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Abstract. We prove that the Glauber dynamics on the k-colourings of a
graph G on n vertices with girth 5 and maximum degree ∆ ≥ 1000 log3 n
mixes rapidly if k = q∆ and q > β where β = 1.645... is the root of
2 − (1 − e−1/β)2 − 2βe−1/β = 0.

1 Introduction

The Glauber dynamics is a Markov chain on the proper colourings of a graph
that has been widely studied in both computer science and statistical physics.
For a given graph G and integer k which is at least the chromatic number of G,
the Markov chain is described as follows: We start with an arbitrary k-colouring,
and at each step we choose a uniformly random vertex v, and a uniformly random
colour c from L(v), the list of colours which do not appear on any neighbours of
v. Then we change the colour of v to c.

This chain is of great interest for a number of reasons. For one, it is the most
natural chain on the colourings of a graph, and so is an obvious attempt at a
procedure to approximately count the colourings of a graph and to generate such
a colouring nearly uniformly at random. It is also of interest in the statistical
physics community, in part because of its relation to the Potts model.

The main question in this area is: For what values of k does this Markov chain
mix in polytime? Usually this is studied in terms of ∆, the maximum degree of
G. It is well known that for some graphs, the chain does not mix for k ≤ ∆ + 1.
It is conjectured that for every graph, the chain mixes in polytime for k ≥ ∆+2,
or at least for k ≥ ∆ + o(∆), but this appears to be a very difficult conjecture.
Jerrum[11], and independently Salas and Sokal[14], showed that for all graphs
the chain mixes in polytime for k ≥ 2∆. Vigoda[15] showed that for all graphs,
a different chain mixes in optimal time for k ≥ 11

6 ∆ and this implies that for
the same values of k, the Glauber dynamics mixes in polytime. This is the best
progress to date for general graphs.

A recent trend has been to study the performance of the Glauber dynamics
on graphs with restrictions on the girth and maximum degree. At first, these
restrictions were rather severe, and the number of colours remained far from ∆:
Dyer and Frieze[4] showed that if ∆ is at least O(log n) and the girth is at least
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O(log ∆) then we have rapid mixing for roughly k = 1.763∆ colours (note that
1.763 < 11/6). Since then, several improvements[12, 7, 8, 9, 10, 5, 6] have reduced
these restrictions substantially, and this line of research is producing surprisingly
strong results and shedding much insight on the general conjecture. Some notable
results are that we obtain rapid mixing for ∆ = O(log n), girth at least 9, and
k ≥ (1 + ε)∆[8] and for ∆ at least a particular large constant, girth at least 6
and k roughly 1.489∆[5].

Recently, Hayes and Vigoda[10] introduced “coupling from the stationary dis-
tribution” (described below) with which they managed to improve the girth
requirement from five to four in one of these results (from Hayes[7]). (An im-
provement of 1 may not seem like much at first glance, but when the numbers
are this small, each such improvement can be a huge gain.) They showed that we
have rapid mixing with ∆ = O(log n), girth at least 4 and with k roughly 1.763∆.
This value of k is one that is often obtained by using a particular property that
we call the first local uniformity condition (defined below). Hayes[7] had also
proved rapid mixing ∆ = O(log n), girth at least 6 and with k roughly 1.489∆,
a value that is often obtained by using the second local uniformity condition.
The main result of this paper, is to incorporate that second local uniformity
condition into a coupling from the stationary distribution argument, and reduce
the girth requirement from the latter result to 5. In doing so, difficulties cost us
in two ways: (i) we must increase the restriction on ∆ somewhat, and (ii) we
obtain a number larger than the usual 1.489....

Define β = 1.645... to be the solution to

2 − (1 − e−1/β)2 − 2βe−1/β = 0.

Theorem 1. The Glauber dynamics mixes in O(n log n) time on all graphs on
n vertices with maximum degree ∆ ≥ 1000 log3 n, when the number of colours is
k ≥ (β + ε)∆ for any constant ε > 0.

Remark. We made no attempt to optimize the exponent “3” in the lower bound
on ∆. It is not hard to reduce it somewhat.

