S.

Proposition 49. If S is a non-empty linked set, then 1 ≤ |Γ(S)| ≤ |S|.

Proof. Any vertex of S that is not in Γ(S) is a connecting vertex of a 2-linked path in S. The endpoints of
that 2-linked path are in Γ(S). Thus |Γ(S)| ≥ 1. The rest follows from the fact that every vertex of Γ(S) is
a vertex of S.

Note that Γ(S) contains hyperedges of size between 2 and k. For each 2 ≤ i ≤ k, we define `i to be the
number of i-edges in Γ(S).

Lemma 50. If every vertex in H has degree at least 2 then
∑k
i=2(i− 1)`i ≥ (1 + 1

2k )|V (Γ(S))|.

Proof. As we said above, every v ∈ V (Γ(S)) has the same degree in Γ(S) as it does in H. Thus Γ(S) has
minimum degree at least 2. Consider any v of degree 2 in Γ(S). Then v has degree 2 in H and hence cannot
be the endpoint of a 2-linked path in S, unless v lies in at least one hyperedge of H containing more than
2 members of S. It follows that v lies in at least one hyperedge of Γ(S) of size greater than 2. Therefore,

at most
∑k
i=3 i`i < k

∑k
i=3 `i vertices of Γ(S) have degree 2, and so letting Z denote the number of vertices

with degree at least 3 in Γ(S), we have

|V (Γ(S))| ≤ Z + k

k∑
i=3

`i ≤ k

(
Z +

k∑
i=3

`i

)
.

By the handshaking lemma,
∑k
i=2 i`i =

∑
v degΓ(S)(v). Therefore,

k∑
i=2

(i− 1)`i =
1

2

∑
v

degΓ(S)(v) +

k∑
i=2

(i/2− 1)`i

≥ 1

2

∑
v

degΓ(S)(v) +
1

2

k∑
i=3

`i

=
∑
v

1 +
∑
v

1

2
(degΓ(S)(v)− 2) +

1

2

k∑
i=3

`i

≥ |V (Γ(S))|+ 1

2
Z +

1

2

k∑
i=3

`i , since degΓ(S)(v) ≥ 2 for all v

≥
(

1 +
1

2k

)
|V (Γ(S))| .

Let C be the 2-core of H = Hk(n, p). We will apply Lemma 50 with H = C to prove:

Lemma 51. There exists α > 0 such that w.h.p. C has no non-empty linked set of size less than αn.

Lemma 45 follows immediately from Lemma 51 and Proposition 48 (since Hk(n, p) contains only simple
hyperedges). The proof of Lemma 51 will be reminiscent of the proof of Lemma 40, but significantly more
complicated because (i) we are working in the configuration model and (ii) where we had `2 2-edges in
Lemma 51, we have `2 2-linked paths here. First, we provide a technical lemma.
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Lemma 52. For any integers a, t, given a set of a vertices in H = Hk(n, p), with p = c/nk−1 the probability
that their total degree exceeds tkca is at most (e/t)

act
.

Proof. Given a set A of a vertices, let EA denote the number of hyperedges containing at least one member
of A. The total degree in A is at most kEA. The number of potential edges in EA is at most a

(
n
k−1

)
< ank−1,

and so EA is dominated from above by Bin(ank−1, c/nk−1) and using
(
n
z

)
≤ (ne/z)z we get

Pr
[
Bin(ank−1, c/nk−1) > act

]
<

(
ank−1

act

)( c

nk−1

)act
< (e/t)act.

Proof of Lemma 51. By Corollary 23, we can work in the configuration model. Let D be the degree
sequence of C. Recalling Definition 29, Proposition 30 and our key Lemma 32, we have w.h.p.

(i) D has total degree γn+ o(n), where γ = µΨr(µ),

(ii) D has λ2n+ o(n) vertices of degree 2, where λ2 = e−µµ2/2,

(iii) there exists ζ > 0 such that 2(k − 1)λ2 < (1− ζ)γ.

