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Abstract

We rigorously determine the exact freezing threshold, rfk , for k-colourings of a random graph. We

prove that for random graphs with density above rfk , almost every colouring is such that a linear number of
variables are frozen, meaning that their colours cannot be changed by a sequence of alterations whereby
we change the colours of o(n) vertices at a time, always obtaining another proper colouring. When
the density is below rfk , then almost every colouring has at most o(n) frozen variables. This confirms
hypotheses made using the non-rigorous cavity method.

It has been hypothesized that the freezing threshold is the cause of the “algorithmic barrier”, the
long observed phenomenon that once the edge-density of a random graph passes 1

2
k ln k(1 + ok(1)), no

algorithms are proven to find k-colourings, despite the fact that this density is only half the k-colourability
threshold.

We also show that rfk is the threshold of a strong form of reconstruction for k-colourings of the
Galton-Watson tree, and of the graphical model.

∗Dept of Computer Science, University of Toronto, molloy@cs.toronto.edu. Research supported by an NSERC Discovery
Grant.
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1 Introduction

Over the past decade, some groundbreaking hypotheses arising from statistical physics have driven much
of the progress on random constraint satisfaction problems (CSP’s). In particular, a common geometric
interpretation of the 1-Step Replica Symmetry Breaking hypothesis (1RSB) (see, eg., [40]) says that, at
a certain constraint density called the clustering threshold, w.h.p.1 the solution space shatters into an
exponential number of clusters of solutions, where each cluster is well-connected and any two clusters are
well-separated. Furthermore, at a higher density called the freezing threshold, there are a linear number of
frozen variables in almost every cluster; i.e. variables that are fixed throughout the cluster.

These hypotheses have impacted the study of random CSP’s in the theoretical computer science commu-
nity in (at least) two ways: First, an understanding of these hypotheses has led to substantial new results,
eg. [17, 38, 11, 55, 26, 48, 18, 19, 25, 1, 33]. Second, much work has gone towards rigorously proving aspects
of these hypotheses, eg. [2, 3, 48, 6, 28, 20, 58]. The main contribution of this paper is of the latter type.

In this paper, we rigorously prove hypotheses concerning frozen variables for k-COL; i.e. k-colourability
of Gn,M . This is one of the two most widely studied random CSP’s, the other being k-SAT. We establish the
exact location of the freezing threshold, for k sufficiently large. The asymptotic (in k) value of this threshold
follows from [17] (see Section 3 below). The precise value had previously been estimated non-rigorously using
the cavity method[57, 54]. We also determine the number of frozen variables, up to a o(n) term.

Our main tool is the planted model which Achlioptas and Coja-Oghlan[17] proved could be used to analyze
certain random CSP’s (see also [48]). Our approach should apply to determine the freezing threshold of most
random CSP’s for which we can use the planted model, eg. NAE-SAT and hypergraph 2-colourability. We
chose to begin with k-COL, because it is the most well-studied such CSP. Unfortunately, we cannot use
the planted model for random k-SAT and so we cannot determine the freezing threshold for that model.
However, we believe that we can use the technique from this paper to prove that, at higher densities, random
k-SAT exhibits freezing; this has been established in [10, 3] for a weaker notion of freezing (see Section 3
below).

To prove our theorem, we strip the random graph down to what we call a Kempe core, and prove that
almost all of the vertices in the Kempe core are frozen, while almost all of the vertices outside the Kempe
core are not frozen.

The Algorithmic Barrier: It has long been observed that most random CSP’s appear to be very
difficult to solve for a wide range of constraint densities. This was first observed for k-SAT in [16, 42].
For many CSP’s, there appears to be what [17] calls an “algorithmic barrier” substantially lower than the
density at which they are w.h.p. unsatisfiable. For example: Random instances of k-SAT are known to pass
from being w.h.p. satisfiable to w.h.p. unsatisfiable at constraint density 2k ln 2 +O(k)[9], but no algorithm

has been proven to w.h.p. find a satisfying solution for problems of density higher than O( 2k ln k
k )[17]. The

random graph Gn,M is known to pass from being w.h.p. k-colourable to w.h.p. not k-colourable at edge-
density k ln k +Ok(1)[8], but no algorithm has been proven to w.h.p. find a k-colouring of a random graph
with edge-density higher than 1

2k ln k(1 + ok(1))[5, 27]. On the other hand, greedy algorithms succeed,
(w.h.p. or with probability bounded away from zero) on CSP’s with densities below these points [17, 5, 27].
So below these (asymptotic in k) barriers, finding a solution tends to be relatively easy, and above the
barriers it appears to be much more difficult, perhaps even algorithmically intractible.

These barriers are asymptotically (in k) equal to the hypothesized location of the clustering threshold,
and this was given rigorous grounding in [17]. Thus, the clustering of the solution space appears to explain
the algorithmic barriers. So understanding this clustering is crucial to making further algorithmic progress,
or perhaps more importantly, to understanding why exactly random CSP’s are so difficult. Moreover, to gain
a thorough understanding of random CSP’s near the satisfiability threshold, or to precisely determine the
satisfiability threshold for, eg. random k-COL or k-SAT, it seems clear that we must understand clustering.

In [59, 57, 34] it is argued that the algorithmic difficulties are not brought on by the clustering threshold,
but rather by the freezing threshold. In other words, the clusters do not pose significant difficulties until they

1We say that a property holds with high probability (w.h.p.) if it holds with probability tending to one as the number of
variables tends to infinity.
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have frozen variables. For example, a simple algorithm is proven to work well on 3-COL[7] at densities above
the hypothesized clustering threshold (but below the hypothesized freezing theshold). While the clustering
threshold is hypothesized to be strictly less than the freezing threshold, their ratio tends to one as k grows.
In particular, the freezing threshold is also asymptotic to the observed algorithmic barrier.

The Cavity Method: We close this section by noting that the cavity method has been used to predict
many thresholds and other important results concerning random CSP’s, including satisfiability thresholds
(see eg. [40] for many examples). The quest to “rigorize” applications of the cavity method has been one of
the most important trends in the study of random structures over the past decade. Very roughly speaking,
the cavity method focuses on analyzing the distance-d neighbourhood of a randomly selected vertex for
arbitrarily large, but constant, d, making use of the fact that this neighbourhood is w.h.p. a tree. It then
hypothesizes the manner in which the remainder of the graph should affect the analysis; this is typically the
point which is very difficult to do rigorously as it concerns the long-range dependencies between vertices in
the graph. In this paper, we effectively show that as far as freezing is concerned, the effect of the long-range
dependencies is negligible; the freezing threshold is exactly what the tree-analysis predicts. It is hoped that
our techniques will lead to other results along this line.

2 Clusters and Frozen Variables

We study Gn,M , the random graph with n vertices and M edges, where each such graph is equally likely.
We are interested in the range M = rn where r is constant. This model was introduced by Erdős and Rényi
in two seminal papers[22, 23]. In these papers, they posed several natural questions about random graphs.
All but one have since been answered; the remaining question is: What is the chromatic number of Gn,M=rn

for r > 1
2? It is widely believed that for each k ≥ 3, there is a constant φk such that for r < φk, Gn,M=rn

is w.h.p. k-colourable while for r > φk, Gn,M=rn is w.h.p. not k-colourable. The determination of φk is one
of the most important open problems, and indeed the oldest open problem, in random graph theory. Thus
far, we do not even know whether φk exists. Achlioptas and Friedgut[4] proved something close - a function
φk(n). Achlioptas and Naor[8] proved that φk(n) = k ln k +Ok(ln k).

The 1-RSB analysis was applied to k-COL in eg. [51, 36, 54, 57]. Amongst other things, these pa-
pers non-rigorously determine a clustering threshold, rck ≈ 1

2k ln k, at which the associated Gibbs distribu-
tion on partitions into an exponential number of pure states. A common geometric interpretation of this
phenomenon[48, 54, 59, 35, 36] poses that the k-colourings group into clusters in the following sense:

Let Ωk(G) denote the set of k-colourings of a graph G. It is believed that at some density r ≈ 1
2k ln k, i.e.

roughly half the k-colourability threshold, w.h.p. all but a vanishing proportion of Ωk(G) can be partitioned
into exponentially many sets S1, ..., Sx such that one can move within Si by changing the colours of only o(n)
vertices at a time, but to move from Si to Si requires changing a linear number of vertices. More formally:

Definition 2.1. An `-path of k-colourings of a graph G is a sequence σ0, σ1, ..., σt of k-colourings of G,
where for each 0 ≤ i ≤ t − 1, σi and σi+1 differ on at most ` vertices. We say that two k-colourings σ, σ′

are `-connected if they can be joined by an `-path σ = σ0, ...., σt = σ′ for some t ≥ 0.

We emphasize that there is no restriction on the length of the path. So two `-connected colourings might
differ on arbitrarily many vertices, and we may require an arbitrarily long `-path to join them.

Definition 2.2. We define an (a, b)-cluster to be a subset of colourings S ⊆ Ωk(G), such that:

(a) no pair of colourings σ ∈ Si, σ′ /∈ Si is a-connected; and

(b) every pair of colourings σ, σ′ ∈ Si is b-connected.

Condition (a) says that clusters are well-separated. Condition (b) says that clusters are well-connected.
If a = b + 1 then (a, b)-clusters exist trivially in every graph. Remarkably, it appears that in Gn,M=cn

we have (a, b)-clusters when a is much greater than b: a = Θ(n), b = o(n).
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Hypothesis A: For r sufficiently large: There exists a constant α > 0 and a function β(n) = o(n) such that
w.h.p. all but a vanishing proportion of Ωk(Gn,M=rn) can be partitioned into an exponential (in n) number
of (αn, β(n))-clusters.

Hypothesis B: For r > rfk ≈
1
2k ln k: W.h.p. almost all2 clusters Si have a linear number of frozen vertices

v, with the property that for all σ, σ′ ∈ Si we have σ(v) = σ′(v). This does not happen for r < rfk
We note that further details are also hypothesized; eg. the clusters change substantially after the con-

densation threshold[35]. It is easy to see that the clusters must have exponential size (eg. from the fact that
w.h.p. there are a linear number of degree zero vertices).

We emphasize that the actual hypotheses studied in the physics literature are in terms of pure states
of certain Gibbs distributions on the colourings, and are not equivalent to Hypotheses A and B; these are
merely common interpretations of the original hypotheses in terms of the geometry of the solution space.
In fact, recent evidence indicates that, for some CSP’s, there are values of r greater than the clustering
threshold for which the clusters are not as well-separated as Hypothesis A posits. Nevertheless, Hypothesis
A appears to hold by the time r reaches rfk .

Our main theorem proves Hypothesis B, and determines the freezing threshold rfk exactly. However,
Hypothesis A is not known to hold for k-COL, nor for any other random CSP model other than k-XOR-
SAT. So we restate Hypothesis B in a manner that does not involve clusters.

Definition 2.3. Given a k-colouring σ of a graph G, we say that a vertex v is `-frozen with respect to σ if
for every `-path σ = σ0, σ1, ..., σt of k-colourings of G, we have σt(v) = σ(v).

In other words, it is not possible to change the colour of v by changing at most ` vertices at a time. It
is important to note:
Observation: If Hypothesis A holds, then for every β(n) < ` ≤ αn, the frozen vertices in the cluster
containing σ are exactly the vertices that are `-frozen with respect to σ.

In particular, every vertex that is αn-frozen according to Definition 2.3, is also frozen in the sense of
Hypothesis B, assuming Hypothesis A.

We define

rfk = min
x>0

(k − 1)x

2(1− e−x)k−1
.

For any r > rfk we let xk(r) denote the largest positive solution to r = (k−1)x
2(1−e−x)k−1 .

Our main theorem is that, for k sufficiently large, rfk is the precise threshold for most colourings to have
a linear number of `-frozen vertices, where ` is linear in n:

Theorem 2.4. There exists a constant integer k0 such that for all k ≥ k0, and for any ω(n) tending to ∞
arbitrarily slowly with n: Let σ be a uniformly random k-colouring of Gn,M=rn.

(a) For any r > rfk , there exists a constant 0 < α < 1 for which:

(i) w.h.p. there are (k−1)xk(r)
2r n+ o(n) vertices that are αn-frozen with respect to σ.

(ii) w.h.p. there are (1− (k−1)xk(r)
2r )n+ o(n) vertices that are not ω(n)-frozen with respect to σ.

(b) For any r < rfk , w.h.p. there are at most o(n) vertices that are ω(n)-frozen with respect to σ.

In other words: for r > rfk , a linear number of variables are αn-frozen, while for r < rfk , all but at most
o(n) variables are not even ω(n)-frozen for any ω(n) growing arbitarily slowly with n. Furthermore, for

r > rfk we specify the specific number of αn-frozen vertices, up to an additive o(n) term. All but at most
o(n) of the other vertices are not even ω(n)-frozen.

In fact, we prove something stronger. In Section 5, we define a subset of the vertices which we call the
Kempe core. rfk is the threshold for the appearance of a Kempe core in the planted model and, for k ≥ k0,

2Here, “almost all” means for all but a vanishing proportion of the clusters when they are weighted by their size.
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also in the uniform model. We will prove that w.h.p. all but o(n) vertices of the Kempe core are frozen and
at most o(n) vertices outside of the Kempe core are frozen. Thus, given a uniform k-colouring σ of Gn,M=rn,
we w.h.p. specify precisely which vertices are frozen w.r.t. σ up to an error of o(n) vertices.

We do not know the value of k0; it comes from Theorem 4.3 below, and its value is estimated in [2]
to perhaps be roughly 20. Our theorem likely holds for k ≥ 9 (see below). One would like to strengthen
Theorem 2.4 by (i) replacing k ≥ k0 with k ≥ 9, and (ii) replacing o(n) with zero in part (b). In both cases,
the bottleneck is the limitations of Theorem 4.3. Both these improvements are likely to be true, although
to replace o(n) by zero in (b), we would have to name a specific ω(n); ω(n) = O(log n) might suffice.

Hypothesized values for rfk are provided in [57, 54] for 3 ≤ k ≤ 10, using the cavity method to determine

an expression for rfk and using population dynamics to estimate the value of that expression. They first
determine an expression for the freezing threshold on the “tree factor graph”, which is hypothesized to be
equal to the freezing threshold on Gn,M so long as it is below the condensation threshold. For 3 ≤ k ≤ 8
the freezing threshold appears to be greater than the condensation threshold, and so is hypothesized to be
less than the threshold arising from the tree factor graph. Their expression for the threshold on the tree
factor graph is equivalent to ours3, but is more unwieldy. So for k ≥ 9 our rfk agrees with the hypothesized

value of the freezing threshold; eg. for k = 9, 10 we have rfk = 17.829..., 20.753...4 Thus rfk is likely to be the
precise freezing threshold for k ≥ 9, but it is only proven to be correct for k ≥ k0. It is likely to be true that
Theorem 4.3 can be applied at all densities below the hypothesized condensation threshold, and so would
imply that rfk is indeed the freezing threshold for k ≥ 9; but this is not proven.

Asymptotically, we have:

rfk =
1

2
k(ln k + ln ln k + 1 + o(1)), (1)

which agrees with the asymptotics provided in (44) of [57] and (78) of [54].

To be clear: We do not prove that clusters exist above rfk , and so we do not know that vertices are
frozen in the sense of Hypothesis B, only that they are frozen as in Definition 2.3. But our results imply
that for any r ≥ rfk : if Hypothesis A holds then Hypothesis B holds.