1.1 Outline

The proof of our main result uses the framework of “coupling with the stationary
distribution” developed by Hayes and Vigoda[10] to prove their aforementioned
result. Here is the basic idea: To analyse the mixing time via a coupling ar-
gument, we can assume that one Markov chain X is distributed according to
the uniform distribution. Given a graph of girth at least 4 and maximum de-
gree ∆ = Ω(log n), one can show that with high probability, Xt has the first
local uniformity condition. Hayes and Vigoda then show that, given an arbitrary
colouring Yt, the Hamming distance between Xt and Yt decreases in expectation
for k roughly 1.763∆ so long as Xt has the first local uniformity. So, with high
probability, Xt and Yt tend to drift together, and their theorem follows.

The main advantage of using the coupling with the stationary distribution
is that one only needs to prove that a uniformly random colouring has local
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uniformity properties rather than a colouring generated by the Markov chain.
This allows one to skip the analysis of the burn-in period, which is the most
technical part of many previous papers. In addition, short cycles are a bit less
harmful in uniform colourings than in “burn-in” colourings; this allowed the
girth requirement to be reduced by one in [10]. One substantial drawback to this
technique is that it does not accommodate path-coupling, a very useful technique
introduced in [2]. This means that one needs to analyse the expected change in
Hamming distance between two colourings with arbitrary Hamming distance,
rather than just analyzing the much simpler case where the Hamming distance
is one. Carrying out that analysis turned out to be manageable in [10] where
they were able to adopt the original coupling argument from Jerrum[11], which
predated path-coupling.

The main thrust of this paper is to incorporate the second local uniformity
into the framework of “coupling with the uniform condition”. In this case, it is
much more difficult to extend the path coupling analysis to the case where two
colourings have arbitrary distance. In fact, we are unable to do so without some
loss, and this is why our result requires 1.645∆ colours rather than 1.489∆. This
portion of our analysis makes use of a novel “charging” argument (Lemma 1).
That argument does not make use of any special structure of G (such as its girth
or maximum degree) and so it might be useful in other settings. This argument
appears in Section 2.

A second difficulty that arises in this paper is in proving that the second
uniformity condition holds for a uniformly random colouring when the girth
requirement is reduced from 6 (in [7]) to 5. The main problem is that the second
local uniformity condition is defined in terms of vertices of distance two from a
specific vertex v. Every previous paper that established a uniformity condition
made crucial use of the fact that the vertices which defined the condition were
very close to being an independent set. This is true in our setting for girth 6
graphs, but girth 5 graphs can have many edges between those vertices. The
difficulties caused by these edges are what require us to increase the bound on
∆ from O(log n) to O(log3 n). We present this part of the proof in Section 3.

Remark. Our main theorem applies to graphs with maximum degree ∆. How-
ever, for brevity and ease of presentation, we only present the proof for the case
where the graph is ∆-regular. For the most part, it is straightforward to extend
the proof to non-regular graphs. The material in Section 3 is not as straightfor-
ward to extend, but the arguments used in [12] will suffice.

1.2 Definitions

In a graph G, we define N(v) to be the set of neighbours of vertex v.
For a colouring X of G, we define X(v) to be the colour at vertex v. We

denote by LX(v) the list of available colours at v in X ; i.e. the colours that do
not appear on any neighbours of v. We denote by LX the minimum of |LX(v)|
over all possible v. Given two colourings X, Y , Pv(X, Y ) := LY (v) − LX(v) and
Pv(Y, X) := LX(v) − LY (v). In other words, Pv(X, Y ) is the set of colours ap-
pearing in the neighbourhood of v in X but not appearing in the neighbourhood
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of v in Y . Given a colouring X , suppose we recolour v by colour c and denote the
resulting colouring by X ′; then RX(v, c) is defined to be the set of neighbours w
of v such that LX(w) = LX′(w). In other words, RX(v, c) is the set of vertices
w ∈ N(v) such that X(v) and c both appear in NG(w) − v. We further define
RX to be the minimum of |RX(v, c)| over all possible v and c.

For the purposes of this paper, the local uniformity conditions are defined as
follows. Set q = k/∆.

First Local Uniformity Condition[4]
For every ζ > 0, (qe−1/q − ζ)∆ < LX < (qe−1/q + ζ)∆.

