## CSC 2427 Fall 2014, Assignment \#1

Due: Thur, Oct 2 at the beginning of class

You can work with other students. You must write your own solutions. List everyone that you worked with.

1. 30 pts Consider a random $k$-uniform hypergraph (every hyperedge contains exactly $k$ vertices) with $n$ vertices and $M=c n$ hyperedges. If you prefer, you can work with the $G_{n, p}$ version of a random hypergraph model; your first step will be to define this model - you can assume that they are roughly equivalent in the same sense as the $G_{n, M}, G_{n, p}$ graph models.
Determine a constant $c_{k}$ and prove that: (i) for any constant $c<c_{k}$, w.h.p. the components of the random hypergraph are all small (quantify what you mean by "small"); (ii) for any constant $c>c_{k}$, w.h.p. the random hypergraph has a giant component.
2. 20 pts Prove the following statement twice - once using the second moment method and once using the Simple Concentration Bound:
Fix any tree $T$ and any constant $c>0$. There exists a constant $z=z(T, c)$ such that a.s. $G_{n, p=c / n}$ has $z n+o(n)$ components that are isomorphic to $T$. Note: $T$ is fixed and so $|T|=O(1)$.
3. 30 pts Consider an instance of random 2-SAT. You can work with either the $G_{n, M}$ or the $G_{n, p}$ version of random 2-SAT; in the latter, each of the $4\binom{n}{2}$ potential clauses is included with probability $p$. You will determine the satisfiability threshold.
Any instance of 2-SAT gives rise to a directed graph, as follows: For each variable $x$, there are two vertices $x, \bar{x}$. For each clause, there are two directed edges, where $a \rightarrow b$ means that the clause implies "if $a$ then $b$ "; eg. the clause $(x \vee \bar{y})$ yields the edges $\bar{x} \rightarrow \bar{y}$ and $y \rightarrow x$. For a vertex $u$ in the digraph, we use $-u$ to represent the negation of $u$; eg. if $u=\bar{x}$ then $-u=x$.
(a) A bicycle is a path $u_{1}, \ldots, u_{t}$ in the directed graph, along with two additional edges: $-u_{a} \rightarrow u_{1}$ and $u_{t} \rightarrow-u_{b}$ for some $a \leq b$. We also require that no two vertices of $u_{1}, \ldots, u_{t}$ correspond to the same variable; i.e. we cannot have $u_{i}=u_{j}$ or $u_{i}=-u_{j}$ for any $i \neq j$.
You can assume that the following Claim is true; try to think about how to prove it, but you don't have to submit a proof.
Claim: The 2-SAT formula is satisfiable iff the directed graph does not have a bicycle.
Bound the expected number of bicycles to prove that if $c<c^{*}$ then w.h.p. the random formula is satisfiable.
(b) A flower is a bicycle in which $a=b$. So if the directed graph has a flower, then the formula is not satisfiable.
Choose suitable numbers $t, a$ and then apply the second moment method to prove that if $c>c^{*}$ then w.h.p. the directed graph contains a flower with those values of $t, a$.