2.1 Reconstruction

In the context of graph colourings, the reconstruction problem is as follows: Consider a tree T of height h,
eg. a D-regular tree or a Galton-Watson tree, and consider a uniformly random k-colouring of T . Expose
the colours of the leaves at distance h from the root, and consider the conditional distribution that they
impose on the colour of the root. We say that the colouring is reconstructable if, with probability bounded
away from zero as h grows, the distribution of the colour of the root is bounded away from the uniform
distribution. There has been extensive focus on the reconstruction threshold, the average degree at which the
colouring is w.h.p. reconstructable (see eg. [55, 26, 50, 48]). The reconstruction threshold for k-colourings
of d-regular trees is bounded between k(ln k+ ln ln k+ 1− ln 2 + o(1))[50] and k(ln k+ ln ln k+ 1 + o(1))[55].

In the graphical model, introduced in [26], one chooses a Galton-Watson tree T , and the colours of the
leaves as follows: Choose a random (G, σ) from Gn,p=d/n, pick a random vertex v, and expose the distance
h neighbourhood of v; call that tree T . Now fix the colour σ(u) for each leaf u at distance h from the root,
and consider a uniformly random k-colouring of T conditional on each leaf u having colour σ(u). [48] applies
a theorem from [26] to show that, for k-COL and some other CSP models, the reconstruction threshold for
the graphical model is equal to that for the Galton-Watson tree model.

The hypothesized location of the clustering threshold (see eg. [35]) is derived from a non-rigorous
determination[39] of the reconstruction threshold for Galton-Watson trees, after halving since the average
degree of Gn,M=rn is 2c.

Here, we consider a stronger form of reconstruction. [54] defines the naive reconstruction threshold to
be the maximum d such that: Let T be a Galton-Watson random tree of height h where each vertex has d

3We are grateful to an anonymous referee for pointing out this substitution.
4[57, 54] report the threshold in terms of the average degree, rather than edge-density and so their values are exactly twice

ours. Also note that what we call the freezing threshold is called the rigidity threshold in [57].
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expected children, and take a uniformly random k-colouring of T . Uncolour all vertices except for the leaves
at distance h from the root. The probability that the remaining colours force exactly one choice for the
colour of the root tends to zero as h → ∞. As with reconstruction, we can also consider choosing the tree
and colours as in the graphical model.

The above upper bound on the reconstruction threshold was obtained by computing an upper bound
on the naive reconstruction threshold. Note that, after doubling, that bound is asymptotic to the freezing
threshold of Gn,M - see (1) below. [54] hypothesizes that the naive reconstruction threshold is equal to the
freezing threshold (after doubling), for a variety of CSP’s. [48] also remarks that it is natural to conjecture
these thresholds to be equal. Our proof of Theorem 2.4 easily implies that they are indeed equal for k-
colourability, with k sufficiently high:

Theorem 2.5. In both the Galton-Watson tree model for k ≥ 3, and the graphical model for k ≥ k0, the
naive reconstruction threshold is at average degree d = 2rfk .

In other words, for a uniform colouring of Gn,M=rn: The probability that the colour of v is forced by
the colours of the vertices of distance h from v stays bounded away from zero as h→∞, iff the probability
that v is Θ(n)-frozen is bounded away from zero. Intuitively, this should be expected. We give the proof in
Section 7.

2.2 Minimal Rearrangements

[49, 54] describe a connection between freezing and minimal rearrangements. Given a vertex v in a colouring
σ, let σ′ be a colouring where σ(v) 6= σ′(v) such that the number of vertices on which σ, σ′ differ is minimum;
the set of vertices on which these colourings differ is called a minimal rearrangement for v. [54] shows non-
rigorously that w.h.p. the average over all vertices v of the size of a minimal rearrangement jumps from O(1)
to Θ(n) at the freezing threshold. A simple corollary of our work shows:

Corollary 2.6. For k ≥ k0 (from Theorem 2.4), let σ be a uniformly random k-colouring of Gn,M=rn.

(a) For r < rfk , w.h.p. the average size of a minimal rearrangement is o(n).

(b) For r > rfk , w.h.p. the average size of a minimal rearrangement is Θ(n).

We give the short proof in Section 7.

3 Related work

1-RSB analysis for k-colourings of Gn,M was first done in [51] (see also [36]). The freezing threshold was
studied in great depth in [57, 54, 59]. These studies were non-rigorous, but mathematically sophisticated.
[57] was the first paper to argue that freezing may be the cause of the algorithmic barrier.

Achlioptas and Ricci-Tersenghi[10] were the first to rigorously prove any form of freezing in a random
CSP. They studied random k-SAT and showed that for k ≥ 8, for a wide range of edge-densities below the
satisfiability threshold and for every satisfying assignment σ, the vast majority of variables are 1-frozen w.r.t
σ. Equivalently, such vertices are frozen in the connected components of the graph whose vertices are the
satisfying assignments, and where a pair of assignments is adjacent if they have Hamming distance 1. These
components are 1-connected by definition, but they are not w.h.p. Θ(n)-separated and hence do not satisfy
Hypothesis A. However, it is plausible that they are in some sense close to being the clusters of Hypothesis
A. [10] proves the existence of the frozen variables by stripping down to an appropriate core, which inspired
us to do the same here. One difference between their approach and ours is that the definition of their core
implies that its vertices are 1-frozen, whereas much of the work in this paper is devoted to proving that the
vertices of our core are Θ(n)-frozen.

[2] proves the existence of what they call rigid variables in various random CSP’s, including k-COL. The
definition of rigid is equivalent to taking ` = Θ(n) in Definition 2.3, but requiring t = 1. That is, a vertex v
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is rigid w.r.t. a k-colouring σ if every σ′ with σ′(v) 6= σ(v) must differ from σ on Θ(n) vertices. Achlioptas
and Coja-Oghlan[2] prove that for r < ( 1

2 − ε)k ln k w.h.p. there are no rigid vertices (and hence no frozen
vertices) w.r.t. almost all colourings of Gn,M=rn, while for r > ( 1

2 + ε)k ln k w.h.p. there are a linear number
of such rigid vertices. A simple argument (see the remark following Corollary 5.5 below) extends their result
to show the same for frozen vertices. So [2] provides the asymptotic, in k, location of the freezing threhold.
It also provides the asymptotic location of the freezing threshold for NAE-SAT and hypergraph 2-colouring.

[3, 2, 48] establish the existence of what they call cluster-regions for various CSP’s; these are proven to
be w.h.p. Θ(n)-separated but are not shown to be w.h.p. well-connected. For k-COL, [2] proves that for
r > ( 1

2 + ε)k ln k the solution space w.h.p. shatters into an exponential number of Θ(n)-separated cluster-
regions, each containing an exponential number of colourings. While these cluster-regions do not satisfy
Hypothesis A, the well-connected property of clusters does not seem to be crucial to the difficulties that they
pose for algorithms. So [2] was a very big step towards explaining why 1

2k ln k appears to be, asymptotically,
an algorithmic barrier.

The clusters of k-XOR-SAT are very well-understood, independently by [6, 28] (see also [21]). We know
the clustering threshold, which in this case is equal to the freezing threshold, and have a very good description
of the clusters and the frozen variables. The picture is much simpler here; for example, the same variables are
frozen in every cluster. The simple linear algebraic characterization of the solution space was very helpful.

4 The planted model

Definition 4.1. The uniform model Un,M is a random pair (G, σ) where G is taken from the Gn,M=rn

model and σ is a uniformly random k-colouring of G.

Until a few years ago, the biggest hurdle to theorems such as Theorem 2.4 has been that there is no
representation of the uniform model that lends itself to analysis. This hurdle, along with the corresponding
hurdles for random k-SAT, and a few other random CSP’s, was overcome by Achlioptas and Coja-Oghlan[2]
who proved that, under certain conditions, one can work instead with the much simpler planted model. We
will use the Gn,p version:

Definition 4.2. The planted model Pn,p is a random pair (G, σ) chosen as follows: Take a uniformly
random partition σ of {1, ..., n} into k parts A1, ..., Ak. Each pair of vertices in two different parts is joined
with an edge with probability p, where the edge-choices are independent.

The following is a derivation of a key tool from [2]. See Appendix 9 for more detail.

Theorem 4.3. [2] For every k at least a particular constant k0 and every r < 0.9k ln k, there is a function
f(n) = o(n) such that: Let E be any property of pairs (G, σ) where σ is a k-colouring of G. Set c = 2k

k−1r. If

Pr(Pn,p=c/n has E) > 1− e−f(n),

then
Pr(Un,M=rn has E) > 1− o(1).

We define

ck = min
y>0

ky

(1− e−y)k−1
.

For any c > ck we let yk(c) denote the largest solution to c = ky
(1−e−y)k−1 . Note that ck = 2k

k−1rk. We define:

λk(c) = yk(c)/c.

We say that v is an `-frozen variable of (G, σ) if v is `-frozen with respect to σ. So, roughly speaking,
our goal is to prove that ck is the threshold for Pn,p=c/n to have a linear number of αn-frozen variables, and

that the failure probability is 1− e−f(n) where f(n) comes from Theorem 4.3.
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5 Kempe cores

Given a k-colouring σ of a graph G, with colour classes A1, ..., Ak, a Kempe chain is a component of the
subgraph induced by two colour classes. Suppose C is a non-empty Kempe chain on colour classes Ai, Aj .
Then exchanging the colours i, j on the vertices of C will result in a new k-colouring of G. Note that a single
vertex of colour i will constitute a Kempe chain if it has no neighbours of colour j, for some j 6= i. Kempe
chains were introduced by Kempe[31] in his work on the Four Colour Problem.

It is clear that a vertex that is in a Kempe chain of size at most ` is not `-frozen. This inspires us to
remove all “small” Kempe chains from our graph, in order to look for frozen vertices. A bit of thought will
make it clear that w.h.p. most vertices in Kempe chains of size at most ` in the remaining graph are not
`-frozen either. This follows from branching properties of the random graph: if C is a small Kempe chain in
the remaining graph, w.h.p. the small Kempe chains that were removed from the original graph each have
at most one edge to C. Furthermore none of those chains adjacent to C are adjacent to each other. Thus we
can flip the vertices on any subset of those chains without them interfering with each other, thus enabling
C to be flipped. This inspires us to remove small Kempe chains iteratively.

Of course, we need to specify what we mean by “small”. It turns out that w.h.p. there will be no Kempe
chains of size between O(log n) and Θ(n); i.e. every Kempe chain will either be small or giant. But to be
specific, and to strenghten “w.h.p.” enough to apply Theorem 4.3, we will take small to mean: of size at
most g(n) for some g(n) = o(n) to be specified later. Thus, we apply the following procedure:

Kempe-Strip
Input: a graph G and a k-colouring σ = A1, ..., Ak of G.
While there are any Kempe chains of size at most g(n)

Remove the vertices of one such Kempe chain from G.

The (possibly empty) Kempe core is what remains. Note that, as with most core stripping procedures,
the output does not depend on the order in which we choose to remove Kempe chains. So the Kempe core
is well-defined.

By definition, every vertex in the Kempe core cannot have its colour changed by changing the vertices of
a small Kempe chain. We prove the stronger property that almost every vertex in the Kempe core cannot
have its colour changed by changing a small subset of vertices which may involve more than two colours.

To gain some intuition as to why this could be the case, note first that almost every very small subgraph,
i.e. of size O(1), is a tree. A bit of thought will show that if we can change the colours of a tree to obtain
another colouring, then that tree contains a subtree which is a Kempe chain. Thus, (most) changes of O(1)
vertices can be simulated by a sequence of Kempe-chain switches.

Of course, we still need to deal with the possibility of changing a non-constant but sublinear sized set of
vertices which involve more than two colours. That is the source of much of the difficulty in this paper.

The following lemma is proven in Appendix 13. (See also Lemma 11.3(a)).

Lemma 5.1. For k ≥ 3, and any f(n) = o(n):

(a) If c < ck then with probability at least 1− e−f(n), the Kempe core of Pn,p=c/n has size o(n).

(b) If c > ck then with probability at least 1− e−f(n), the Kempe core of Pn,p=c/n has size kλk(c)n+ o(n).

Remark: In fact, for c < ck, w.h.p. the Kempe core of Pn,p=c/n has size 0. But this statement fails
with probability 1/poly(n).

The Kempe core can be viewed as a variation of the well-studied k-core[52], which is obtained by iteratively
removing vertices of degree less than k. Note that for the Kempe core, we will remove all vertices of degree
less than k−1, as they will be Kempe chains of size one. In addition, we remove many other small subgraphs.
At first, we were quite intimidated at the prospect of extending the (k − 1)-core analysis to the stripping of
these more general subgraphs. But we noticed that if viewed from a different angle, the Kempe core has a
very natural description:
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Observation 5.2. Kempe-Strip is equivalent to iteratively removing all small components from the bipartite
random graph induced by each pair of parts Aa, Ab.

The reason for this is that the Kempe-chains are precisely those small components. So we can implement
Kempe-Strip by an iterative process where each iteration proceeds as follows: For each 1 ≤ a, b ≤ k we
remove all vertices outside of the giant component in the bipartite subgraph induced by what remains of
Aa, Ab. This is very fortuitous, and it enabled our analysis of the Kempe core.

In [44], we defined a very natural, and much simpler problem of this nature, and analyzed its core. Our
primary motivation was to develop a technique to apply to the analysis of the Kempe core. In Appendix 13,
we sketch how to adapt that proof to this setting.

Thus the Kempe core has the property that the subgraph induced by each pair of parts is connected. In
[43], Achlioptas and this author asked whether the k-colourability threshold was the same as the threshold
for a subgraph with that property to appear. The results of this paper answer that question negatively, for
large k.

Having established the Kempe core threshold, we next prove that it has the properties that we require
for our main theorem. In Appendix 14, we show:

Lemma 5.3. For k ≥ 3, c 6= ck, any f(n) = o(n) and any ε > 0: There exist constants T,Z such that
with probability at least 1 − e−f(n), all but εn of the vertices outside of the (possibly empty) Kempe core of
Pn,p=c/n are either (i) not T -frozen, or (ii) within distance Z of a cycle with length less than Z.

The proof argues that for all but εn of the vertices v removed during the stripping process, if v is not
as in (ii) then the sequence of Kempe-chains that led to the removal of v form a tree-like structure. This
structure allows the Kempe-chains to be switched without interfering with each other, thus allowing v to be
changed. Furthermore, each of those Kempe-chains has size at most T and so v is not T -frozen.

It is straightforward to show that w.h.p. Gn,M has o(n) vertices as in Lemma 5.3(ii). So by allowing ε
to be arbitrarily small, we obtain Theorem 2.4 parts (a.ii) and (b). It only remains to prove part (a.i); i.e to
prove that almost all of the Kempe core is αn-frozen.

Recall from Section 3 that a vertex is said to be rigid if to change its colour in one step, we need to
change the colours of Θ(n) other vertices. Conceptually, it seems much easier to show that a vertex is rigid
than to show that it is Θ(n)-frozen. Proving rigidity requires understanding the structure of the symmetric
difference between two colourings. Proving frozeness requires understanding sequences of colourings, which
can become very complicated.

One of the properties which made this proof feasible is that (most of) the set of frozen variables is, in
fact, internally rigid, as described in the next lemma, which is the key lemma of this paper and is proven in
Appendix 12.

Lemma 5.4. For k ≥ 3, c > ck, and any f(n) = o(n), there exists constant α = α(c, k) > 0 such that with
probability at least 1− e−f(n), the Kempe core K of Pn,p=c/n has the following property:
For all but o(n) vertices v ∈ K, any k-colouring of K which differs from σ on v must differ from σ on at
least 2αn vertices of K.