Second Local Uniformity Condition[12]
For every ζ > 0, ((1 − e−1/q)2 − ζ)∆ < RX < ((1 − e−1/q)2 + ζ)∆.

Given a particular value of k, we define Ω to be the set of k-colourings of G.

1.3 A Concentration Tool

We will make use of the following inequality, which is particularly useful in this
paper because it can be applied to random trials that are not independent.
The version that we use is from [13] and is a distillation of Azuma’s original
statement[1].

Azuma’s Inequality. Let X be a random variable determined by n trials
T1, ..., Tn, such that for each i, and any two possible initial sequences of out-
comes t1, ..., ti and t1, ..., ti−1, t

′
i that differ only on the ith outcome:

| exp(X |T1 = t1, ..., Ti = ti) − exp(X |T1 = t1, ..., Ti = t′i)| ≤ γi

then
Pr(|X − exp(X)| > τ) ≤ 2e−τ2/(2

�n
i=1 γ2

i ),

for every τ > 0.

2 Distance Decreasing with the Local Uniformities

Consider two colourings X, Y of G. We use d(X, Y ) to denote the Hamming
distance of X, Y ; i.e. the number of vertices on which they differ. The key lemma
in this paper is the following:

Lemma 1. For any two colourings X, Y of a ∆-regular graph,

∑

w∈V

max{Pw(X, Y ), Pw(Y, X)} ≤ (1 − RX

2
)∆d(X, Y ).

We defer its proof until the end of the section.
Let X ′, Y ′ denote random colourings generated by applying one step of the

Glauber dynamics to X, Y respectively. Following the notation in [10], we say
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that X, Y are δ-distance decreasing if there exists a coupling of X ′, Y ′ under
which the expected value of d(X ′, Y ′) is at most (1 − δ)d(X, Y ).

Recall that β = 1.645... is defined in the introduction. Using Lemma 1, it is
fairly straightforward to prove the following:

Lemma 2. Suppose that k ≥ (β+ε)∆ for some ε > 0. Then there exists ζ, δ > 0
such that if X ∈ Ω satisfies the first and the second local uniformity conditions
for ζ > 0, then for every Y ∈ Ω, (X, Y ) is δ-distance-decreasing.

Proof. We need to prove, for every Y ∈ Ω,

E(d(X ′, Y ′)) ≤ (1 − δ

n
)d(X, Y )

for some δ > 0. Let v be the vertex selected for recolouring at the first time step.
First we bound the probability that the chains recolour v to different colours.
For a colour c available to both chains, c will be chosen in X with probability

1
|LX(v)| and in Y with probability 1

|LY (v)| , and hence c will be chosen in both
chains with probability 1

max{|LX(v)|,|LY (v)|} if we use, as usual, Jerrum’s coupling.
Therefore, the probability that v will be coloured differently is:

Pr(X ′(v) �= Y ′(v) | v) = 1 − |LX(v) ∩ LY (v)|
max{|LX(v)|, |LY (v)|}

=
max{|LX(v)|, |LY (v)|} − |LX(v) ∩ LY (v)|

max{|LX(v)|, |LY (v)|}

=
max{|Pv(X, Y )|, |Pv(Y, X)|}

max{LX(v), LY (v)} , (1)

recall that Pv(X, Y ) := LY (v) − LX(v) and Pv(Y, X) := LX(v) − LY (v). Now
we bound the expected distance after one step.

E(d(X ′, Y ′))

=
∑

w∈V

Pr(X ′(w) �= Y ′(w))

=
∑

w∈V

Pr(v �= w ∧ X(w) �= Y (w)) +
∑

w∈V

Pr(v = w ∧ X ′(w) �= Y ′(w))

=
n − 1

n
d(X, Y ) +

1
n

∑

w∈V

Pr(X ′(w) �= Y ′(w) | v = w)

=
n − 1

n
d(X, Y ) +

1
n

∑

w∈V

max{|Pw(X, Y )|, |Pw(Y, X)|}
max{|LY (w)|, |LX(w)|} (by (1))

≤ n − 1
n

d(X, Y ) +
1

nLX

∑

w∈V

max{Pw(X, Y ), Pw(Y, X)}

≤ n − 1
n

d(X, Y ) +
1

nLX
(1 − RX

2
)∆d(X, Y ) (by Lemma 1)
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≤ n − 1
n

d(X, Y ) +
1
n

(2 − (1 − e−
∆
k )2 + ζ)∆

2ke−
∆
k − ζ

d(X, Y )

≤ n − 1
n

d(X, Y ) +
1
n

(1 − δ)d(X, Y ) = (1 − δ

n
)d(X, Y ) (since k ≥ (β + ε)∆)

for some δ > 0, if we take ζ to be sufficiently small in terms of ε. The second
last inequality follows from the local uniformity properties.