For each a ≥ 1, let Xa denote the number of linked sets S in C for which |Γ(S)| = a and let X =
∑αn
a=1Xa.

Define

La =

{
(`2, . . . , `k) :

(
1 +

1

2k

)
a ≤

k∑
i=2

(i− 1)`i ≤
(

1 +
1

2k

)
a+ (k − 1)

}
.

By Lemma 50, for any linked set S in C with |Γ(S)| = a, there is some (`2, . . . , `k) ∈ La so that Γ(S)
contains at least `i i-edges for each i.

To bound E(Xa), we begin by choosing a vertices, A ⊆ V (C) and sum over all t ≥ 0 of the probability
that their total degree in C lies in the range (tkca, (t+1)kca]. For each t, we upper bound this last probability
by the probability that their total degree in H lies in (tkca,∞]. Moreover, to sum over all subsets A ⊆ V (C)
we overcount by summing instead over all A ⊆ V (H), and using Lemma 52. Of course, if such a set is not
a subset of C then the probability of it contributing to Xa is zero, and so this provides an upperbound on
E(Xa). This yields: (

n

a

)∑
t≥0

(
e

t
)tca.

Given A, we sum over all possibilities for the values of (`2, . . . , `k) ∈ La. For each 2 ≤ i ≤ k, we choose
`i i-sets of vertex-copies belonging to vertices of A. If the total degree of A is in (tkca, (t+ 1)kca] then the
number of choices for these `i i-sets is at most(

((t+ 1)kca)i

i!

)`i
/`i! <

((t+ 1)kca)i`i

`i!
.

Denote the `2 2-sets as {u1, w1}, . . . , {u`2 , w`2}. For each i = 1, . . . , `2, we select ji ≥ 0, the number
of connecting variables in the 2-linked path from ui to wi in S, we choose the ji degree two connecting
variables for that path, and we choose one of the two possible orientations of the vertex-copies of each of
those connecting variables. Let J = j1 + · · · + j`2 , be the number of connecting variables selected. Let
L = λ2n+o(n) be the number of degree 2 vertices in C. Then the total number of choices for the connecting
vertices and the orientations of their copies is at most

J∏
i=1

2(L− i+ 1).
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Next, we apply Lemma 24 to bound the probability that the `3 + · · ·+ `k sets of size at least 3 all land
in hyperedges of the configuration and that for each i = 1, . . . , `2, the first pair in the 2-linked path, i.e., ui
and the first copy of the first of the ji connecting variables, lands in a hyperedge of the configuration. Note
that `2 + · · ·+ `k ≤

∑k
i=2(i− 1)`i < 2a+ k− 1 < 2a+ o(n), by the definition of La. By assuming a < αn for

some sufficiently small α, we get γn+ o(n)− 2a > 1
2γn. Therefore, Lemma 24 yields that this probability is

at most

exp

(
k(`2 + · · · `k)2

1
2γn

) k∏
i=2

(
(k − 1)(k − 2) · · · (k − i+ 1)

(γn+ o(n))i−1

)`i
< exp

(
8ka2

γn

) k∏
i=2

(
k

γn

)(i−1)`i

.

Following the analysis of Lemma 24, we have now exposed `2 + · · ·+ `k hyperedges of the configuration.
Let Λ be the number of unmatched vertex-copies remaining. Since `2 + · · · + `k < 2a + k − 1, we have
Λ ≥ γn− 2ka+ o(n). If the other vertex-copies required for the 2-linked paths are still unmatched, then we
continue; else we halt observing that in this case, the set of choices made so far cannot lead to a linked set
on the chosen vertices.

There are J pairs of vertex copies that each need to be in a hyperedge of the configuration in order to
complete the 2-linked paths. Following the same argument as in Lemma 35, the probability of this happening
is at most

J∏
i=1

k − 1

Λ− k(i− 1)
.