The o(n) term depends on f(n). This internal rigidity is enough to imply that almost all vertices of the
Kempe core are frozen:

Corollary 5.5. For k ≥ 3, c > ck, and any f(n) = o(n), there exists constant α = α(c, k) > 0 such that
with probability at least 1− e−f(n): all but o(n) vertices of the Kempe core K of Pn,p=c/n are αn-frozen.

Proof Lemma 5.4 says we have Θ ⊆ K with size |K| − o(n) such that every v ∈ Θ has the property
that any k-colouring of K which differs from σ on v must differ from σ on at least 2αn vertices of K, and
thus on at least 2αn−o(n) > αn vertices of Θ. The proof now follows by taking any sequence of k-colourings
of G, σ = σ0, σ1, ..., σt, and considering the first step at which a vertex of Θ changes. �

See Appendix 10 for more details.
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Remark: [2] proves that for r > ( 1
2 + ε)k ln k, w.h.p. the vertices in a certain core are internally rigid

with respect to that core. So the argument for Corollary 5.5 also implies that their rigid variables are frozen.
Recall that we have planted a k-colouring σ = A1, ..., Ak. To prove Lemma 5.4, we need to focus on sets

of vertices that can be changed to obtain a new colouring:

Definition 5.6. A ∆-set is the symmetric difference of σ and some other k-colouring of the Kempe core,
K. Specifically, given such a colouring σ′, the set of vertices u ∈ K with σ(u) 6= σ′(u) is a ∆-set, which we
sometimes denote by σ∆σ′.

We would like to show that there are no ∆-sets of size smaller than Θ(n). Unfortunately, this is not true
- we can have small ∆-sets which induce subgraphs with exactly one cycle. We call these cyclic ∆-sets, and
they are described in Appendix 12. In expectation, the total number of vertices on cyclic ∆-sets is O(1).

By examining the graph theoretic structure of a ∆-set, we can prove that w.h.p. all other ∆-sets have
size Θ(n). At first glance, this would appear to prove our key lemma. However, this property only holds with
probability 1 − 1

poly(n) which is not enough to apply Theorem 4.3 and transfer the result from the planted

model to the uniform model. So instead we have to prove:
Let D be the union of all ∆-sets of size less than 2αn. With probability at least 1− e−f(n), |D| = o(n).
To just prove that all non-cyclic ∆-sets have size at least 2αn, we can use an approach that has been used

in [47, 15, 6] to prove similar results: We would like to prove that the 2-core of every non-cyclic ∆-set has
high edge-density. If we could do so, then a very fast and common argument based on subgraph densities
in Gn,M proves that every such subgraph must have linear size. It would follow that the 2-core of the ∆-set
must have linear size, and hence so must the ∆-set.

Unfortunately, that is not the case. ∆-sets that are not sufficiently dense can arise from long paths of
degree 2 vertices. The proliferation of such paths is determined by two branching factors. We bound these
branching factors by analyzing the Kempe core, and show that they are both less than one. This allows us
to apply a first moment argument to show that w.h.p. the 2-core of a non-cyclic ∆-set must have size Θ(n).

In order to adapt this approach to bound |D|, we must complicate things in two ways. (1) we need to
extend our analysis to the unions of ∆-sets. (2) we cannot restrict our attention to the 2-cores of the ∆-sets.
The second complication turned out to be the most difficult.

The details of this argument can be found in Appendix 12.

6 2-paths in ∆-sets

We let Ki ⊂ Ai be the set of vertices from part Ai that are in the Kempe core. We let Ki,j denote the
bipartite subgraph of the Kempe core induced by Ki,Kj . Recall that each Ki,j is connected.

As described above, a key part of our analysis is to bound the proliferation of long paths of degree 2
vertices in the 2-core of a ∆-set. We prove that such paths are of two types:

Definition 6.1. A 2-path in a ∆-set σ∆σ′ is a path u0, ..., ux in the 2-core of σ∆σ′ such that

(a) x ≥ 1;

(b) each ui has degree 2 in the 2-core of σ∆σ′;

(c) either
Type A: every ui is in the 2-core of Kσ(ui),σ′(ui); or
Type B: every ui is not in the 2-core of Kσ(ui),σ′(ui) and, for 0 ≤ i ≤ x − 1, ui+1 is its unique
neighbour on the path to the 2-core of Kσ(ui),σ′(ui).

A key basic property of ∆-sets is:

Proposition 6.2. Let u be any vertex in a ∆-set σ∆σ′. Then every neighbour of u in Kσ(u),σ′(u) is also in
σ∆σ′.
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Proof Every neighbour w of u in Kσ(u),σ′(u) has σ(w) = σ′(u). Since σ′ is a proper colouring, we
cannot have σ′(w) = σ′(u). Therefore σ′(w) 6= σ(w). �

Thus, each vertex u ∈ σ∆σ′ yields at least one other neighbour w ∈ σ∆σ′ with σ(w) = σ′(u). Type B
2-paths are formed when a sequence of vertices each yields either one or two such neighbours in the 2-core
of σ∆σ′. These paths are the most delicate to deal with.

Given a vertex u that is not in the 2-core of Kσ(u),σ′(u), we wish to bound the expected number of
neighbours w of u which could act as the next vertex in a Type B 2-path. If we have exposed u, σ(u), σ′(u)
then this determines w as it must be the unique neighbour of u on the path from u to the 2-core of Kσ(u),σ′(u).
We have also determined σ(w) = σ′(u). We have k− 1 choices for σ′(w). We want to bound the probability
that w is not in the 2-core of Kσ(w),σ′(w). By analysing the Kempe core, we show that the proportion of

non-2-core vertices in each Ki,j is strictly less than 1
k−1 . With some work, this implies that the probability

w is not in the 2-core of Kσ(w),σ′(w) is less than 1
k−1 . Multiplying by the k − 1 choices for σ′(w) yields a

branching factor of less than 1, as required. This is delicate, because w cannot always be treated as just a
uniform member of Kσ(w), and the Kempe core is tricky to deal with.

For Type A paths, we prove that there is a pair of colours a, b such that every ui satisfies {σ(ui), σ
′(ui)} =

{a, b}. It follows that the Type A 2-path is a path of degree 2 vertices in the 2-core of Ka,b. We prove that the
2-core of Ka,b is uniform with respect to its degree sequence, and so we can expose it using the configuration
model[12]. The branching factor then is twice the number of degree 2 vertices, divided by the total degree,
which we show to be less than 1. This portion of the analysis is very much like the corresponding part of [6].

Further details, including how to use this to prove Lemma 5.4, can be found in the appendix.

7 Naive Reconstruction

Here we note how the results of this paper easily imply Theorem 2.5 and Corollary 2.6.
Proof of Theorem 2.5: The naive reconstruction problem on the Galton-Watson tree model (see section

2.1) is easily seen to be equivalent to: Choose a random (G, σ) from Pn,p=c/n, pick a random vertex v, and
expose the distance h neighbourhood of v; call that tree T . Now fix the colour σ(u) for each leaf u of T at
distance h from v. Does the probability that the colours on these leaves determine the colour of v tend to
zero as h→∞? Note that the average degree in this tree is k−1

k c.
If c > ck, then it is easy to see that the answer is No. With probability bounded away from zero, v

will be frozen w.r.t. σ. Thus, changing the colour of v requires changing Θ(n) other vertices. We can
assume that those vertices induce a connected subgraph, as otherwise we could change one component at a
time. W.h.p., |T | = o(n), and so least one of those vertices must be of distance h from v. Therefore, with
probability bounded away from zero, the colours of the leaves determine the colour of v. It follows that the
naive reconstruction threshold for k-colourings of Galton-Watson trees is at most k−1

k ck = 2rfk .
For c < ck, the proof of Lemma 5.3 implies that for every ε > 0, there exist I, s such that with probability

at least 1− ε, v can be removed by the deletion of a sequence of at most I Kempe-trees, each of size at most
s. (To be specific, each set of at most s vertices will form a Kempe-tree in what remains at the time that
they are deleted.) Thus, the colour of v can be changed by changing only the colours of those Kempe-trees.
We can assume that the union of these Kempe-trees is connected, as otherwise the deletion of some would
have no effect on whether others may be deleted. By taking h > Is, none of those Kempe-trees contain any
vertices at distance at least h from v. Thus, the colour of v can be changed without changing the colours
of any of the leaves in T at distance h from v. Therefore, for every ε > 0, the probability that those leaves
force the colour of v is less than ε for sufficiently large h. Therefore, the naive reconstruction threshold for
k-colourings of Galton-Watson trees is at most k−1

k ck = 2rfk .
In the graphical model, T is chosen as above, except that we use the uniform model, rather than the

planted model. So applying Theorem 4.3 to transfer the results of the preceding paragraphs to Un,M , we

again prove that the naive reconstruction threshold is 2rfk , although this time we require k ≥ k0. �

Proof of Corollary 2.6: For r > rfk , Theorem 2.4 implies that w.h.p. Θ(n) vertices are αn-frozen, for
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some α > 0, and hence their minimal size rearrangements have size at least αn. This proves part (b).

As in the previous proof, for r < rfk , for any ε > 0 there exists I, s = O(1) so that for all but εn choices of
v, the colour of v can be changed by changing at most Is other vertices; i.e. the minimal size rearrangement
for v has size O(1). Taking ε arbitrarily small yields part (a). �

8 Future Work

As mentioned above, we expect that we can apply these techniques to determine the freezing threshold
for other random CSP models for which one can use the planted model, eg. NAE-SAT and hypergraph
2-colouring. We also expect that we can prove that all but o(n) of the k-SAT variables shown to be 1-frozen
in [10] are in fact Θ(n)-frozen. This is ongoing work with R. Restrepo.
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Appendix

9 The planted model

Definition 9.1. The uniform model Un,M is a random pair (G, σ) where G is taken from the Gn,M=rn

model and σ is a uniformly random k-colouring of G.

Until a few years ago, the biggest hurdle to theorems such as Theorem 2.4 has been that there is no
representation of the uniform model that lends itself to analysis. This hurdle, along with the corresponding
hurdles for random k-SAT, and a few other random CSP’s, was overcome by Achlioptas and Coja-Oghlan[2]
who proved that, under certain conditions, one can work instead with the much simpler planted model:

Definition 9.2. The planted model Pn,M is a random pair (G, σ) chosen as follows: Take a uniformly
random partition σ of {1, ..., n} into k parts A1, ..., Ak. Then choose M random edges, uniformly and
without replacement, from all edges whose endpoints are in two different parts.

In other words, Pn,M is chosen by first choosing a uniformly random k-colouring σ of the vertices {1, ..., n},
and then choosing a graph that is uniform amongst all graphs with that vertex set and with M edges, for
which σ is a k-colouring. This clearly has a different distribution than what one obtains by carrying those
steps out in the other order; i.e. first choosing Gn,M and then taking a uniformly random k-colouring of G.
But remarkably, [2] proves that one can sometimes transfer w.h.p. properties from the former model to the
latter, so long as the failure probability of those properties is nearly exponentially small. The following is a
rephrasing of Theorem 6 from [2]; the original statement is somewhat more general.

Theorem 9.3. [2] For every k at least a particular constant k0 and every r < 1.9k ln k, there is a function
f(n) = o(n) such that: Let E be any property of pairs (G, σ) where σ is a k-colouring of G. If

Pr(Pn,M=rn has E) > 1− e−f(n),

then
Pr(Un,M=rn has E) > 1− o(1).

It will be more convenient to work in the Gn,p version of the planted model, which we define as follows:

Definition 9.4. The planted model Pn,p is a random pair (G, σ) chosen as follows: Take a uniformly
random partition σ of {1, ..., n} into k parts A1, ..., Ak. Each pair of vertices in two different parts is joined
with an edge with probability p, where the edge-choices are independent.

The following lemma permits us to work in Pn,p rather than Pn,M and still be able to apply Theorem
9.3.

Lemma 9.5. Consider any f(n) >> n−1/2, any property E of pairs (σ,G) where σ is a k-colouring of G,
and any constant r. Setting c = 2k

k−1r, we have:

If Pr(Pn,p=c/n has E) > 1− e−2f(n) then Pr(Pn,M=rn has E) > 1− e−f(n).

Proof Let E be the event that Pn,p=c/n has exactly rn edges. Standard and easily derived facts

about the binomial distribution imply Pr(E) = Θ(n−1/2). Now,

Pr(Pn,M=rn has E) = Pr(Pn,p=c/n has E|E) ≤
Pr(Pn,p=c/n has E)

Pr(E)
< O(e−2f(n)/n−1/2) < e−f(n).

�

We define

ck = min
y>0

ky

(1− e−y)k−1
.
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For any c > ck we let yk(c) denote the largest solution to c = ky
(1−e−y)k−1 . Note that ck = 2k

k−1rk. We define:

λk(c) = yk(c)/c.

We say that v is an `-frozen variable of (G, σ) if v is `-frozen with respect to σ. So, roughly speaking,
our goal is to prove that ck is the threshold for Pn,p=c/n to have a linear number of αn-frozen variables, and

that the failure probability is 1− e−f(n) where f(n) comes from Theorem 9.3.

10 Kempe cores

Given a k-colouring σ of a graph G, with colour classes A1, ..., Ak, a Kempe chain is a component of the
subgraph induced by two colour classes. Suppose C is a non-empty Kempe chain on colour classes Ai, Aj .
Then exchanging the colours i, j on the vertices of C will result in a new k-colouring of G. Note that a single
vertex of colour i will constitute a Kempe chain if it has no neighbours of colour j, for some j 6= i. Kempe
chains were introduced by Kempe[31] in his work on the Four Colour Problem.

It is clear that a vertex that is in a Kempe chain of size at most ` is not `-frozen. This inspires us to
remove all “small” Kempe chains from our graph, in order to look for frozen vertices. A bit of thought will
make it clear that w.h.p. most vertices in Kempe chains of size at most ` in the remaining graph are not
`-frozen either. This follows from branching properties of the random graph: if C is a small Kempe chain in
the remaining graph, w.h.p. the small Kempe chains that were removed from the original graph each have
at most one edge to C. Furthermore none of those chains adjacent to C are adjacent to each other. Thus we
can flip the vertices on some subset of those chains without them interfering with each other, thus enabling
C to be flipped. This inspires us to remove small Kempe chains iteratively.

Of course, we need to specify what we mean by “small”. It turns out that w.h.p. there will be no Kempe
chains of size between O(log n) and Θ(n); i.e. every Kempe chain will either be small or giant. But to be
specific, and to strenghten “w.h.p.” enough to apply Theorem 9.3, we will take small to mean: of size at
most g(n) for some g(n) = o(n) to be specified later. Thus, we apply the following procedure:

Kempe-Strip
Input: a graph G and a k-colouring σ = A1, ..., Ak of G.
While there are any Kempe chains of size at most g(n)

Remove the vertices of one such Kempe chain from G.

The (possibly empty) Kempe core is what remains. Note that, as with most core stripping procedures,
the output does not depend on the order in which we choose to remove Kempe chains. So the Kempe core
is well-defined.

It is not surprising that any vertex in the Kempe core cannot have its colour changed by changing the
vertices of a small Kempe chain. What is surprising is that, almost every vertex in the Kempe core cannot
have its colour changed by changing a small subset of vertices which involve more than two colours.

To gain some intuition as to why this may be the case, note first that every very small subgraph, i.e. of
size O(1), is a tree. Then note that if we can change the colours of a tree to obtain another colouring, then
that tree contains a subtree which is a Kempe chain. Thus, any changes of O(1) vertices can be simulated
by a sequence of Kempe-chain switches.

The following lemma is one of the main steps in this paper, and is proven in Section 13. (See also Lemma
11.3(a)).

Lemma 10.1. For k ≥ 3, and any f(n) = o(n):

(a) If c < ck then with probability at least 1− e−f(n), the Kempe core of Pn,p=c/n has size o(n).