The following theorem about couplings which “usually” decrease distances is by
Hayes and Vigoda[10].

Theorem 2. Let X0, . . . , XT , Y0, . . . , YT be coupled Markov chains such that,
for every 0 ≤ t ≤ T − 1,

Pr((Xt, Yt) is not δ distance decreasing) ≤ ε.

Then
Pr(Xt �= Yt) ≤ ((1 − δ)T + ε/δ)diam(Ω).

In Section 3, we will prove (Lemma 3) that if G is a graph of girth 5 and
maximum degree ∆ ≥ 1000 log3 n, and if X is a uniformly random k-colouring
of G where k ≥ (1 + ε)∆ for some ε > 0 then X satisfies the first and second
local uniformity properties. That will allow us to apply the preceding lemmas to
such graphs, and thus prove the main result of this paper, which we do now.

Proof (Proof of Theorem 1). The proof is along the same line as in Hayes and
Vigoda[10]. Here we just give a quick sketch. For ease of exposition, we assume
that G is ∆-regular.

Let X0 be distributed according to π (the uniform distribution) and Y0 be
arbitrary. Generate X1, . . . , XT , Y1, . . . , YT using Jerrum’s coupling with initial
states X0, Y0. For every t ≥ 0, Xt is distributed according to π. By Lemma 3,
Xt has the first and the second local uniformity properties with sufficiently high
probability. Hence, by Lemma 2, Xt and Yt are δ-distance decreasing with high
probability. Now, applying Theorem 2 gives the theorem.

Finally, we close this section by proving the key lemma.

Proof (Proof of Lemma 1). Let d := d(X, Y ) be the Hamming distance be-
tween X and Y , and v1, . . . , vd be the d vertices with different colours in X and
Y . Let Zi be a colouring equal to X except Zj(vj) = Y (vj) for 1 ≤ j ≤ i. Let
Pw(i) := max{Pw(X, Zi), Pw(Zi, X)}. So, Zd = Y and

∑
w∈V Pw(d) is the value

we would like to bound. To bound
∑

w∈V Pw(d), we consider
∑

w∈V Pw(i) for
1 ≤ i ≤ d. Intuitively, we consider the colour changes one-at-a-time.

Note that Pw(i) > Pw(i − 1) only when w is a neighbour of vi, and note also
that Pw(i) ≤ Pw(i − 1) + 1 by definition. Since the maximum degree in G is ∆,
it follows that

∑
w∈V Pw(d) ≤ d∆. With the second local uniformity, however,

we can give a better bound. For example, when the colour of v1 is changed
from X(v1) to Y (v1), for each vertex w in RX(v1, Y (v1)), both colours X(v1)
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and Y (v1) appear in NG(w) − v and thus LX(w) and LZ1(w) are the same.
Hence, Pw(1) = Pw(0) for w ∈ RX(v1, Y (v1)). Since |RX(v1, Y (v1))| ≥ RX∆ by
definition, we have

∑
w∈V Pw(1) ≤ (1 − RX)∆. Notice that the above argument

does not hold in general at time i for i > 1, since the colours have been changed
at v1, . . . , vi−1. But one may still hope that Pw(i) = Pw(i−1) for “many” vertices
in RX(vi, Y (vi)). In light of this, we say that a good event happens at w at time
i if Pw(i) = Pw(i − 1) when the colour of vi is changed from X(vi) to Y (vi);
otherwise a bad event if Pw(i) = Pw(i − 1)+ 1 at w at time i when the colour of
vi is changed from X(vi) to Y (vi). In the following, we focus on a bad event at
w at time i where w ∈ RX(vi, Y (vi)).

