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Abstract

The adaptable choosability number of a multigraph G, denoted cha(G), is
the smallest integer k such that every edge labeling of G and assignment of
lists of size k to the vertices of G permits a list coloring of G in which no
edge e = uv has both u and v colored with the label of e. We show that
cha grows with ch, i.e. there is a function f tending to infinity such that
cha(G) ≥ f(ch(G)).
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1. Introduction

Hell and Zhu introduced the adaptable chromatic number in [11]. Given
a multigraph whose edges are labeled from [k] = {1, 2, . . . , k}, the goal is to
color the vertices with colors from [k] so that there is no edge e = uv such
that u and v are both colored with the label of e. A vertex coloring which
satisfies this property is called an adaptable vertex coloring. The adaptable
chromatic number of a graph G, denoted χa(G), is the minimum number
k such that every edge labeling of G from [k] permits an adaptable vertex
coloring from [k]. It has been studied in [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15]
(in some cases by a different name).

Note that every proper vertex coloring of a graph G is an adaptable vertex
coloring for any edge labeling and thus χa(G) ≤ χ(G). The inequality is tight
as there are infinite families of graphs where χa(G) = χ(G) [10, 11]. These
parameters can also be far apart as there are infinite families of graphs where

χa(G) = Θ
(√

χ(G)
)

(for example, the complete graph [4]). This brings us
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to the following question proposed by Hell and Zhu in [11].

Question. Is there a function f tending to infinity such that χa(G) ≥
f (χ(G))?

As far as we know, the answer may be ‘yes’ with f(k) = Θ
(√

k
)

; i.e. the

complete graph may be asymptotically extremal.
In this paper, we study adaptable list coloring, which is defined naturally

in [12]: Given a multigraph G, the adaptable choosability number, denoted
cha(G), is the minimum number k such that every edge labeling of G and
assignment to each vertex v of a list L(v) of size k, there is an adaptable
coloring of G from these lists. As with χa, it is trivial that cha(G) ≤ ch(G),
where ch(G) is the choosability number. We answer the list coloring version
of Hell and Zhu’s question.

Theorem 1.1. There is a function h tending to infinity such that cha(G) ≥
h (ch(G)).

Our proof obtains h(k) = Θ
(
log1/5k

)
, but we made no effort to optimize

it. As far as we know, we can have h(k) = Θ(
√
k). We know, however,

that h(k) = O(
√
k) since, like with χa, the complete graph has cha (Kn) =

Θ
(√

ch (Kn)
)

[12, 14].

The proof of the theorem uses a probabilistic approach and takes advan-
tage of the Chernoff bound [3]. Instead of using the original statement we
use the (weaker) version found in [13].

Chernoff Bound. For any 0 ≤ t ≤ np,

Pr (|BIN(n, p)− np| > t) < 2e−
t2

3np ,

where BIN(n, p) is the sum of n independent variables, each equal to 1 with
probability p and 0 otherwise.

2. Proof of Main Theorem

The proof of Theorem 1.1 closely follows the approach taken by Alon in
[1] for a similar result on normal list coloring.

We start by proving the following theorem, where δ(G) is the minimum
degree of G.

2



Theorem 2.1. There is a function g tending to infinity such that if H is a
bipartite graph satisfying δ(H) ≥ d then cha(H) ≥ g(d).

Theorem 1.1 easily follows from Theorem 2.1.

Proof of Theorem 1.1. We use the following two well known and easily proved
facts:

(i) If δ(G) ≥ d, G has a bipartite subgraph with minimum degree at least
d
2
. This can be seen by taking a spanning bipartite subgraph of G with

the maximum number of edges.

(ii) If ch(G) ≥ k, then it has a subgraph of minimum degree at least k− 1.
This can be seen by taking a graph where every subgraph has minimum
degree at most k− 2 and iteratively coloring the vertex with minimum
degree and then removing it from the graph.

Therefore, the function h(k) = g
(
k−1
2

)
satisfies the desired properties.

Note that Fact (ii) holds for the coloring number (the maximum of δ(H)+
1 over all subgraphs H of G) as well, so Theorem 1.1 can be strengthened to
show that cha grows with the coloring number.

To prove Theorem 2.1, consider any bipartite graph H with bipartition
(A,B) where |A| ≥ |B|. We will consider lists of size s taken from a color set
of size s5. We will show that there is a function f(s) such that if δ(H) ≥ f(s),
then there is an assignment of lists to vertices and labels to edges such that
there is no proper adaptable coloring from these lists. This is sufficient to
show that cha(H) > s. This clearly is sufficient to prove Theorem 2.1, as we
can let g = f−1.

We start with a few helpful definitions. An assignment of lists to A (resp.
B) is called an A-set (resp. B-set). Given a B-set, we say that a ∈ A is
supersurrounded (inspired by “surrounded” from [1]) if every possible list of
s elements from [s5] appears in more than s3 lists on vertices in N(a) (the
neighborhood of a). Furthermore, we call the B-set bad if at least half of the
vertices in A are supersurrounded.

Theorem 2.1 follows directly from the following two lemmas.