(b) If c > ck then with probability at least 1− e−f(n), the Kempe core of Pn,p=c/n has size kλk(c) + o(n).
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Remark: In fact, for c < ck, w.h.p. the Kempe core of Pn,p=c/n has size 0. But this statement fails
with probability 1/poly(n).

A very standard argument shows that w.h.p. any Kempe core (in either model) must have at least linear
size. Applied to the uniform model, we obtain:

Lemma 10.2. For k ≥ 4 and any constant r > 0, there is a constant ε > 0 such that w.h.p. Un,M=rn has
no non-empty Kempe core of size less than εn.

The proof is at the end of this section. Lemmas 10.1, 10.2, Lemma 9.5 and Theorem 9.3 immediately
yield:

Corollary 10.3. For k ≥ k0:

(a) If r < rfk then w.h.p. the Kempe core of Un,M=rn has size zero.

(b) If r > rfk then w.h.p. the Kempe core of Un,M=rn has size (k−1)xk(r)
2r n+ o(n).

Proof Theorem 9.3 and Lemma 9.5 allow us to translate our results from Pn,p=c/n to Un,M=rn, with

r = k−1
2k c. Note that x(r) = y(c). So the corollary follows from Lemmas 10.1 and 10.2, and the fact that

kλk(c) =
kyk(c)

c
=

kxk(r)

2kr/(k − 1)
=

(k − 1)xk(r)

2r
.

�

The remaining steps are to show that the frozen variables consist of the Kempe core, plus or minus o(n)
vertices. In Section 14, we show:

Lemma 10.4. For k ≥ 3, any f(n) = o(n) and any ε > 0: There exist constants T,Z such that with
probability at least 1 − e−f(n), all but εn of the vertices outside of the (possibly empty) Kempe core of
Pn,p=c/n are either (i) not T -frozen, or (ii) are within distance Z of a cycle with length less than Z.

In Section 12 we show that almost all of the Kempe core is internally rigid in the following sense:

Lemma 10.5. For k ≥ 3, c > ck, and any f(n) = o(n), there exists constant α = α(c, k) > 0 such that with
probability at least 1− e−f(n), the Kempe core K of Pn,p=c/n has the following property:
For all but o(n) vertices v ∈ K, any k-colouring of K which differs from σ on v must differ from σ on at
least 2αn vertices of K.

The o(n) term depends on f(n). This internal rigidity is enough to imply that almost all vertices of the
Kempe core are frozen:

Corollary 10.6. For k ≥ 3, c > ck, and any f(n) = o(n), there exists constant α = α(c, k) > 0 such that
with probability at least 1− e−f(n): all but o(n) vertices of the Kempe core K of Pn,p=c/n are αn-frozen.

Proof Lemma 10.5 says we have Θ ⊆ K with size |K|−o(n) such that every v ∈ Θ has the property
that any k-colouring of K which differs from σ on v must differ from σ on at least 2αn vertices of K, and
thus on at least 2αn−o(n) > αn vertices of Θ. Consider any sequence of k-colourings of K, σ = σ0, σ1, ..., σt
such that

(i) for all v ∈ Θ and 0 ≤ i ≤ t− 1, we have σi(v) = σ(v).

(ii) for some v ∈ Θ we have σt(v) 6= σ(v).

In other words, t is the first step where a member of Θ changes colour.
By (ii), σt must differ from σ on at least αn vertices of Θ. Thus by (i), σt must differ from σt−1 on

those same αn vertices. Therefore, σ = σ0, σ1, ..., σt is not a αn-path. But if at least one vertex of Θ is not
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αn-frozen, then there must be such a αn-path; consider the vertex v ∈ Θ whose colour can be changed by
the shortest possible αn-path. So all of the vertices of Θ must be αn-frozen. �

This yields our main theorem:
Proof of Theorem 2.4: Corollary 10.3 establishes the location of the Kempe core threshold and the

size of the Kempe core.
Theorem 9.3 and Lemma 9.5 allow us to translate our results from Pn,p=c/n to Un,M=rn, with r = k−1

2k c.
Part (a.i) then follows from Corollary 10.6.

To obtain parts (a.ii) and (b), we apply Lemma 10.4. It is standard and straightforward to show that
the expected number of vertices in Gn,M=cn that are within distance Z of a cycle with length less than
Z, is O(1). So w.h.p. the number of such vertices in Un,M=cn is less than ε

2n. Therefore, for all ε > 0
there exists T = O(1) such that w.h.p. all but ε

2n of the vertices outside the Kempe core of Un,p=c/n are
T -frozen. Therefore for any ω(n) tending to ∞, w.h.p. o(n) vertices outside of the Kempe core of Un,p=c/n
are ω(n)-frozen. �

We close this section with the proof of Lemma 10.2.
Proof of Lemma 10.2: Every Kempe core has minimum degree at least k − 1 ≥ 3. Otherwise there

will be a vertex v and colour α such that α does not appear on v, nor on any neighbour of v, and so v is a
Kempe chain of size 1. It is well-known (see eg. [52]) that for any constant r, there is some ε > 0 such that
w.h.p. every subgraph of Gn,M=rn with at most εn vertices has average degree less than 3. Therefore, a.s.
Un,M=rn has no Kempe core of size at most εn. �

11 Kempe cores in the planted model

11.1 Properties of the Kempe core

Let K be the Kempe core of Pn,p=c/n for some c > ck, and for each 1 ≤ i ≤ k, we let Ki = K ∩ Ai be
the vertices of K with colour i. For each i 6= j, we let Ki,j denote the bipartite subgraph of K induced by
(Ki,Kj).

Lemma 11.1. Consider any two connected bipartite graphs H,H ′, each with vertex set (Ki,Kj), and with
|E(H)| = |E(H ′)|. Then Pr(Ki,j = H) = Pr(Ki,j = H ′).

Proof Consider any (G, σ) for which the procedure Kempe-Strip yields a Kempe core with Ki,j = H.
Form G′ by replacing the subgraph H in G with H ′. Then applying Kempe-Strip to (G′, σ) will yield a
Kempe core with Ki,j = H ′. Furthermore, G,G′ arise with the same probability in Pn,p=c/n, since they have
the same number of edges. Finally, every such H ′ arises from exactly one such H. This implies the lemma.

�

Definition 11.2. The 2-core of a graph is what remains after iteratively deleting any vertices of degree less
than 2.

Remark: It is easy to see that the order in which we delete vertices does not affect what remains at the
end, so the 2-core is well-defined.

Recall from Section 4 that for any c ≥ ck we let yk(c) denote the largest positive solution y to c =
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ky
(1−e−y)k−1 , and that ck is defined to be the minimum c such that yk(c) exists. We define:

λk(c) = yk(c)/c

ξk(c) =
yk(c)(1− e−yk(c)(1 + yk(c)))

c(1− e−yk(c))

µk(c) =
yk(c)e−yk(c)

c(1− e−yk(c))
∑
i≥2

yk(c)i

(i− 1)!

τk(c) =
yk(c)e−yk(c)

c(1− e−yk(c))
yk(c)2

2

Lemma 11.3. For any c > ck and any f(n) = o(n), with probability at least 1 − e−3f(n), we have that for
every i, j, the subgraph induced by Ki,j is connected and:

(a) |Ki| = λk(c)n+ o(n);

(b) the 2-core of Ki,j has ξk(c)n+ o(n) vertices in Ki and ξk(c)n+ o(n) vertices in Kj;

(c) the 2-core of Ki,j has µk(c)n+ o(n) edges;

(d) the 2-core of Ki,j has τk(c)n+ o(n) degree 2 vertices in Ki and τk(c)n+ o(n) degree 2 vertices in Kj.

Remark: The o(n) terms depends on f(n).
We outline the proof of Lemma 11.3 in Section 13.
The branching parameters described in Section 6 concern (a) the proportion of non-2-core vertices in

each Ki, and (b) the degree two vertices in the 2-core of Ki,j :

Lemma 11.4. For every c > ck, there is ζ = ζ(c) > 0 such that:

(a) 1− ξk(c)
λc
k(c)

< 1
k−1 (1− ζ);

(b) 2τk(c)
µc
k(c)

< 1− ζ.

Proof At c = ck, y = yk(c) is the point that minimizes h(y) = ky
(1−e−y)k−1 . Setting ∂

∂yh(y) = 0

yields:
(1− e−y)k−1 = (k− 1)ye−y(1− e−y)k−2, which yields ey − 1 = (k− 1)y. Thus ey−1

y = k− 1 > e− 1 and

so y > 1. Thus ey > k− 1 and so ey − 1 grows faster than (k− 1)y for y ≥ yk(c). Since yk(c) increases with
c, we have that for every c > ck:

eyk(c) − 1 > (k − 1)yk(c).

It will suffice to prove that the LHS is less than the RHS in (a,b), since they do not change with n.
Part (a):

ξ(c)

λck(c)
=

1− e−yk(c)(1 + yk(c))

1− e−yk(c)
=
eyk(c) − 1− yk(c)

eyk(c) − 1
>
eyk(c) − 1− 1

k−1 (eyk(c) − 1)

eyk(c) − 1
=
k − 2

k − 1
.

This implies that the LHS of (a) is less than the RHS, as required.
Part (b):

2τk(c)

µk(c)
=

yk(c)2∑
i≥2

yk(c)i

(i−1)!

=
yk(c)∑
i≥1

yk(c)i

i!

=
yk(c)

eyk(c) − 1
<

1

k − 1
< 1,

as required. �
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12 The Kempe core is mostly frozen

In this section, we prove Lemma 10.5. Recall that we are working in the Pn,p model. So we have a uniformly
random partition σ of the vertices into A1, ..., Ak, and a graph G formed by selecting each of the potential
edges between different parts with probability p = c/n. Our focus will be on the Kempe core, K, of (G, σ).

Definition 12.1. A ∆-set is the symmetric difference of σ and some other k-colouring of the Kempe core,
K. Specifically, given such a colouring σ′, the set of vertices u ∈ K with σ(u) 6= σ′(u) is a ∆-set, which we
sometimes denote by σ∆σ′.

Note that “v ∈ σ∆σ′” means the same thing as “σ(v) 6= σ′(v)”.
To prove Lemma 10.5 we will show that, with sufficiently high probability, the union of all ∆-sets of size

at most 2αn has size o(n). So we define:

Definition 12.2. A D-set is the union of ∆-sets.

Lemma 12.3. For any f(n) = o(n), there exists g(n) = o(n) such that with probability at least 1− e−2f(n),
no D-set has size between g(n) and 2αn.

This yields Lemma 10.5 as follows:
Proof of Lemma 10.5: Let S1, ..., St be all the ∆-sets of size less than 2αn. Note that for every

v /∈ ∪ti=1Si, any k-colouring of the Kempe core which differs from σ on v must differ from σ on at least 2αn
vertices. So it suffices to prove that | ∪ti=1 Si| = o(n).

Lemma 12.3 implies that for each 1 ≤ i ≤ t we have |Si| ≤ g(n). So by induction, we have | ∪ji=1 Si| ≤
| ∪j−1i=1 Si| + |Sj | ≤ 2g(n) and hence by Lemma 12.3 must be at most g(n) = o(n) since ∪ji=1Si is a D-set.
Therefore | ∪ti=1 Si| ≤ g(n) = o(n), as required. �

The remainder of this section is devoted to the proof of Lemma 12.3, which is the main lemma in this
paper. That proof appears at the end of Subsection 12.2.

12.1 The structure of ∆-sets

To prove Lemma 12.3 we first study the structure of ∆-sets and D-sets. When we say the 2-core of a ∆-set
or a D-set, we mean the 2-core of the subgraph of the Kempe core induced by that set. Similarly, when we
say a component of a ∆-set or a D-set, we mean a component of the subgraph of the Kempe core induced
by that set.

Recalling Lemma 11.3, we suppose we have a Kempe core K satisfying:

Property 12.4. Each Ki,j is connected with a non-empty 2-core, and that 2-core is not a cycle.

We start with the key observation about ∆-sets:

Proposition 12.5. Let u be any vertex in a D-set Φ, and let σ∆σ′ ⊆ Φ be a ∆-set containing u. Then
every neighbour of u in Kσ(u),σ′(u) is also in σ∆σ′ and hence in Φ.

Proof Every neighbour w of u in Kσ(u),σ′(u) has σ(w) = σ′(u). Since σ′ is a proper colouring, we
cannot have σ′(w) = σ′(u). Therefore σ′(w) 6= σ(w). �

Lemma 12.6. Every component of a ∆-set or D-set has a non-empty 2-core.

Proof If a component does not have a 2-core, then it is a tree. If a D-set is a tree, then so is any
∆-set that it contains. Consider a ∆-set σ∆σ′ that induces a tree. We direct the edges of that tree as
follows: each u has an edge directed to every neighbour that it has in Kσ(u),σ′(u); by Proposition 12.5, all
such neighbours must be in the tree.

Note that an edge uv will be directed in both directions iff σ(u) = σ′(v) and σ(v) = σ′(u); contract
all such edges. The contracted tree is a tree, and each edge is directed in exactly one direction. So there
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must be a node which has no edges directed out of it. Our contraction rule implies that every vertex u
contracted into that node has (σ(u), σ′(u)) = (a, b) or (b, a) for some pair of colours a, b. Furthermore, u
has no neighbours in Kσ(u),σ′(u) that were not contracted into the node, else this would have produced a
directed edge out of the node. Therefore, the vertices contracted into that node are a component of Ka,b.
But since they form a tree, this violates Proposition 12.4. �

Note the following simple facts:

Proposition 12.7. If a graph H is connected, then the 2-core of H is empty or connected.

Proof Strip to the 2-core by repeatedly removing vertices of degree 1. The removal of a degree 1
vertex cannot disconnect a graph. �

Definition 12.8. We say that a D-set or ∆-set is complex if its 2-core does not have any components that
are cycles. We say that a D-set or ∆-set is cyclic if its 2-core is a cycle.

Lemma 12.9. Every D-set is the union of D-sets where at most one is complex and the rest are cyclic.

Proof Each component of a ∆-set is a ∆-set, since you can switch the colours of the vertices in a
∆-set one component at a time. It follows that each component of a D-set is a D-set, as it is the union of
components of ∆-sets, and hence is the union of ∆-sets. By Proposition 12.7, each component of a D-set
has a connected 2-core and hence is either cyclic or complex. The lemma follows, noting that the union of
the complex components of a D-set is a single complex D-set. �

We now turn our attention to the structure of the vertices outside the 2-core of a graph:

Definition 12.10. Consider any graph H such that every component of H has a non-empty 2-core. The
edges not in the 2-core of H form a forest. We call a tree of that forest a pendant tree. By Proposition 12.7,
the 2-core of each component is connected. It follows that each pendant tree T contains exactly one vertex
of the 2-core; that vertex is the vertex of attachment for T . We consider a pendant tree to be rooted at its
vertex of attachment; in particular, the parent of a vertex u not in the 2-core is its unique neighbour on the
path from u to the 2-core.

Lemma 12.6 implies that we can apply Definition 12.10 to the graph induced by any D-set, Φ. So for
every vertex v not in the 2-core of Φ, we can talk about its parent in Φ. By Proposition 12.7, we can also
talk about the parent of any non-2-core vertex in Ki,j .

Lemma 12.11. Consider any connected D-set Φ. Consider any non-2-core vertex u ∈ Φ and let w be the
parent of u in Φ. Then for every ∆-set, σ∆σ′ ⊆ Φ which contains u, we have:

(a) σ′(u) = σ(w);

(b) u is not in the 2-core of Kσ(u),σ′(u);

(c) w is the parent of u in Kσ(u),σ′(u).