Let a := X(vi) and b := Y (vi). Consider a vertex w in RX(vi, b) when the
colour of vi is changed from a to b. Suppose that a bad event happens at w
(i.e. Pw(i) = Pw(i − 1) + 1). Since w is in RX(vi, b), by definition, there are two
vertices ua, ub ∈ NG(w) − vi so that X(ua) = a and X(ub) = b. Recall that
Pw(i) := max{Pw(X, Zi), Pw(Zi, W )}. Since both colours a and b appear in the
neighbourhood of w in X , we have Pw(Zi, X) = Pw(Zi−1, X). Since we assume
Pw(i) = Pw(i − 1) + 1, it must be the case that Pw(X, Zi) = Pw(X, Zi−1) + 1.
This can only happen when the colour a disappears in the neighbourhood of w
at time i (i.e. a /∈ LZi−1(w) and a ∈ LZi(w)). In particular, this implies that the
colour of ua had been changed from a to some other colour in some j-th step
where j < i. Consider that colour change of ua = vj at the j-th step. At the j-th
step, Zj(vi) is still of colour a. Therefore, by changing the colour of ua from a to
some other colour, we have Pw(X, Zj) = Pw(X, Zj−1). Notice that Pw(X, Y ) ≤∑d

i=1 |Pw(X, Zi) − Pw(X, Zi−1)| and similarly Pw(Y, X) ≤
∑d

i=1 |Pw(Zi, X) −
Pw(Zi−1, X)|. From the above argument, if a bad event happens at w at the i-th
step, we have |Pw(X, Zi)−Pw(X, Zi−1)| = 0 and |Pw(Zj , X)−Pw(Zj−1, X)| = 0
for some j < i. And thus the bad event at w at time i and the event at w at time j
combine to contribute at most 1 to Pw(d), in particular this implies that Pw(d) is
at most d−1. Formally, we map a bad event at w at time i to another event at w
at time j where j < i and X(vi) = X(vj) = a, so that they combine to contribute
at most 1 to Pw(d). We call the events in this mapping a couple. We can do the
mapping for each bad event at w at time j for each w ∈ RX(vj , Y (vj)) by the
above argument. If there are T1 disjoint couples and T2 distinct good events such
that no event appears therein more than once, then

∑
w∈V Pw(d) ≤ d∆−T1−T2.

Suppose for now that each bad event at w at time j for w ∈ RX(vj , Y (vj)) maps
to a distinct good event (we will prove this claim in the next paragraph). Since∑d

j=1 |RX(vj , Y (vj))| ≥ RX∆d and each event therein is either good or is in a
distinct couple, we have

∑
w∈V Pw(d) ≤ d∆ − (RX∆d)/2 = ((1 − RX/2)∆)d, as

desired. (The worst case is that there are (RX∆d)/2 disjoint couples where each
couple contains two distinct events therein).

To finish the proof, it remains to show that each bad event at w at time
j for w ∈ RX(vj , Y (vj)) maps to a distinct good event. To see this, we
need to review the mapping process. As argued previously, a bad event at w
at time i for w ∈ RX(vi, Y (vi)) happens only if the colour X(vi) disappears in the
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neighbourhood of w at time i. Then we map this bad event to another event at
w at time j where j < i and X(vi) = X(vj). This implies that Zj(vi) = X(vi)
and thus the colour X(vj) does not disappear in the neighbourhood of w at time
j, and hence the event at w at time j is not a bad event. So, a bad event does not
map to another bad event. Also, two bad events cannot map to the same event
since a colour can disappear at most once in the neighbourhood of a vertex, as
each vertex is recoloured at most once. This proves the claim and completes the
proof.

3 Uniform Colourings of Graphs with Girth 5

In this section, we establish that the uniform random colourings we consider
satisfy the first and second uniformity properties. Recall that our setting is: G
is a graph on n vertices with maximum degree ∆ and with girth at least 5. We
consider k-colourings of G where k = q∆ for some q > 1. For ease of exposition,
we assume that G is ∆-regular.

Lemma 3. Consider a uniform random k-colouring X of G and consider any
ζ > 0. With probability at least 1 − n−3 we have:

(a) (qe−1/q − ζ)∆ < LX < (qe−1/q + ζ)∆;
(b) ((1 − e−1/q)2 − ζ)∆ < RX < ((1 − e−1/q)2 + ζ)∆.

