CSC 2410 Final Exam

Dec 16, 2015

Write your solutions in the exam booklets provided. Put your name on every booklet.

Ask me if you don't understand a question.

You can use the West book. You can't use any other books or notes.

Unless stated otherwise, you can use as fact any theorem which I presented during the lectures. You can also use any theorems from the West book.

These problems all have reasonably short solutions. A solution that is too long might not get full marks, even if it is correct; for example, a proof with a very large number of cases. The grader will subjectively decide what constitutes "too long".

All graphs are simple, unless stated otherwise.

All graphs are simple except in problem 3

1. ($\mathbf{1 0} \mathbf{~ p t s}$) G is not perfect, but every induced subgraph of G is perfect. (We call this a minimal imperfect graph.) Prove that no clique of G is a vertex cutset.
See Definition 8.1.1 on page 319. You may not use Theorem 8.1.29 or Corollary 8.1.30.
2. ($\mathbf{1 0} \mathbf{~ p t s}$) Prove that a planar embedded graph is bipartite iff every face is even.
3. (15 pts) You are given a sequence of integers $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$. Prove that there is a loopless multigraph (i.e. multiple edges are permitted but loops are not permitted) with degree sequence d_{1}, \ldots, d_{n} iff both:
(i) $\sum_{i=1}^{n} d_{i}$ is even; and
(ii) $d_{1} \leq d_{2}+d_{3}+\ldots+d_{n}$.

This is Exercise 1.3.63. The hint on page 509 suggests an inductive proof, but there are other approaches.
4. ($\mathbf{1 5} \mathbf{~ p t s}) G$ is a bipartite graph with bipartition (X, Y). Every vertex has degree at least 1 . $d(x) \geq d(y)$ for every edge $x y$ with $x \in X, y \in Y$. Prove that G has a matching that saturates X.
5. ($\mathbf{2 0} \mathbf{~ p t s}$) Prove that if G has girth at least 5 and is not a forest, then \bar{G} has a Hamilton cycle. This is Exercise 7.2 .25 . Hint: If \bar{G} does not satisfy Ore's condition, then what can you say about it?
6. ($\mathbf{2 0} \mathbf{~ p t s}$) Exercise 6.3 .14 says:
${ }^{(*)}$ If G is an embedded planar graph and every face has size 3 then G is 3-colourable iff G is Eulerian.

You don't need to prove $\left(^{*}\right)$. You can use it for parts (a) and (b) below. Recall the characterization of Eulerian graphs from Theorem 1.2.26.
Prove each of the following statements:
(a) If G is an Eulerian planar embedded graph with minimum degree >2, the outer face has size 5 and every other face has size 3 , then $\chi(G)=3$.
(b) There is no Eulerian planar embedded graph with minimum degree >2 where one face has size 5 and every other face has size 3 .