Proof Let T be the pendant tree of Φ containing u. We proceed by induction.
Note that since Kσ(u),σ′(u) is connected and has linear size (by Property 12.4), u has at least one neighbour

in Kσ′(u).
Base case: u is a leaf of T . Then w is the only neighbour of u in Φ, and so by Proposition 12.5, w must

be the only neighbour of u in Kσ(u),σ′(u). Parts (b,c) now follow.
Now suppose (a,b,c) hold for every child of u in T . Consider any child w′ of u with σ(w′) = σ′(u). Then

by the inductive hypothesis, σ′(w′) = σ(u) and u is the parent of w′ in Kσ(u),σ′(u). By Proposition 12.5,
every neighbour of u in Kσ(u),σ′(u) must be in T . So u has at most one non-child neighbour, w, in Kσ(u),σ′(u).
Parts (a,b,c) now follow for u. �

Consider the digraph Υ defined as follows: for any u, v ∈ K, we have the edge u → v iff there is some
Ki,j in which v is a non-2-core vertex, and u is the parent of v in the pendant tree of Ki,j containing v.
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Definition 12.12. For each vertex u ∈ K, T+(u) is the set of vertices that can be reached from u in Υ; i.e.
the set containing u and all vertices w ∈ K for which, in at least one Ki,j, w is a non-2-core vertex and u
is on the unique path from w to the 2-core.

Lemma 12.13. For any D-set Φ with 2-core H, we have Φ ⊆ ∪u∈HT+(u).

Proof Consider any pendant tree T of Φ. Lemma 12.11 implies that if we direct the edges of T
away from its vertex of attachment, u, then the directed edges will all be in Υ. Therefore T ⊆ T+(u). This,
along with the fact that every v ∈ H is in T+(v), implies the lemma. �

Definition 12.14. A 2-path in a ∆-set σ∆σ′ is a path u0, ..., ux in the 2-core of σ∆σ′ such that

(a) x ≥ 1;

(b) each ui has degree 2 in the 2-core of σ∆σ′;

(c) either
Type A: every ui is in the 2-core of Kσ(ui),σ′(ui); or
Type B: every ui is not in the 2-core of Kσ(ui),σ′(ui) and, for 0 ≤ i ≤ x− 1, its parent in Kσ(ui),σ′(ui)

is ui+1.

We call u0, ux the endpoints, and u1, ..., ux−1 the internal vertices.
A 2-path in a D-set Φ is a path u0, ..., ux in the 2-core of Φ such that

(a) each ui has degree 2 in the 2-core of Φ;

(b) u0, ..., ux is a 2-path in some ∆-set contained in Φ.

Let H be the 2-core of a D-set Φ. Consider any path W, v0, ..., vr, Y , r ≥ 1, in H where each vi has
degree exactly 2 in H and W,Y each have degree at least 3 in H. It will be convenient to set v−1 = W and
vr+1 = Y . The next several lemmas concern this path.

Lemma 12.15. Consider any 0 ≤ i ≤ r and any ∆-set σ∆σ′ ⊂ Φ that contains vi. If vi is in the 2-core of
Kσ(vi),σ′(vi) then:

(a) vi−1, vi+1 ∈ σ∆σ′;

(b) σ(vi−1) = σ(vi+1) = σ′(vi);

(c) vi−1, vi+1 are both in the 2-core of Kσ(vi),σ′(vi).

Proof Since vi is in the 2-core of Kσ(vi),σ′(vi), vi has at least two neighbours in the 2-core of
Kσ(vi),σ′(vi). We will argue that those neighbours must also be in the 2-core of Φ. Hence, they must be
vi−1, vi+1, thus establishing (c). Suppose w ∈ Kσ′(vi) is a neighbour of vi that is not in the 2-core of Φ. By
Proposition 12.5, w ∈ σ∆σ′. Since vi is in the 2-core of Φ, vi must be the parent of w in Φ. By Lemma
12.11(c), this implies that σ(vi) = σ′(w) and w is not in the 2-core of Kσ(w),σ′(w) = Kσ(vi),σ′(vi). Therefore
every neighbour of vi in the 2-core of Kσ(vi),σ′(vi) must also be in the 2-core of Φ. Thus, we have part (c).

Since vi−1, vi+1 are both in Kσ(vi),σ′(vi), and they cannot have the same colour as vi in σ, we have part
(b). Propostion 12.5 gives part (a). �

Lemma 12.16. If u0, ..., ur is a Type A 2-path in the 2-core of a D-set, then there are colours a, b such
that (σ(ui), σ

′(ui)) = (a, b) for even i, and (σ(ui), σ
′(ui)) = (b, a) for odd i; i.e. the sequences σ(ui) and

σ′(ui) both alternate over the same two colours. Furthermore, if v, w are the non-path neighbours of u0, ux,
respectively, then σ(v) = σ′(u0) and σ(w) = σ′(ux).

Proof This follows immediately from Lemma 12.15(b). �
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Lemma 12.17. Consider any 0 ≤ i ≤ r and any ∆-set σ∆σ′ ⊂ Φ that contains vi. If vi is not in the 2-core
of Kσ(vi),σ′(vi) then

(a) one of the two neighbours of vi is its parent in Kσ(vi),σ′(vi);

(b) if that neighbour is not W or Y , then either vi, vi+1, ..., vr or vi, vi−1, ..., v0 is a Type B 2-path.

Proof Kσ(vi),σ′(vi) is connected with a non-empty 2-core (by Property 12.4). Since vi is not in that
2-core, it must have a parent; let w be the parent of vi in Kσ(vi),σ′(vi). By Proposition 12.5, w ∈ Φ. If w is
not in the 2-core of Φ, then because v is a neighbour of w and v is in the 2-core of Φ, v must be the parent
of w in Φ. By Lemma 12.11(c), this implies that σ(vi) = σ′(w) and v is the parent of w in Kσ(w),σ′(w). But
now σ(w) = σ′(vi) and σ′(w) = σ(vi) so Kσ(w),σ′(w) = Kσ(vi),σ′(vi); thus v is the parent of w and w is the
parent of v in the same graph - contradiction. Therefore, w is in the 2-core of Φ, and so w must be one of
the only two neighbours of vi in the 2-core of Φ. This establishes part (a).

WLOG, assume w, the parent of of vi in Kσ(vi),σ′(vi), is vi+1. Thus vi+1 ∈ σ∆σ′; we will show that vi+1

is not in the 2-core of Kσ(vi+1),σ′(vi+1), which will allow us to apply the same argument again to vi+1.
Case 1: σ′(vi+1) 6= σ(vi). Then vi+1 has at most one neighbour of colour σ′(vi+1) in the 2-core of Φ. As

argued above, Lemma 12.11 implies that any neighbour u of vi+1 that is not in the 2-core of Φ cannot be
in the 2-core of Kσ(vi+1),σ′(vi+1). So vi+1 has at most one neighbour in the 2-core of Kσ(vi+1),σ′(vi+1), and so
vi+1 is not in the 2-core of Kσ(vi+1,σ′(vi+1).

Case 2: σ′(vi+1) = σ(vi). Then Kσ(vi+1),σ′(vi+1) = Kσ(vi),σ′(vi). Since vi is not in the 2-core of
Kσ(vi),σ′(vi), it is not in the 2-core of Kσ(vi+1),σ′(vi+1). So again, vi+1 has at most one neighbour of colour
σ′(vi+1) in the 2-core of Φ, and the argument proceeds as in Case 1.

Thus, we can repeat the above argument to show that part (a) holds for vi+1. It is not possible for vi
to be the parent of vi+1 in Kσ(vi+1),σ′(vi+1); that would require σ′(vi+1) = σ(vi), and so Kσ(vi+1),σ′(vi+1) =
Kσ(vi),σ′(vi), and so vi would be the parent of vi+1 in the same graph in which vi+1 is the parent of vi.
Therefore, vi+2 must be the parent of vi+1 in Kσ(vi+1),σ′(vi+1). Continuing inductively down the path
establishes part (b). �

Lemma 12.18. v0, ..., vr can be split into at most three pieces, each of which either has exactly one vertex
or is a 2-path.

Proof If r ≤ 2 then it is trivial. So we assume r ≥ 3.
Case 1: There is some vi meeting the conditions of Lemma 12.15. Let a = σ(vi) and b = σ′(vi). Let j1

be the largest 0 ≤ j1 < i such that (σ(vj1), σ′(vj1)) is not either (a, b) or (b, a); if no such j1 exists then we
set j1 = −1. Similarly, let j2 be the largest i < j2 ≤ r such that (σ(vj2), σ′(vj2)) is not either (a, b) or (b, a);
if no such j2 exists then we set j2 = r + 1.

For all j1 + 1 ≤ j ≤ j2 − 1, (σ(vj), σ
′(vj)) is either (a, b) or (b, a). This allows us to apply Lemma 12.15

inductively from vi to vj1+1 and from vi to vj2−1 and show that each such vj is in the 2-core of Ka,b and is
in σ∆σ′. Therefore the subpath vj1+1, ..., vj2−1 either has exactly one vertex (vi) or is a Type A 2-path.

If j2 ≤ r then Lemma 12.15, applied to vj2−1, implies that vj2 ∈ σ∆σ′ and σ(vj2) = σ′(vj2−1). If vj2
were in the 2-core of Kσ(vj2 ),σ

′(vj2 )
then Lemma 12.15 applied to vj2 would imply that σ′(vj2) = σ(vj2−1),

and so (σ(vj2), σ′(vj2)) is either (a, b) or (b, a) thus contradicting our choice of j2. So we can apply Lemma
12.17 to vj2 to show that the subpath vj2 , ..., vr either has exactly one vertex (vr) or is a Type B 2-path.

Similarly, if j1 ≥ 0 then the subpath vj1 , ..., v0 either has exactly one vertex or is a Type B 2-path. This
provides our split into at most three pieces.

Case 2: No vi meets the conditions of Lemma 12.15. Recall we assume that r ≥ 3, and pick some
1 ≤ ` ≤ r − 1. Let σ∆σ′ ⊆ Φ be a ∆-set containing v`. Since we are in Case 2, v` is not in the 2-core of
Kσ(v`),σ′(v`). So Lemma 12.17 implies that v` lies in a Type B 2-path extending to either v0 or vr; WLOG
assume it is vr. Let j ≤ ` be the smallest value such that vj , ..., vr is a Type B 2-path. If j = 0 then we have
one piece. If j ≥ 1 then, since we are in Case 2, vj−1 is not in the 2-core of Kσ(vj−1),σ′(vj−1). By Lemma
12.17, vj−1, vj−2, ..., v0 either has exactly one vertex (j − 1 = 0) or is a Type B 2-path. Thus we can split
into two pieces. �
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Definition 12.19. We define P(Φ) to be a vertex-disjoint collection of 2-paths in the 2-core of Φ such that:
For every path W, v0, ..., vr, Y in the 2-core of Φ, where each vi has degree exactly 2 in the 2-core of Φ and
W,Y each have degree at least 3 in the 2-core of Φ, we can split v0, ..., vr into at most three pieces, each of
which either has exactly one vertex or is a member of P(Φ).

Lemma 12.18 implies that P(Φ) exists. P(Φ) might not be uniquely defined. It is possible that there are
two different ways to partition some v0, ..., vr as in Lemma 12.18, thus yielding different choices for P(Φ). If
there are multiple choices for P(Φ) then we arbitrarily specify one of them.

We partition the vertices of the 2-core of any D-set Φ as follows:

• V1(Φ) - the internal vertices of the 2-paths in P(Φ);

• V2(Φ) - the vertices of the 2-core of Φ that are not in V1(Φ).

Lemma 12.20. For any complex D-set Φ with |P(Φ)| = t, the 2-core of Φ has at least 101
100 |V2(Φ)| − t edges

with both endpoints in V2(Φ).

Proof Let H be the 2-core of Φ. Form H ′ by contracting every 2-path u0, ..., ux in P(Φ) into a
single edge (u0, ux). Since no component of H is a cycle (as Φ is complex), every degree 2 vertex of H lies in
a path W, v,..., vr, Y as in Definition 12.19. Every such path is contracted into a path with at most 4 degree
two vertices. Therefore, H ′ does not contain any path v0, v1, v2, v3, v4 of five degree 2 vertices. From that, it
is easy to argue that H ′ has at least 101

100 |V (H1)| edges (this also follows from Lemma 11 of [47]). The lemma
now follows since V (H ′) = V2(Φ), there are exactly t contracted edges in H ′, and each of the 101

100 |V2(Φ)| − t
non-contracted edges is an edge of H. �

We close this section by determining the structure of cyclic D-sets.

Lemma 12.21. Every cyclic D-set is a cyclic ∆-set.

Proof Let Φ be any cyclic D-set, and let Φ′ be any ∆-set contained in Φ. Because the 2-core of
Φ is a cycle, it follows that Φ′ must contain all of that cycle, otherwise the 2-core of Φ′ would be empty,
contradicting Lemma 12.6. So Φ is equal to Φ′ plus, at most, some subtrees of the pendant trees. It is
straightforward to argue, using Lemma 12.11, that adding those pendant trees to Φ′ will create another
∆-set. �

Lemma 12.22. If u1, ..., ur is the cycle forming the 2-core of a cyclic ∆-set, then (after possibly reversing
the order of the labels): Every ui is not in the 2-core of Kσ(ui),σ′(ui) and its parent is ui+1 (addition mod r).

Thus, we can view this 2-core as the cycle analogue of a Type B 2-path.
Proof If at least one ui is not in the 2-core of Kσ(ui),σ′(ui), then the same reasoning as in the

proof of Lemma 12.17(a) implies that its parent in Kσ(ui),σ′(ui) is either ui−1 or ui+1; WLOG assume it
is ui+1. The same reasoning as in the proof of Lemma 12.17(b) implies that ui+1 cannot be in the 2-core
of Kσ(ui+1),σ′(ui+1). So we can repeat the argument inductively around the cycle to prove that the lemma
holds.

The only other case is if every ui is in the 2-core of Kσ(ui),σ′(ui). The same reasoning as in the proof of
Lemma 12.16 implies that every vertex uj has (σ(uj), σ

′(uj)) = (a, b) or (b, a) for the same two colours (b, a).
Furthermore we find that each uj has no other neighbours in the 2-core of Ka,b, other than its neighbours
in the cycle. It follows that this cycle is the 2-core of Ka,b, contradicting Property 12.4. �

Note that Lemmas 12.21, 12.22, and 12.11 give a very good description of any cyclic D-set.

12.2 A first moment bound for D-sets

We will bound the expected number of D-sets in terms of various size-parameters. We will focus on the
2-cores of the D-sets.

Let Φ be a complex D-set, and set:
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• a = |V2(Φ)|

• t = |P(Φ)|

• j1, ..., jt are the number of internal vertices in the 2-paths of P(Φ)

• J = j1 + ...+ jt

Let Xa,J denote the number of 2-cores of D-sets with parameters a, J . We bound E(Xa,J) for all
a+ J < 2αn as follows:

First we choose the a vertices of V2. We will overcount by choosing from all of {1, ..., n} rather than from
just the Kempe core. So there are

(
n
a

)
choices. We also choose a set E of 101

100a− t edges within V2; there are( (a
2)

101
100a−t

)
choices for E .

Next we choose the value of t. Since the 2-paths of P(Φ) are vertex-disjoint and each has two endpoints,
we have t ≤ a

2 .
Then we choose, from amongst the vertices of V2, the endpoints (vi, wi) of each of the 2-paths P1, ..., Pt ∈

P(Φ). The number of choices is at most
(

a
t,t,a−2t

)
t!.