The lower bound in part (a) was proven in [10] for graphs of girth 4. The
rest of Lemma 3 was (essentially) proven in [7] to hold for graphs of girth 6.
Roughly speaking, having girth 6 is very helpful as follows: Define N2(v) to be
the vertices of distance 2 from v. Note that RX(v, c) is a function of the colours
appearing on v ∪N2(v) which, if G has girth at least 6, is an independent set. If
we pretend that the colours on those vertices are independent uniformly random
colours, then Lemma 3(b) follows easily. Of course they aren’t independent:
some dependency is induced by the edges joining the independent set to the rest
of G; this is a bit difficult to deal with, but the techniques from [12] will suffice.
When we reduce the girth requirement to 5, N2(v) can now have many edges,
and these edges bring dependencies that are not straightforward to deal with.
Fortunately, there are some restrictions - for example, no two vertices of N2(v)
with a common “parent” in N(v) can be joined. This allows us to overcome the
dependency. The way we do so comprises the new ideas in the proof; the rest
just follows techniques from [12].

In order to better control the edges within v ∪ N(v) ∪ N2(v), we partition it
into smaller subgraphs. In particular, for each vertex v, we partition N(v) into
sets U1(v), ..., U∆2/3(v) each of size ∆1/3. (For convenience, we treat ∆1/3 as an
integer; it is trivial to extend the argument to the non-integer case.) Instead of
analyzing the colour distribution of colours on all of N2(v), we will sometimes
consider, for each i, the distribution on the subset of N2(v) that is adjacent to
Ui(v).
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Given a colouring of G, for any vertex v and colours c, c′ we define:

– Tv,c =
∑ 1

|L(u)| summed over all u ∈ N(v) with c not appearing on N(u)−v;
– T j

v,c =
∑ 1

|L(u)| summed over all u ∈ Uj(v) with c not appearing on N(u)−v.

We define α0 = 0, β0 = 1, λ0 = 1, and

– αi+1 = e−βi/λi

– βi+1 = e−αi/qe−1/q

– λi+1 = qβi−1
βi−αi

e−αi + 1−qαi

βi−αi
e−βi

As shown in [12], limi→∞ αi = limi→∞ βi = 1/q and limi→∞ λi = qe−1/q.
We will prove:

Lemma 4. In a uniformly random k-colouring X of G, for every v, c, j, i we
have: with probability at least 1 − (∆3)i exp(−∆1/3):

(a) qe−1/q∆ − o(∆) < |L(v)| < λi∆ + o(∆);
(b) αi∆

−2/3 − o(∆−2/3) < |T j
v,c| < βi∆

−2/3 + o(∆−2/3).

Proof. Many details are the same as those that have appeared already in several
papers. So we gloss over those, focusing more on the details that are new.

The lower bound in (a) was proven in [10]. For the rest, we use induction on i.
The base case i = 0 is trivial. So suppose it holds for i; we will prove that it
holds for i + 1.

Expose the colours of every vertex except for those in N(v). This yields a list
L(u) for each u ∈ N(v).

By induction, and multiplying by ∆2 vertices u in N(v) ∪ N2(v) plus less
than 2∆8/3 triples j, c, u with u ∈ N(v), we see that with probability at least
1−(∆2+2∆8/3)(∆3)i exp(−∆1/3), each u ∈ N(v)∪N2(v) has qe−1/q∆−o(∆) <

|L(u)| < λi∆+o(∆) and for every u ∈ N(v) and c, Tu,c =
∑∆2/3

j=1 T j
u,c is between

αi + o(1) and βi + o(1).
We will show that, if the exposed colours behave as described in the previous

paragraph, then the probability that (a) is violated is at most exp(−∆1/3) and
so is the probability that (b) is violated. This yields an overall bound of at most
(∆2 + 2∆8/3)(∆3)i exp(−∆1/3) + 2 exp(−∆1/3) < (∆3)i+1 exp(−∆1/3).

