CSC 2427 Fall 2014, Assignment \#2

Due: Thur, Nov 27 at the beginning of class

You can work with other students. You must write your own solutions. List everyone that you worked with.

1. 15 pts Choose some $\alpha<\frac{1}{2}$ and prove that w.h.p. a random 3-regular graph has no independent set of size greater than αn.
2. 30 pts Here you will write a relatively short proof that w.h.p. $G_{n, p=c / n}$ has a large 3-core if c is a lot bigger than the 3-core threshold. Let $G=G_{n, p=100 / n}$. (Remark, if you wish, you can use a larger constant value for c, and you can change some of the constants below.)
(a) Prove that w.h.p. for all $a \leq \frac{n}{10}$, every subgraph $S \subset G$ with a vertices has fewer than $20 a$ edges. Hint: Bound the expected number of subgraphs on a vertices and with $20 a$ edges. And recall that the version of the Chernoff bound that I gave in class only holds for $t \leq E(X)$, so if you wish to bound a binomial variable, you should either do it by a direct combinatorial count, or find a stronger version of Chernoff.
(b) Prove that w.h.p. G has fewer than $\frac{n}{20}$ vertices of degree at most 50 .

Consider the following procedure:
Let Z be the set of all vertices of degree at most 50 in G.
While there are any vertices outside of Z that have at least 40 neighbours in Z, add one such vertex to Z.
(c) Prove that, when the procedure terminates, any vertex not in Z must be in the 3 -core of G.
(d) Prove that w.h.p., when the procedure terminates, $|Z| \leq \frac{n}{10}$. Hint: To the contrary, consider a step at which $|Z|$ is exactly $\frac{n}{10}$; show that this would contradict part (a).
3. 30 pts Choose a random graph in the following manner: Start with a random 4-regular graph on n vertices. Then remove each edge, independently, with probability p.
Find a constant p^{*} such that for $p>p^{*}$, the graph w.h.p. has a linear-sized 3 -core, and for $p<p^{*}$, the graph w.h.p. has an empty 3-core. Hint: p^{*} is rational.