We define the following events:

• E1 - the event that the statements of Lemma 11.3(a,b,c,d) hold.

• E2 - the event that all the edges of E are present in Pn,p.

• E3 - the event that each pair (vi, wi) is joined by a 2-path.

For a random variable X and an event E, we use X ∧ E to denote the variable that is equal to X if
E holds and 0 if E does not hold. We will actually bound E(Xa,J ∧ E1), recalling from Lemma 11.3 that
Pr(E1) ≥ 1− e−3f(n).

We begin by noting that, since t ≤ a
2 , we have 101

100a− t >
a
2 . This yields:

Pr(E2)×
( (

a
2

)
101
100a− t

)
≤
( (

a
2

)
101
100a− t

)( c
n

) 101
100a−t ≤

(
ea

2

2
101
100a− t

c

n

) 101
100a−t

<
(eca
n

) 101
100a−t

. (2)

In Section 12.3, we will prove:

Lemma 12.23. There is a constant R = R(c, k) such that if a+ J < 2αn then

Pr(E3 ∧ E1|E2) < Ra(1− ζ

2
)J
(

1

n

)t
.

This yields that for a+ J < 2αn:

E(Xa,J ∧ E1) ≤
∑

t,j1+...+jt=J

(
n

a

)(
a

t, t, a− 2t

)
t!
(eca
n

) 101
100a−t

Ra(1− ζ)J
(

1

n

)t

<
∑
t≥0

(en
a

)a a!

t!(a− 2t)!

(a
n

) 101
100a−t (

R(ec)1.01
)a( 1

n

)t ∑
j1+...+jt=J

(1− ζ)J

<
(
Z1
a

n

) a
100
∑
t≥0

at

t!

∑
j1+...+jt=J

(1− ζ)J for some constant Z1 = Z1(c, k) > 0.

The number of choices for j1, ..., jt ≥ 0 that sum to J is
(
J+t−1
t−1

)
. It is straightforward to verify that

there is a constant Z2 = Z2(ζ) = Z2(c, k) > 1 such that for any t and J ≥ Z2t,
(
J+t−1
t−1

)
(1− z

2 )J is monotone

decreasing as J increases. Thus, for J ≥ Z2t, we have
(
J+t−1
t−1

)
(1− z

2 )J <
(
Z2t+t−1
t−1

)
(1− ζ

2 )Z2t <
(
Z2t+t
t

)
, and
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for J < Z2t, we have
(
J+t−1
t−1

)
(1 − z

2 )J <
(
J+t−1
t−1

)
<
(
Z2t+t
t

)
. This, along with the bound 1 − ζ < (1 − ζ

2 )2,
implies: ∑

j1+...+jt=J

(1− ζ)J <

(
J + t− 1

t− 1

)
(1− z

2
)2J <

(
Z2t+ t

t

)
(1− ζ

2
)J < (e(Z2 + 1))t(1− ζ

2
)J . (3)

Thus, for a+ J < 2αn, we have:

E(Xa,J ∧ E1) <
(
Z1
a

n

) a
100

(1− ζ

2
)J
∑
t≥0

(ea(Z2 + 1))t

t!

=
(
Z1
a

n

) a
100

(1− ζ

2
)Jeea(Z2+1)

<
(
Z
a

n

) a
100

(1− ζ

2
)J for some constant Z = Z(c, k) > 0

< (1− ζ

2
)a+J , (4)

by applying a < 2αn and taking α = α(c, k) to be sufficiently small that 2Zα < (1− ζ
2 )100.

A standard straightforward argument uses the second last line above to obtain
Exp(

∑∞
a=1

∑
J≥0Xa,J ∧ E1) = o(1). Since E1 holds a.s., and since every non-cyclic ∆-set contains a non-

empty 2-core (and hence corresponds to a > 0) this yields

Lemma 12.24. W.h.p. the Kempe core of Pn,p=c/n has no complex ∆-sets of size less than αn.

However, the failure probability that we obtain is 1/poly(n) and so we cannot apply Theorem 9.3 to
transfer Lemma 12.24 to the Un,M model. But applying Markov’s Inequality to our bound on E(Xa,J ∧E1)
does yield that for any g(n) = o(n), the probability that the Kempe core of Pn,p=c/n has a complex D-set

with g(n) ≤ a+ J < 2αn is at most O(g(n))× (1− ζ
2 )g(n) + Pr(E1). (See the proof of Lemma 12.3 below.)

In order to strengthen this statement to obtain Lemma 12.3, we must account for the non-2-core vertices.
To do so, we recall Lemma 12.13, let u1, ..., ua+J be the vertices of the 2-core of Φ, and define:

• L = | ∪a+Ji=1 T+(ui)|.

Let Xa,J,L denote the number of 2-cores of D-sets with parameters a, J, L. We will extend the analysis
above to bound E(Xa,J,L ∧ E1).

In addition to all the counting described above, we choose L, and we define the event:

• E4 - the event that | ∪a+Ji=1 T+(ui)| = L.

In Section 12.3, we extend Lemma 12.23 to prove:

Lemma 12.25. There are constants R = R(c, k) and ρ = ρ(c, k) > 0 such that for any 2αn > L > 4
ζ (a+J):

Pr(E4 ∧ E3 ∧ E1|E2) < (1− ρ)L ×Ra(1− ζ

2
)J
(

1

n

)t
.

Adding these ingredients to our derivation of (4) yields that for a+ J + L < 2αn:

For L > 4
ζ (a+ J):

E(Xa,J,L ∧ E1) ≤
∑

t,j1+...+jt=J

(
n

a

)(
a

t, t, a− 2t

)
t!
(eca
n

) 101
100a−t

Ra(1− ζ)J
(

1

n

)t
(1− ρ)L

< (1− ζ

2
)a+J(1− ρ)L. (5)

This will be sufficient to bound the complex D-sets. For the others, we require:
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Lemma 12.26. For any f(n) = o(n), there exists g(n) = o(n) such that with probability at least 1−e−2f(n),
the total number of vertices on all cyclic D-sets is at most g(n).

We prove this lemma in Section 12.3. We close this section with:
Proof of Lemma 12.3: Note that L ≥ |Φ| by Lemma 12.13. For any Q: By (4),

Exp(
∑
a+J≥QXa,J ∧E1) < O(Q)× (1− ζ

2 )Q. Therefore, the probability that there is a complex D-set with

a + J ≥ Q is at most O(Q) × (1 − ζ
2 )Q + Pr(E1). This is also a bound on the probability that there is a

complex D-set with L ≤ 4
ζ (a+ J) and L ≥ ζ

4Q.

Similarly, (5) implies that the probability that there is a complex D-set with L > 4
ζ (a+ J) and L ≥ Q is

at most (1− ρ)Q. These two bounds, along with the bound Pr(E1) < e−3f(n) from Lemma 11.3 now imply
Lemma 12.3 for an appropriate choice of g(n). �

12.3 Some deferred proofs

Lemma 12.23 There is a constant R = R(c, k) such that if a + J < 2αn then Pr(E3 ∧ E1|E2) < Ra(1 −
ζ
2 )J

(
1
n

)t
.

Proof At this point, we have exposed that the fewer than 2a edges of E are present amongst the a
vertices of V2. Next, we will expose the values of the parameters bounded by Lemma 11.3. If E1 holds then
for each i, j:

• |Ki| = λck(c)n+ o(n);

• the 2-core of Ki,j has ξk(c)n+ o(n) vertices in Ki and ξk(c)n+ o(n) vertices in Kj ;

• the 2-core of Ki,j has µkn+ o(n) edges;

• the 2-core of Ki,j has τkn+ o(n) degree 2 vertices in Ki and τkn+ o(n) degree 2 vertices in Kj .

Let P1, ..., Pt be the 2-paths of P(Φ), where Pi has ji internal vertices plus endpoints vi, wi. We expose
each Pi one-at-a-time, and for each Pi, we expose the vertices one-at-a-time beginning with the vertex after
vi.

So consider some Pi that we are exposing, and suppose its vertices are u0 = vi, ..., uji+1 = wi; the first
and last of these have already been exposed when we selected the vertices of V2(Φ) and the endpoints of the
paths. We begin with the case where Pi is a Type B 2-path in some ∆-set σ∆σ′ contained in Φ.

First, we choose the colour σ(ux) for each of the ji internal vertices of Pi; note that σ(u0), σ(uji+1) were
determined when we chose u0 = vi, uji+1 = wi. By the definition of a Type B 2-path, σ(u1), ..., σ(ji+1)
determines σ′(u0), ..., σ′(uji) because σ′(ux) = σ(ux+1). Since we must have σ(ux+1) 6= σ(ux), as those two
vertices are adjacent and hence cannot have the same colour, there are (k − 1)ji choices for these colours.

Suppose that we have exposed vertex ux and are now exposing ux+1, for some x < ji; the case x = ji
is a special case, since uji+1 = wi has already been exposed. Prior to exposing ux+1, we have exposed only
edges incident with fewer than a+ J < 2αn vertices; let Ψ be that set of vertices.

By the definition of a Type B 2-path, ux is not in the 2-core of Kσ(ux),σ′(ux), and ux+1 is the parent of
ux in Kσ(ux),σ′(ux). We will bound the probability that ux+1 is not in the 2-core of Kσ(ux+1),σ′(ux+1).

Note that if ux+1 is one of the exposed vertices Ψ, then we have failed to construct a D-set Φ subject to
the specified parameters. So to upper bound the probability that our choices yield such a Φ, we can assume
ux+1 /∈ Ψ.

Case 1: σ′(ux+1) 6= σ(ux). When we expose the parent of ux in Kσ(ux),σ′(ux), and set it to be ux+1,
we expose nothing about ux+1 in Kσ(ux+1),σ′(ux+1), as that is a different graph since we are in Case 1 and
since σ′(ux) = σ(ux+1). So in the random graph Kσ(ux+1),σ′(ux+1), we have exposed nothing about the edges
involving any vertices outside of Ψ.
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Consider any graph H that, subject to what has already been exposed, could be Kσ(ux+1),σ′(ux+1). Con-
sider any H ′ formed from H by permuting the vertices in Kσ(ux+1)\Ψ. It follows from Lemma 11.1, and the
fact that we have exposed nothing about edges incident to vertices outside of Ψ, that

Pr(Kσ(ux+1),σ′(ux+1) = H) = Pr(Kσ(ux+1),σ′(ux+1) = H ′).

Therefore, the probability that ux+1 is not in the 2-core of Kσ(ux+1),σ′(ux+1) is at most the number of non-
2-core vertices in Kσ(ux+1) divided by |Kσ(ux+1)\Ψ|. Using the fact that E1 holds, applying Lemma 11.4(a),
and taking α sufficiently small in terms of ζ, this ratio is at most:

λck(c)− ξk(c)

λck(c)− 2α
+ o(1) <

1

k − 1
(1− ζ

2
).

Case 2: σ′(ux+1) = σ(ux). We argue as in Case 1, except this case is more delicate since Kσ(ux),σ′(ux) =
Kσ(ux+1),σ′(ux+1). When we expose the parent of ux in this graph, we need to bound the probability of that
parent being outside of the 2-core.

Consider any graph H that, subject to what has already been exposed, could be Kσ(ux),σ′(ux). On the
previous step (while considering ux−1) we exposed that ux is not in the 2-core of this graph. Let H ′ be
the graph obtained from H by removing the edge from ux to its parent. Condition on the event that H ′

is the graph obtained from Kσ(ux),σ′(ux) by removing the edge from ux to its parent. Consider adding to
H ′ an edge from ux to any vertex of Kσ′(ux) that is not in the same component of H ′ as ux. The choice
of that vertex does not affect the 2-core of the resulting graph, nor does it affect the number of edges in
the resulting graph. It follows that, by Lemma 11.1, every such vertex is equally likely to be the parent of
ux, under this conditioning. Note that every 2-core vertex of Kσ′(ux)\Ψ is eligible to be the parent of ux.
Therefore, the conditional probability that the parent of x is in the 2-core is at least the number of 2-core
vertices in Kσ′(ux)\Ψ divided by |Kσ′(ux)|. Since this is true for any choice of H ′, and since E1 holds and
|Ψ| < 2αn, and applying Lemma 11.4(a), it follows that the probability that the parent of ux is not in the
2-core of Kσ(ux),σ′(ux)) is at most

1− ξk(c)− 2α

λck(c)
<

1

k − 1
(1− ζ

2
), (6)

if α is sufficiently small in terms of ζ.
So in both cases, we find that the probability that ux+1 is not in the 2-core of Kσ(ux+1),σ′(ux+1), conditional

on what has been exposed thus far, is at most 1
k−1 (1− ζ

2 ).
Finally, we turn our attention to the edge (uji , uji+1 = wi). Here, we must bound the probability that

wi is the parent of uji in Kσ(uji
),σ′(uji

). Note that wi ∈ Ψ. We follow similar reasoning as in Case 2 above
and argue that every 2-core vertex in Kσ′(uji

) is at least as likely to be the parent of uji as wi is. So the
probability that wi is the parent is at most the inverse of the number of 2-core vertices in Kσ′(uji

). Using
the fact that E1 holds, this is at most:

1 + o(1)

λck(c)n
.

Putting this all together, each Type B 2-path Pi contributes to Pr(E3 ∧ E1|E2) a factor of at most

(k − 1)ji × (
1

k − 1
(1− ζ

2
))ji × 1 + o(1)

λck(c)
× 1

n
. (7)

Next, we consider the case where Pi is a Type A 2-path in some ∆-set σ∆σ′ contained in Φ.
At this point, we have exposed all the edges in the Ki,j ’s corresponding to the Type B 2-paths. All

vertices on those paths are now in Ψ. We have also exposed information on whether some of the vertices in
Ψ are in the 2-cores of the Ki,j ’s.

Now, we will expose the entire 2-core of every Ki,j . Recall that the edge-sets of each Ki,j are independent
of each other. Our first step is to expose the vertices of each 2-core, and the degree that each vertex has in
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the 2-core; note that part of this information has already been determined. Then we will choose the 2-core
using the configuration model[13]. Note that some of the edges have already been determined - specifically,
the edges of E and the edges on the Type B 2-paths.

For each Type A 2-path Pi, following Lemma 12.16, we select the two colours on that path; i.e. the
colours a, b such that for each u ∈ Pi we have (σ(u), σ′(u)) = (a, b) or (b, a). There are k(k − 1) choices for
each path. The same reasoning as in the proof of Lemma 12.16 shows that every vertex of Pi must have
degree exactly two in the 2-core of Ka,b.

For each a, b, we let ta,b denote the number of Type A 2-paths for which we selected the colours a, b in
the preceding paragraph, and we let Ja,b denote the total number of internal vertices on those ta,b paths.
We set Jaa,b, J

b
a,b be the number of such vertices u for which we determined that σ(u) = a, σ(u) = b resp.

To upper bound the probability of these paths being formed, we will assume that every endpoint of a
Type A 2-path is a vertex of the appropriate colour that has degree 2 in the 2-core of the appropriate Ki,j .

We now choose the interior vertices for each Type A 2-path Pi. For each Ka,b, we must select Jaa,b, J
b
a,b

vertices of colour a, b that have degree two in the 2-core of Ka,b. Let Laa,b, L
b
a,b be the number of such vertices

to choose from in Ka,b. Since E1 holds, we have Laa,b, L
b
a,b = τk(c)n + o(n). Since the 2-paths are disjoint

(by Definition 12.19), the number of choices is at most:

Laa,b(L
a
a,b − 1)...(Laa,b − Jaa,b + 1)Lba,b(L

b
a,b − 1)...(Lba,b − Jba,b + 1).