Part (a): Straightforward calculations, as in [12], show that Exp(|L(v)|) ≤
λi+1∆ + o(∆). Because G is triangle-free, we can regard the assignments of
colours to N(v) as independent uniform choices from the lists L(u). Thus stan-
dard concentration bounds (such as Azuma’s Inequality) easily yield that the
probability of |L(u)| differing from its mean by more than ∆2/3 is at most
exp(−θ(∆2/3)) < exp(−∆1/3).

Part (b): Let tjv,c denote the number of neighbours u ∈ Uj(v) with c ∈ L(u).
We will show that, with sufficiently high probability, αi∆

1/3 + o(∆1/3) < tjv,c <

αi∆
1/3 + o(∆1/3). This, along with the inductive bound on |L(u)| will estab-

lish (b).
Let H be the subgraph induced by ∪u∈Uj N(u)− v. Note that, since the girth

of G is at least 5, no w ∈ H can be adjacent to more than one neighbour of any
u ∈ Ui(v). Thus the maximum degree in H is at most |Uj(v)| = ∆1/3.
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Expose the colours of every vertex except those in H . This yields a list L(u)
for each u ∈ Uj(v). With probability at least 1−2ie−∆1/20

, each w ∈ N(Uj(v))−v
has qe−1/q∆ − o(∆) < |L(w)| < λi∆ + o(∆) and for every c and u ∈ Uj(v), Tu,c

is between αi + o(1) and βi + o(1).
Let Ω be the set of colourings of H in which each w ∈ H has a colour from

L(w). Thus, the unexposed colours form a uniformly random member of Ω. Since
H is not an independent set, we can’t simply treat those colours as independent
uniform choices from their lists, as we did in part (a). How we deal with this
complication is the main new idea required for this section.

Suppose that the vertices of H are w1, ..., wt; we will colour the vertices one-
at-a-time, in order. After r vertices have been coloured, we use Ωr to denote
the set of completions of the partial colouring to a colouring of H taken from
the lists L(w); thus Ω0 = Ω. When we colour wr, we choose each colour c with
probability pr(c) which is equal to the proportion of colourings in Ωr−1 in which
wr has c. Thus, the resultant colouring is a uniformly random member of Ω, as
required.

Claim. For each r, c such that c is not assigned to a neighbour wr′ of wr with
r′ < r, we have: pr(c) = |L(wr)|−1(1 ± O(∆−2/3)).

Proof. First note that since the maximum degree of H is at most ∆1/3, at any
point in the colouring process, every w has at least |L(w)|−∆1/3 = Θ(∆) colours
not appearing on any of its neighbours.

We prove the claim by induction on r. The base case is r = t; i.e. the last
vertex coloured in H . Here, each colour in L(wt) that does not yet appear on
a neighbour is equally likely, so |L(wr)|−1 ≤ pt(c) ≤ (|L(wr)| − ∆1/3)−1 <
|L(wr)|−1(1 + O(∆−2/3). Now assume that the claim holds for every r′ > r; we
will prove it for r.

Consider two colours c, c′ ∈ L(wr) that don’t appear on any neighbour of wr .
Let Ω(c), Ω(c′) denote the sets of colourings in Ωr−1 in which wr gets c, c′ re-
spectively. Suppose that we set wr = c′ and then continue our colouring process.
By induction, the probability that at least one neighbour of wr receives c is at
most ∆1/3 × O(∆−1) = O(∆−2/3). Since this process yields a uniform member
of Ω(c′), this implies that at least (1 − O(∆−2/3))|Ω(c′)| of the colourings of
Ω(c′) can be mapped to a colouring in Ω(c) by switching the colour of wr to c.
Therefore, |Ω(c)| ≥ |Ω(c′)|(1 − O(∆−2/3)). Since this is true for every pair c, c′

the claim follows.

Having proven the Claim, we now consider any u ∈ Uj; we will bound the prob-
ability that c is not assigned to any w ∈ N(u)−v. Since our colouring procedure
yields a uniformly random member of Ω, this probability is not affected by the
actual order in which we colour the vertices. So we can take w1, ..., the first
vertices to be coloured, to be N(u) − v. Since N(u) − v is an independent set,
if c ∈ L(w) for some w ∈ N(u) − v, c will still be eligible to be assigned to w
when we come to choose the colour for w. Therefore by our claim, the desired
probability is

∏
(1 − |Lw|−1 + O(∆−5/3)) over all w ∈ N(u) − v with c ∈ L(w),
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and this is between αi + o(1) and βi + o(1) by the same calculations as in [12].
Thus, αi∆

1/3 + o(∆1/3) < Exp(tjv,c) < βi∆
1/3 + o(∆1/3).