Lemma 2.2. If δ(H) ≥ d = 36s5
(
s5

s

)
, then there is a bad B-set of lists.
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Lemma 2.3. There is an s0 such that for any bad B-set B, if s ≥ s0, there
is an assignment of colors to the edges of H and an A-set A such that H
does not have an acceptable coloring.

Proof of Theorem 2.1. Let g be the inverse of the function f(s) = 36s5
(
s5

s

)
.

We choose a bad B-set B according to Lemma 2.2. We choose an A-set A
and an edge coloring according to Lemma 2.3 such that there is no acceptable
coloring from the assigned lists.

Proof of Lemma 2.2. Uniformly at random assign lists to each of the vertices
in B.

Let a ∈ A be an arbitrary vertex and let Y be the number of lists which
do not appear more than s3 times in a’s neighborhood. We will show that
the probability that a is not supersurrounded, i.e. that Y ≥ 1, is less than
1/2.

To make this computation it will be helpful to consider a single list. Let
S ⊆ [s5] an arbitrary list of size s and let X be the number of neighbors of
a whose assigned list is S.

Since the lists are assigned uniformly at random, for each neighbor b of
a, the probability that b is assigned S is 1/

(
s5

s

)
. Therefore:

E(X) =
|N(a)|(

s5

s

) ≥ d(
s5

s

) = 36s5

The Chernoff bound yields the following.

Pr
(
X ≤ s3

)
≤ Pr

(
X ≤ E(X)

2

)
≤ Pr

(
|X − E(X)| > E(X)

2

)
< 2e−[E(X)/2]2/[3E(X)]

= 2e−E(X)/12 ≤ 2e−36s
5/12 = 2e−3s

5

Now we can bound the expected value of Y using the linearity of expectation.

E(Y ) =

(
s5

s

)
Pr
(
X ≤ s3

)
<

(
s5

s

)
2e−3s

5 ≤ 2es
5

e−3s
5

<
1

2
, for every s ≥ 1.

Markov’s Inequality yields that the probability that a is not supersurrounded
is:

Pr(Y ≥ 1) ≤ E(Y ) <
1

2
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Now let Z be the number of vertices in A which are supersurrounded.
By the linearity of expectation, E(Z) > 1

2
|A|. Thus the probability that

Z ≥ 1
2
|A| is positive, and therefore there is a bad B-set.

Proof of Lemma 2.3. Assume that B is a bad B-set.
Step 1: For each edge e = ab where a ∈ A and b ∈ B, assign to e a color
uniformly at random from L(b).

Consider any a ∈ A that is supersurrounded. Fix a coloring of B from
the lists of B.

We will say that a color c is available for a if there is no neighbor b of a
such that ab is labeled c and b is colored c. A coloring of B is extendable to
A if every vertex in A has at least one available color in its list. Note that G
is colorable if and only if at least one coloring of B is extendable to A.

First we note that all but at most s − 1 colors appear more than s2

times on vertices in the neighborhood of a. We can see this by assuming that
c1, . . . , cs all appear at most s2 times in N(a). So the list {c1, . . . , cs} can only
appear in N(a) at most s · s2 = s3 times. However, as a is supersurrounded,
the list appears more than s3 times and thus we have a contradiction.

Let c be a color that appears more than s2 times in N(a). The probability
that a color c is available for a is the probability that for every neighbor b of
a such that b is colored c, the edge e = ab is not labeled c. Note that since
we are choosing the color for e from b’s list of colors, the probability that e
is colored the same as b is 1/s. Therefore:

Pr(c is available) <

(
1− 1

s

)s2

< e−s.

Define Z to be the number of available colors beyond the s− 1 colors which
may appear s2 or fewer times,

E(Z) < s5e−s

Using Markov’s Inequality:

Pr(Z ≥ 1) ≤ E(Z) < s5e−s.

Now, including the s− 1 colors which may appear s2 or fewer times, we can
with high probability bound the number of available colors as follows.

Pr(# available colors for a ≥ s) < s5e−s. (1)
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Step 2: For each vertex a ∈ A, uniformly at random choose one of the
(
s5

s

)
possible lists.

Now, assuming that a is a vertex with fewer than s available colors, we
can bound the probability that the list chosen for a has an available color.
Since there are at most s − 1 colors available for a, the probability that a
random color c is available to a is at most (s− 1)/s5.

Pr(list chosen for a contains an available color) ≤ s · s− 1

s5
<

1

s3

Therefore, by (1), the probability that a has s or more available colors
or the list chosen for a has an available color is less than s5e−s + s−3. For
sufficiently large s, this is less than 1/s2.

Since B is a bad B-set, there are at least 1
2
|A| supersurrounded vertices.

Thus, remembering that |A| ≥ |B|, we can bound the probability that every
supersurrounded vertex has an available color in its list as follows.

Pr

(
every supersurrounded vertex

has an available color in its list

)
<

(
1

s2

) 1
2
|A|

= s−|A| ≤ s−|B|

Let W be the number of colorings of B which are extendable to A. Given
a B-set B, there are s|B| possible ways of choosing colors for the vertices in
B. Thus we can bound the expected value of W as follows.

E(W ) < s|B| · s−|B| = 1

Since the expected value is less than 1, there must be a choice of an A-set
and edge colorings such that no coloring of B can be extended to a coloring
of A.
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