Now we choose which vertex-copies of the vertices of each path, including the endpoints, will be matched
with each other. The number of choices is at most 2Ja,b+2ta,b . Finally, we bound the probability that these
copies will be paired up. Because every edge in the configuration contains a vertex of each colour, the total
number of vertex-copies from Ka in the 2-core of Ka,b which do not lie in edges of E or edges of the Type B
2-paths, is the same as the total number from Kb; let Xa,b be that number.

We proceed along the paths one-vertex-at-a-time, each time exposing whether the selected copy of that
vertex is paired with the selected copy of the next vertex on the path. Every success removes a vertex copy
of each colour from the 2-core of Ka,b. So the probability that all of these Ja,b + ta,b pairings occur is:

1

Xa,b(Xa,b − 1)...(Xa,b − (Ja,b + ta,b) + 1)
.

This leads to the following bound on the probability that the ta,b Type A 2-paths that use edges from Ka,b

are formed:

2Ja,b+2ta,bLaa,b...(L
a
a,b − Jaa,b + 1)Lba,b...(L

b
a,b − Jba,b + 1)

Xa,b...(Xa,b − (Ja,b + ta,b) + 1)

<

(
4

Xa,b − Ja,b − ta,b

)tab 2Ja,bLaa,b...(L
a
a,b − Jaa,b + 1)Lba,b...(L

b
a,b − Jba,b + 1)

Xa,b...(Xa,b − Ja,b + 1)
. (8)

Since E1 holds, the 2-core of Ka,b has a total of µk(c)n+ o(n) vertex-copies in Ka and µk(c)n+ o(n) vertex-
copies in Kb. E contains at most 2an edges and the Type B 2-paths contain at most J + t < 2αn edges.
So

Xa,b ≥ µk(c)n− 4an+ o(n).

Therefore, if we choose α to be sufficiently small in terms of ζ, then by Lemma 11.4(b), we have
2La

a,b

Xa,b−1 ,
2La

a,b

Xa,b−1 <

1− ζ
2 . It follows that for every x > 0 we have:

2(Laa,b − x)

Xa,b − 2x− 1
,

2(Laa,b − x)

Xa,b − 2x− 1
< 1− ζ

2
.

If Laa,b = Lba,b then this would yield that the bound of (8) is at most(
4

Xa,b − Ja,b − ta,b

)tab

(1− ζ

2
)Ja,b .
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However, we must multiply by a corrective factor if Jaa,b 6= Jba,b. Noting that |Jaa,b − Jba,b| < ta,b, and that

Xa,b − Ja,b > Xa,b − 2αn > 1
2Xa,b for α sufficiently small, we find that the corrective factor is at most 2ta,b .

Similarly, we have Xa,b − Ja,b − ta,b > 1
2µk(c)n, and so our bound is at most:(

16

µk(c)n

)tab

(1− ζ

2
)Ja,b .

We multiply this bound over all a, b. Then we multiply by the contribution from (7) for each Type B
2-path. We also multiply by the 2 choices for whether each Pi is Type A or Type B, and if it is Type B, the
k(k − 1) choices for its colours - a total of k(k − 1) + 1 < k2 choices for each path.

Setting R = k2 ×max( 1
λc
k(c)

, 16
µk(c)n

), and recalling that t ≤ a, this yields:

Pr(E3 ∧ E1|E2) ≤ (1− ζ

2
)JRa

(
1

n

)t
,

as required. �

Lemma 12.25 There are constants R = R(c, k) and ρ = ρ(c, k) > 0 such that for any 2αn > L >
4
ζ (a+ J):

Pr(E4 ∧ E3 ∧ E1|E2) < (1− ρ)L ×Ra(1− ζ

2
)J
(

1

n

)t
.

Proof We continue the proof from Lemma 12.23. At this point, we have selected the a+J vertices of
the 2-core of Φ and exposed information about the edges amongst them that are present. We have exposed
the values of the parameters bounded by Lemma 11.3. If E1 holds then for each i, j:

• |Ki| = λck(c)n+ o(n);

• the 2-core of Ki,j has ξ(c)n+ o(n) vertices in Ki and ξ(c)n+ o(n) vertices in Kj ;

• the 2-core of Ki,j has µkn+ o(n) edges;

• the 2-core of Ki,j has τkn+ o(n) degree 2 vertices in Ki and τkn+ o(n) degree 2 vertices in Kj .

Following what was already proven in Lemma 12.23, we now must prove that, condtional on all tha has
been exposed thus far,

Pr(E4) < (1− ρ)L.

As in the proof of Lemma 12.23, at any point of the argument we will use Ψ to denote the set of vertices
that have been exposed thus far. Initially, we set Ψ to be the a+ 2J vertices in the 2-core of Φ. Note that
we have only exposed information about edges amongst those vertices, and about whether some of those
vertices are in the 2-cores of various Ki,j ’s.

We will expose ∪a+Ji=1 T
+(ui) using a branching process. For i = 1 to a + J , we explore T+(ui) via a

breadth-first search through all previously unexposed vertices. Initially, ui is unexplored. At each step, we
choose an unexplored vertex w. We expose all children of w in D\Ψ; each of those children is unexplored,
and we label w as explored. We place all of those children into Ψ. Note that, since we only branch amongst
previously unexposed vertices, we might not generate all of T+(ui). However, if we miss some v ∈ T+(ui),
then either v ∈ Ψ or v is the descendent of some v′ ∈ Ψ. Either way, v was (or will be) encountered during
the branching from some other uj , It follows that this process will indeed expose all of ∪a+Ji=1 T

+(ui).
Below, we will prove that at each of the first L steps of this process:

The expected number of children of w is at most 1− ζ

2
, (9)

where ζ = ζ(c) comes from Lemma 11.4. So we run a sequence of a + J branching processes, each with a
branching factor of at most 1 − ζ

2 . Straightforward facts about branching processes imply that there is a
constant ρ = ρ(ζ) > 0 such that for L > 4

ζ (a+ J):
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The probability that these branching processes yield a total of at least L vertices is at most (1− ρ)L.
This establishes the lemma. It remains to prove (9).
We know w ∈ Ki where i = σ(w). Consider any j 6= i and consider any vertex x ∈ Kj\Ψ that is not in

the 2-core of Ki,j . For any non-2-core vertex u ∈ Ki,j , we use p(u) to denote the parent of u in Ki,j . We
will show that in the pendant tree of Ki,j containing x,

Pr(p(x) = w) ≤ 1 + o(1)

|Ki\Ψ|
. (10)

There are k − 1 choices for j, (λck(c) − ξk(c))n + o(n) choices for x and |Ki\Ψ| ≥ (λck(c) − 2α)n + o(n).
So for α sufficiently small in terms of ζ, the expected number of children of w is at most

(k − 1)× λck(c)− ξk(c)

λck(c)− 2α
+ o(1) < 1− ζ

2
,

by Lemma 11.4(a). This establishes (9).
To prove (10), consider any vertex y ∈ Ki\Ψ. If y is in the 2-core of Ki,j , then the same argument as in

Case 2 of the proof of Lemma 12.23 proves that Pr(p(x) = w) ≤ Pr(p(x) = y).
So suppose y is not in the 2-core of Ki,j . Let E∗ be the event that y is a descendant of x in a pendant

tree of Ki,j .
Claim 1: Pr(E∗) = O(n−1).
Proof: We can expose the unique path from y to the 2-core of Ki,j as follows: Set z := y. While z is not

in the 2-core, set z := p(z). A similar argument to that used in the proof of Lemma 12.23 when considering
the edge (uji , wi), yields that at each step: Every 2-core vertex in the opposite part from z is at least as
likely to be the parent of z as x is. So at each step, the probability of reaching x is O( 1

n ). Furthermore,
at each step, the probability of reaching the 2-core is Θ(1). It follows that the probability that we reach x
before the 2-core, i.e. that x is on the path from y to the 2-core, is O(n−1). �

Claim 2: Pr(p(x) = w|E∗) ≤ Pr(p(x) = y|E∗).
Proof: This is equivalent to showing that Pr(p(x) = w ∧ E∗) ≤ Pr(p(x) = y ∧ E∗). Consider any graph

H for which it is possible, under what has been exposed thus far, for Ki,j = H and for which the event
p(x) = w ∧E∗ holds. Let H ′ be the graph obtained by replacing the edge (x,w) with (x, y). Since E∗ holds
for H, we have that H ′ is connected and y is the parent of x in H ′. Furthermore, H and H ′ have the same
2-core and the same number of edges. So H ′ is possibly Ki,j , given what has been exposed thus far, and
H,H ′ are both equally likely to be Ki,j . Since each such H ′ can arise from at most one such H, the Claim
follows. �

Therefore, Pr(p(x) = w) ≤ Pr(p(x) = y) + Pr(p(x) = w∧E∗). A straightforward extension of the proof
of Claim 1 shows that Pr(p(x) = w ∧ E∗) = O(n−2) (we omit the details). Therefore Pr(p(x) = w) ≤
Pr(p(x) = y) +O(n−2). Summing over all y ∈ Ki\Ψ yields

|Ki\Ψ| ×Pr(p(x) = w) ≤ 1 + |Ki| ×O(n−2) = 1 + o(1).

This yields (10). �

Lemma 12.26 For any f(n) = o(n), there exists g(n) = o(n) such that with probability at least 1−e−2f(n),
the total number of vertices on all cyclic D-sets is at most g(n).

Proof sketch: Recall from Lemma 12.21 that every cyclic D-set is a cyclic ∆-set. Recall from Lemma
12.22 that the 2-core of a cyclic ∆-set σ∆σ′ is a cycle u1, ..., ur such that every ui is not in the 2-core of
Kσ(ui),σ′(ui) and its parent is ui+1 (addition mod r). We refer to such a cycle as a Type B cycle. We start
by bounding the expected number of Type B cycles of length r.

First we choose the colours σ(u1), ..., σ(ur); there are fewer than k(k − 1)r choices. Next we choose u1;
there are fewer than n choices. Then we proceed around the cycle: after choosing ui, we expose it’s parent
in Kσ(ui),σ′(ui) and set that vertex to be ui+1. The same argument as in the proof of Lemma 12.23 shows
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that the probability that ui+1 is not in the 2-core of Kσ(ui+1,σ′(ui+1) is less than 1
k−1 (1 − ζ

2 ). Finally, we
bound the probability that u1 is the parent of ur in Kσ(ur),σ′(ur). The argument used in the proof of Lemma

12.23 for the edge (uji , wi) yields a bound of 1+o(1)
λc
k(c)n

. Putting this all together, the expected number of Type

B cycles of length r is less than Q(1− ζ
2 )r, for a constant Q.

Letting Yt be the number of collections of Type B cycles of total size t, these calculations extend to yield
a constant γ = γ(c, k) such that for any t < 2αn,

Exp(Yt ∧ E1) < (1− γ)t.

Recall Definition 12.12 and observe that if u1, ..., ur is the 2-core of a ∆-set, then that ∆-set is contained
in ∪ri=1T

+(ui) (by an argument very similar to the proof of Lemma 12.13). We let Yt,L denote the number of
collections of Type B cycles of total size t for which, denoting the vertices as u1, ..., ut, we have |∪ti=1T

+(ui)| ≥
L. The same argument as in the proof of Lemma 12.25 yields that there is are constants B = B(c, k) and
ρ′ = ρ′(c, k) > 0 such that for 2αn > L > Bt:

Exp(Yt ∧ E1) < (1− γ)t(1− ρ′)L.

This, and an argument much like the proof of Lemma 12.3, is enough to prove the lemma.
The details will appear in a full version of this paper. �

13 The Kempe core threshold

We adapt the argument from [44], where we analyzed a very similar core, but in a simpler setting. In fact,
the main motivation for [44] was to develop a technique that we could use here to analyze the Kempe core.
The reader might prefer to read [44] before reading this section.

We let Gn1,n2,p denote the random bipartite graph whose parts have size n1, n2 and where each of the
n1n2 possible edges is present independently with probability p. We will need the following concentration
bound on the size of the giant component of Gn1,n2,p.

Lemma 13.1. Consider any constant β > 0 and any constant c > β−1 and any n1, n2 = ρn+ o(n). Let β
be the unique solution to β = ρ(1 − e−βc). For every f(n) = o(n) there exists g(n) = o(n) such that with
probability at least 1 − e−4f(n), the largest component of Gn1,n2,p=c/n has size βn ± g(n) and every other
component has size less than g(n).

Proof sketch: It is straightforward to determine that the expected size of the giant component is
βn + o(n), using eg. a branching process analysis. The required concentration on the size of that giant
component can also be obtained by analysing the branching process, as can the probability that there is at
least one other component of size at least g(n). We give the details in a full version of this paper.

We remark that much more is known about the giant component of Gn,p. In particular, its size has a
normal distribution[56, 53, 14]. Presumably one could mimic the fairly short proof from [14] to obtain a
normal distribution for the size of the giant component of a random bipartite graph. But what we require
is weaker than that, and so the simpler proof described above will suffice. �

We will find the Kempe core using a parallel version of Kempe-Strip from Section 5. At each iteration,
we remove all Kempe-chains of size at most g(n). The key fact that permits our analysis is:

Observation 13.2. This procedure is equivalent to repeatedly removing all small components from the bi-
partite random graph induced by each pair of parts Aa, Ab.

At the beginning of iteration i, V ia will be the vertices remaining from part Aa, for each 1 ≤ a ≤ k. For
each a 6= b, we examine the bipartite subgraph induced by the remaining vertices from Aa, Ab; all vertices
from that subgraph that are not in the giant component are deleted. The procedure halts when there are
no vertices to delete. A formal description of this procedure is:
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STRIP
Set V 1

1 = A1, ..., V
1
k = Ak.

For i ≥ 1
for all a 6= b, Ki

a,b is the vertex-set of the largest component

of the bipartite subgraph induced by (V ia , V
i
b ).

for every 1 ≤ a ≤ k,
set V i+1

a = ∩b 6=a(Ka,b ∩ Va).
if V i+1

a = V ia for all 1 ≤ a ≤ k then HALT and return V i1 , ..., V
i
k .

if V i+1
1 = ... = V i+1

k = ∅ then HALT and return ∅, ..., ∅.

Note that if every Ki
a,b contains at most one component of size greater than g(n), then at each step we

are indeed removing all Kempe chains of size less than g(n); i.e. this is equivalent to Kempe-Strip from
Section 5. Lemma 13.1 will imply that this is the case.

The following key observation is crucial to our analysis:

Observation 13.3. Given V ia , V
i
b and xa = |Ki

a,b ∩ V ia |, xb = |Ki
a,b ∩ V ib |, the vertices of Ki

a,b ∩ V ia and

Ki
a,b ∩ V ib can be treated as uniformly random subsets of V ia , V

i
b of sizes xa, xb, respectively.

Proof We can carry out STRIP by exposing, at each step, the vertex set of Ki
a,b without actually

exposing the edges of the giant component that Ki
a,b induces. Thus, at step i + 1, any subsets of the

appropriate size are equally likely to form the vertex sets of the giant component of Ki+1
a,b . �

We will focus mainly on V i1 , V
i
2 ; by symmetry, the other sets V ia evolve in a similar manner. It will be useful

to focus, in particular, on Ki
1,2; i.e. the giant component of the bipartite subgraph induced by the remaining

vertices from V i1 , V
i
2 . It will be convenient to consider sets U i,W i, where we will have V i1 ⊆ U i ⊆ A1 and

V i2 ⊆ W i ⊆ A2. Initially, U i = A1, W i = A2; throughout the procedure, vertices are removed from U i

and W i at the same rate that vertices which lie in small components of any bipartite subgraphs except for
the one induced by (A1, A2) are removed from V i1 and V 2

i . The sets U i,W i will be very close to uniformly
chosen from A1, A2.