Next we will use Azuma’s Inequality to show that tjv,c is concentrated.
Consider a particular wr adjacent to u� ∈ Uj . We want to measure how much

the colour chosen for wr can affect the expected value of tjv,c, where the ex-
pectation is over the remaining t − r random colour assignments. The extreme
case is when we choose to assign c to wr (we omit the straightforward dispen-
sation of the other cases). This will cause u� to not have c ∈ L(u�) and thus
might reduce the conditional expectation of tjv,c by 1. Possibly it will also have
a further effect on the conditional expectation because it changes the probabil-
ity that other members of Uj will have c in their lists; we bound that effect as
follows: For each of the ∆1/3 neighbours w of wr, the assignment of c to wr

drops the probability of w receiving c to zero; for every other w, by reasoning
similar to that in our claim, this affects the probability of w receiving c by a
negligible amount. Each u ∈ N(v) has at most one neighbour adjacent to wr and
so the effect on the probability of c not appearing in N(u) is at most a factor of
(1−1/Θ(∆)); since this probability is Θ(1), by the previous paragraph, the effect
is an additive term of at most O(1/∆). Thus, the overall affect on Exp(tv,c) is
1 + |Ui| × O(1/∆) = 1 + O(∆−2/3) < 2.

Note that tv,c is determined by ∆4/3 trials - the colour choice for each neigh-
bour of every member of Ui. If we try to apply Azuma’s Inequality directly with
each γi = 2 and with ∆4/3 trials, we fail. So we reduce the number of trials to
∆1/3 as follows: For each u ∈ N(v), we treat the assignments to all of N(u) − v
as a single random choice. A simple concentration argument (details omitted)
implies that with probability at least 1 − exp(−Θ(∆)), no u has more than

√
∆

neighbours that receive c. Standard arguments (details omitted) allow us to as-
sume that no u has more than ∆1/10 such neighbours, as far as the remainder
of the argument is concerned. Thus, by the same calculations as in the previous
paragraph, the maximum effect that any one of these random choices can have is
1+

√
∆×O(∆−2/3) < 2. Thus we can apply Azuma’s Inequality with ∆1/3 trials,

each γi = 2 and with τ = O(∆9/30) to show that the probability of tv,c differing
from its mean by more than O(∆9/30) = o(∆1/3) is at most exp(−Θ(∆4/15)).
This yields an overall probability of tjv,c differing from its mean by more than
O(∆9/30) of less than exp(−Θ(∆)) + exp(−Θ(∆−4/15)) < exp(−∆1/3).

Now we finish the proof of Lemma 3.

Proof (Proof of Lemma 3). We will show that for every v, c, the probabil-
ity that LX(v) violates part (a) or that RX(v, c) violates part (b) is at most
exp(− 1

2∆1/3). If ∆ ≥ 1000 log3 n then this is at most 1/n5. Thus, after multi-
plying by the fewer than n2 choices for v, c, we obtain that conditions (a,b) hold
for every n, c with probability at least 1 − n−3, as required.

The bound on the probability that LX(v) is in violation follows immediately
from Lemma 4 by taking i to be a large enough constant that λi differs from its
limit by at most ζ/2 and noting that (∆3)i exp(−∆1/3) < exp(− 1

2∆1/3).
For RX(v, c), we also apply Lemma 4 for a particular large value of i. Then

we carry out an argument nearly identical to that in the proof of Lemma 4(b)
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to bound, for every v, c the number of neighbours u ∈ N(v) with X(v), c both in
N(u)−v. Straightforward calculations, as in [12], show that the expected number
is within ζ∆/2 of (1 − e−1/q)2∆ so long as i is large enough that αi, βi, λi are
sufficiently close to their limits. A concentration proof nearly identical to that
in the proof of Lemma 4 shows that the probability that this number differs
from its mean by at least ζ∆/2 is less than exp(− 1

2∆1/3); we omit the repetitive
details.
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