Applying (iii) above, and taking a < αn for α sufficiently small in terms of γ, λ2, we obtain:

2(k − 1)L

Λ
<

2(k − 1)λ2n+ o(n)

γn− 2ka+ o(n)
< 1− ζ

2
.

Thus, since 2(k− 1)L ≤ Λ (by the previous line) and k ≤ 2(k− 1), we have 2(k−1)(L−(i−1))
Λ−k(i−1) < 1− ζ

2 for each

i, leading to

E(Xa) <

(
n

a

)∑
t≥0

(
e

t
)tca

∑
`2,...,`k∈La

∑
j1,...,j`2≥0

e8ka2/(γn)

(
k∏
i=2

((t+ 1)kca)i`i

`i!

)

×

(
k∏
i=2

(
k

γn

)(i−1)`i
)(

J∏
i=1

2(k − 1)(L− (i− 1))

Λ− k(i− 1)

)

<
(en
a

)a∑
t≥0

(
e

t
)tca

∑
`2,...,`k∈La

e8ka2/(γn)

(
k∏
i=2

(kca)`i

`i!

(
k2ca

γn

)(i−1)`i

(t+ 1)i`i

)
×

∑
j1,...,j`2≥0

(1− ζ/2)J .

Since J = j1 + · · ·+ j`2 , we have
∑
j1,...,j`2≥0(1− ζ/2)J =

(∑
j≥0(1− ζ/2)j

)`2
= (2/ζ)`2 , yielding:

E(Xa) <
(en
a

)a
e8ka2/γn

∑
`2,...,`k∈La

(
k2ca

γn

)∑k
i=2(i−1)`i

(
k∏
i=2

(kca)`i

`i!

)
(
2

ζ
)`2
∑
t≥0

(
e

t
)tca(t+ 1)

∑k
i=2 i`i .

By our choice of La

`2 ≤
k∑
i=2

(i− 1)`i ≤ (1 + 1
2k )a+ k − 1,
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k∑
i=2

i`i ≤ 2

k∑
i=2

(i− 1)`i ≤ 3a+ 2k.

Thus, we obtain (2/ζ)`2 < Za1 for constant Z1 = Z1(c) and, since (e/t)tc(t+ 1)3+2k is decreasing for large t,
we have ∑

t≥0

(e/t)tca(t+ 1)
∑k
i=2 i`i <

∑
t≥0

(e/t)tca(t+ 1)
3a+2k

<
∑
t≥0

(
(e/t)tc(t+ 1)

3+2k
)a

<Za2 ,

for constant Z2 = Z2(c). Also using a ≤ n we obtain:

E(Xa) <
(en
a

)a
e8ka/γ(Z1Z2)a

(
k2ca

γn

)(1+
1
2k

)
a+k−1 ∑

`2,...,`k≥0

k∏
i=2

(kca)`i

`i!

< O(1)

eZ1Z2e
8k/γ

(
k2c

γ

)1+
1
2k

a (a
n

)a/2k∑
`≥0

(kca)`

`!

k−1

.

Applying
(∑

`≥0
(kca)`

`!

)k−1

= ekca(k−1) we obtain:

E(Xa) < O(1)

(
eZ1Z2e

8k/γ(k2c/γ)1+
1
2k eck(k−1)

)a (a
n

)a/2k
< Y a

(a
n

)a/2k
,

for a constant Y = Y (γ, λ2, ζ, b, ξ) that does not depend on a, so long as a < αn for sufficiently small

α > 0. This yields E(
∑√n
a=1Xa) = o(1). Moreover, for all α sufficiently small, E(Xa) < 2−a. Therefore,

E(
∑
a≥
√
nXa) = o(1) and, thus, E(X) = o(1).

Therefore, w.h.p. there is no 2-linked set S with 1 ≤ |Γ(S)| ≤ αn. The lemma follows from Proposition 49.
�
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