To form U i+1, we remove vertices from V i1 as follows: (1) Expose the number that should be removed
because they are in small components of the subgraphs induced by (V i1 , V

i
b ), 3 ≤ b ≤ k. (2) Select that many

vertices uniformly at random from V i1 ; Observation 13.3 permits a coupling by which this is legal. To carry
out (2), we actually remove vertices uniformly from U i until the appropriate number of vertices have been
removed from V i1 . We form W i+1 in the analogous manner.

More formally, U i,W i are defined by the following modified procedure, which captures STRIP from the
viewpoint of the bipartite subgraph on A1, A2.

STRIP1
Set V 1

1 = A1, ..., V
1
k = Ak.

Set U1 = A1,W
1 = A2.

For i ≥ 1
Expose the vertex-set of Ki

1,2.
For every 3 ≤ b ≤ k,

Expose `ib = |V i1 \Ki
1,b|, the number of vertices removed from V i1

because they are not in Ki
1,b.

Repeat `ib times
Pick a sequence of vertices chosen uniformly from U i without replacement

until `ib of them are chosen from V i1 .
This sequence is Lib.
Do not remove these vertices from Ui yet; they are still eligible

to be chosen for another value of b.
Set Ki

1,b ∩ V i1 = V i1 \Lib.
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Expose qib = |V i2 \Ki
2,b|, the number of vertices removed from V i2

because they are not in Ki
2,b.

Repeat qib times
Pick a sequence of vertices chosen uniformly from W i without replacement

until qib of them are chosen from V i2 .
This sequence is Qib.
Do not remove these vertices from Wi yet; they are still eligible

to be chosen for another value of b.
Set Ki

2,b ∩ V i2 = V i2 \Qib.
Set U i+1 = U i\ ∪3≤b≤k Lib.
Set V i+1

1 = (Ki
1,2 ∩ V i1 )\ ∪3≤b≤k Lib.

Set W i+1 = W i\ ∪3≤b≤k Qib.
Set V i+1

2 = (Ki
1,2 ∩ V i2 )\ ∪3≤b≤k Qib.

For every 1 ≤ a, b ≤ k,
Expose the remainder of the vertex sets of Ka,b; i.e. all portions of such vertex sets that do not lie in V i1 , V

i
2 .

Update V i+1
3 , ..., V i+1

k as in STRIP
if V i+1

a = V ia for all 1 ≤ a ≤ k then HALT and return V i1 , ..., V
i
k .

if V i+1
1 = ... = V i+1

k = ∅ then HALT and return ∅, ..., ∅.

Note that, for each i, b, the `ib vertices of Li that are in V i1 are uniform members of V i1 . So by Observation
13.3, we can couple STRIP1 with STRIP so that they produce the same sets V i1 , ..., V

i
k .

A key observation is that for each iteration j, and every b ≥ 3, all vertices in the small components of Kj
1,b

are removed from U j . So all vertices in U i\V i1 are in small components of the subgraph induced by U i,W i.
The same is true of all vertices in W i\V i2 . Thus, if the largest components of the bipartite subgraphs induced
by (V i1 , V

i
2 ) and (U i,W i) have linear size, then they must be the same components. It will be convenient to

focus on the latter subgraph.
The advantage of dealing with the bipartite subgraph induced by (U i,W i) is that U i,W i are nearly

uniform subsets of A1, A2. They are not quite uniform, as there is some dependency between U i and the size
of U i+1. However, we inductively sandwich each U i between two uniformly random subsets of A1 and each
W i between two uniformly random subsets of A2. This will allow us to treat Ki

1,2 as being approximately

the giant component of Gn1,n2,p=c/n where n1 = |U i|+ o(n), n2 = |W i|+ o(n), and thus apply Lemma 13.1.
We define recursively:

ρ1 = ν1 =
1

k

βi = ρi(1− e−βic), for i ≥ 1

νi+1 = νi

(
βi
νi

)k−1
, for i ≥ 2

ρi+1 = ρi

(
βi
νi

)k−2
, for i ≥ 2

Recalling the definition of ck from Section 11, if c > ck then let β = βk(c) be the unique positive solution

to β = 1
k (1− e−βc)k−1. Set ρ = ρk(c) = (βk−2/k)

1
k−1 .

Lemma 13.4. (a) If c < ck then limi→∞ βi = 0, limi→∞ νi = 0, limi→∞ ρi = 0.

(b) If c > ck then limi→∞ βi = limi→∞ νi = β, limi→∞ ρi = ρ.

Proof νi = 1
k

(∏i−1
j=1

βi

νi

)k−1
and ρi = 1

k

(∏i−1
j=1

βi

νi

)k−2
. Therefore (kνi)

k−2 = (kρi)
k−1. Taking the
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fixed point of the recursive equations, we obtain ν = β and β = ρ(1− e−βc). This yields:

(kβ)k−1 = (kρ)k−1(1− e−βc)k−1; (kβ)k−1 = (kβ)k−2(1− e−βc)k−1; β =
1

k
(1− e−βc)k−1.

The rest of the proof is straightforward, after noting that there is a positive solution to β = 1
k (1− e−βc)k−1

iff c ≥ ck. �

Lemma 13.5. For any constant I, and for any f(n) = o(n), there exists h(n) = o(n) such that with
probability at least 1− e−3f(n) we have for each 1 ≤ i ≤ I:

(a) |Ki
1,2 ∩ V i1 |, |Ki

1,2 ∩ V i2 | = βin± h(n);

(b) |U i|, |W i| = ρin± h(n);

(c) |V i1 |, |V i2 | = νin± h(n).

Proof sketch We proceed by induction. At each iteration i, we will actually bound the set sizes within
error terms hi(n), h′i(n) and obtain a failure probability of O(i)e−4f(n). So, taking h(n) = max(hI(n), h′I(n)),
the overall failure probability is O(I2)e−4f(n) < e−3f(n) since I = O(1).

Note that (b,c) both hold at i = 1 with sufficiently high probability, since A1, ..., Ak is a uniformly random
partition of {1, ..., n}.

Suppose that (b) holds for i. We let U−, U+ be two uniformly random sets of vertices from A1 of sizes
ρin − 2hi(n), ρin + 2hi(n) respectively, and we couple them so that U− ⊂ U+. Furthermore, we couple
these sets with the steps of STRIP1 where vertices are removed from U so that, if (b) holds for i then
U− ⊂ U i ⊂ U+. We define W−,W+ similarly.

Since U−,W− are uniform subsets of A1, A2, we can choose U−,W− before any edges are exposed. So
the subgraph induced by (U−,W−) is identical in distribution to G|U−|,|W−|,p=c/n. Similarly for (U+,W+).

Let (X−, Y −), (X+, Y +) be the vertex sets of the giant components of the subgraph induced by (U−,W−),
(U+,W+). Thus, we have X− ⊂ Ki

1,2 ∩ V i1 ⊂ X+ and Y − ⊂ Ki
1,2 ∩ V i2 ⊂ Y +. Thus, applying Lemma 13.1

to both the subgraph induced by (U−,W−) and the subgraph induced by (U+,W+), we obtain that with
probability at least 1− e−4f(n) we have

|Ki
1,2 ∩ V i1 |, |Ki

1,2 ∩ V i2 | = βin± h′i(n),

where h′i(n) = o(n) depends on hi(n) and g(n). This is (a). By symmetry, both parts of each Ki
a,b have size

βin±h′i(n) with probability at least 1−e−4f(n). This implies that for each 3 ≤ b ≤ k, `1b = |V i1 |−βin±h′i(n).

It follows that for any u ∈ U i, Pr(u /∈ Lib) = βin
|V i

1 |
+ o(1) where the o(1) term depends on h′i(n). Using

Observation 13.3 and the fact that the graphs Ka,b can be chosen independently,

Pr(u /∈ ∪b≥3Lib) =

(
βin

|V i1 |

)k−2
+ o(1) =

(
βi
νi

)k−2
+ o(1),

if (c) holds for V i1 . It follows that

Exp(|U i+1|) = (ρin± hi(n))×
(
βi
νi

)k−2
+ o(1) = ρi+1n+ o(n),

Exp(|V i1 |) = |Ki
1,2 ∩ V i1 | ×

(
βi
νi

)k−2
+ o(1) = νin

(
βi
νi

)k−2
+ o(1) = νi+1n+ o(n),

if (a) holds for Ki
1,2 ∩ V i1 . The o(n) terms depend on hi(n), h′i(n). Because these sets are determined by

the choices of Θ(n) vertices from Ui,Wi, it is easy to show that they are concentrated with sufficiently high
probability. The same argument applies to Wi+1, V

i
2 ,K

i
1,2 ∩V i2 . We are implicitly carrying out these bounds
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O(k2) = O(1) other times, and we are requiring that there were no failures in the earlier rounds. It follows
that the failure probability on this inductive step is O(i)e−4f(n).

Being careful about the order of induction and the accumulation of the o(1) terms completes the lemma.
Further details will appear in a full version of this paper. �

By symmetry, the bound in Lemma 13.5(c) applies to V ia for all 1 ≤ a ≤ k. For any ε > 0, Lemma 13.4
implies that we can take I large enough to run STRIP until each V Ia has size (β ± ε)n, and U I ,W I each
have size (ρ± ε)n.

Next we adapt of the proof of Lemma 5.1 in [44], showing that w.h.p. STRIP will terminate and return
sets V1, ..., Vk where each Va has size βn±o(n). These are the sets K1, ...,Kk of the Kempe core. Furthermore
this yields:

Lemma 13.6. For each a, b, the subgraph Ka,b induced by Va, Vb is sandwiched between the giant components
of Gn1,n2,p=c/n and Gn′1,n′2,p=c/n for some n1 < n′1, n2 < n′2 and n1, n2, n

′
1, n
′
2 = ρn+ o(n).

The failure probability in this final step comes from a single application of Lemma 13.1, along with some
simple bounds on binomial variables. So again, we obtain a failure probability of e−3f(n), as required. This
proves Lemma 10.1.

We close this section with a proof sketch of Lemma 11.3.
Lemma 11.3 For any f(n) = o(n), with probability at least 1− e−3f(n), we have that for every i, j:

(a) |Ki| = λk(c)n+ o(n);

(b) the 2-core of Ki,j has ξk(c)n+ o(n) vertices in Ki and ξk(c)n+ o(n) vertices in Kj;

(c) the 2-core of Ki,j has µk(c)n+ o(n) edges;

(d) the 2-core of Ki,j has τk(c)n+ o(n) degree 2 vertices in Ki and τk(c)n+ o(n) degree 2 vertices in Kj.

Proof Sketch: Part (a) follows by observing that yk(c) = βc and so λk(c) = β.
Standard analysis of the k-cores of random graphs (see eg. [52, 45, 32, 24, 29]) shows that the bounds

of parts (b,c,d) hold w.h.p. for the 2-core of Gρn,ρn,p=c/n. Furthermore, the technique from [45] (and
presumably the techniques from some of the other papers as well) can be used to obtain the necessary
concentration; i.e. that there is some γ(n) = o(n) (defined in terms of f(n)) such that with probability at
least 1−e−3f(n) those three parameters differ from ξk(c)n, µk(c)n, τk(c)n by at most γ(n). Lemma 13.6 then
yields Lemma 11.3.

The details will appear in a full version of the paper. �

14 The number of unfrozen variables

We close this paper by sketching the proof of Theorem 2.4 parts (a.i) and (b). I.e., we bound the number of
vertices that are not ω(n)-frozen for ω(n) = o(n).

Fix some constant T , and define T -Kempe-Strip to be the process that we get by replacing g(n) by T in
Kempe-Strip and by running the parallel version; i.e.:

T -Kempe-Strip
Input: a graph G and a k-colouring σ = S1, ..., Sk of G.
While there are any Kempe chains of size at most T

Remove the vertices of every such Kempe chain from G.

Lemma 14.1. If v is deleted during the first I iterations of T -Kempe-Strip, and if v is not T -frozen, then
v is within distance IT of a cycle with length at most 2IT in the original graph.
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Proof Let Γi denote the set of Kempe chains that are removed during iteration i. Form a graph Λ
on the removed Kempe chains as follows. Each Kempe chain C ∈ Γi has an edge pointing to every Kempe
chain C ′ ∈ Γj , j < i for which there is an edge joining C,C ′ in G. Let R(C) be the set of Kempe chains
that can be reached from C in Γ. If R(C) induces a tree in Λ, then it is clear that by switching (some of)
the chains of R(C), one-at-a-time, starting at the leaves, we can eventually switch C. Note that each such
switch changes at most T vertices, and so the vertices of C are not T -frozen.

Consider some C containing v; so C ∈ Γi, i ≤ I. If v is T -frozen, then R(C) does not induce a tree in Λ.
It follows that C is within distance I of a cycle of length at most 2I in Λ. Since each vertex of Λ corresponds
to a connected subgraph of G of size at most T , then v is within distance IT of a cycle with length at most
2IT in G. �

Recall that for each colour a, the number of vertices of Aa in the Kempe core of Pn,p=c/n is βn + o(n),
where β = β(c) is defined recursively in Section 13.

Lemma 14.2. For any c > ck, any f(n) = o(n) and any ψ > 0, there exist T, I = O(1) and g(n) = o(n)
such that with probability at least 1 − e−2f(n): The number of vertices remaining in Aa after applying I
rounds of T -Kempe-Strip to Pn,p=c/n is at most (β + ψ)n.

Proof sketch: The difference between T -Kempe-Strip and the parallel version of Kempe-Strip (i.e.
STRIP from Section 13) is that T -Kempe-Strip does not remove non-giant components of size greater than
T . For any δ > 0 there exists T such that, at every iteration, the expected number of vertices in such
components is at most δ

2n. We adapt the standard concentration bounds on the number of such vertices
in Gn,p (see eg. [13]) to the Gn,n,p setting to show that, at each iteration, the number of vertices in each
component is at most δn with probability at least 1− e−3f(n). It follows that the analogue of Lemma 13.5
holds for T -Kempe-Strip upon adjusting the recursive equations by an additive term of at most δ.

Choose I such that β < βI < β + ψ
2 . And choose δ so that the accumulation of those adjustments over

I iterations is an additive term of at most ψ
2 . This yields the lemma. �

We now prove Lemma 10.4.
Lemma 10.4 For k ≥ 3, any f(n) = o(n) and any ε > 0: There exists constants T,Z such that with
probability at least 1 − e−f(n), all but εn of the vertices outside of the (possibly empty) Kempe core of
Pn,p=c/n are either (i) not T -frozen, or (ii) are within distance Z of a cycle with length less than Z.

Proof Given ε, we set ψ = ε/k, choose T, I as in Lemma 14.2, and set Z = 2TI.
Recall that the order in which we remove the Kempe chains in Kempe-Strip does not affect the output.

So we could run Kempe-Strip as follows:

Phase I: Run T -Kempe-Strip for I iterations.
Phase II: Run Kempe-Strip until it halts.

Lemma 14.1 implies that every T -frozen vertex removed in Phase I is within distance Z of a cycle with
length at most Z.

Suppose c > ck. Lemma 14.2 and Lemma 11.3(a) (recalling that β = λk(c)/k) implies that with prob-
ability at least 1 − e−3f(n), at most kψn = εn vertices are removed during Phase II. This is in Pn,p=c/n.
Lemma 9.3 allows us to transfer to Un,p=c/n.

The case c < ck follows from the same argument, after replacing β by zero, recalling from Lemma 13.4(a)
that for c < ck we have limi→∞ βi = 0, and considering the analogue of Lemma 14.2 for c < ck. �
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