CSC 2410 Final Exam

Apr 10, 2014

Write your solutions in the exam booklets provided. Put your name on every booklet.

Ask me if you don't understand a question.

You can use the West book. You can't use any other books or notes.

Unless stated otherwise, you can use as fact any theorem which I presented during the lectures. You can also use any theorems from the West book.

These problems all have reasonably short solutions. A very long solution will not get full marks, even if it is correct. The grader will subjectively decide what constitutes "very long".

All graphs are simple.

1. ($5 \mathbf{~ p t s}$) G is a planar triangulation (i.e. a planar embedding of a graph where every face has size 3). Prove that the number of faces is even.
2. ($\mathbf{1 0} \mathbf{~ p t s) ~ A ~ g r a p h ~ i s ~ s a i d ~ t o ~ b e ~ u n i q u e l y ~} k$-edge-colourable if it is k-edge-colourable and all k-edge-colourings are equivalent under a permutation of the colours. In other words, every k-edge-colouring partitions the edges into the same k matchings.
Prove that, for $k \geq 2$, if a k-regular graph is uniquely k-edge-colourable then it has a Hamiltonian cycle.
This is a generalization of 7.2 .14 on page 296 .
3. (10 pts) G is a bipartite graph with bipartition (X, Y) where $|X|=|Y|=n$. For every $S \subseteq X$ except for $S=X$ and $S=\emptyset$, we have $|N(S)|>|S|$. Prove that every edge of G lies in a perfect matching.
Remark: this is roughly the same problem as 3.1.21 on page 119.

4. (20 pts)

(a) (5 pts) Prove that for $k \geq 3$, every k-regular graph with exactly $2 k+1$ vertices is 3 -connected.
(b) ($\mathbf{1 5} \mathbf{p t s}$) Prove that for $k \geq 2$ every k-regular graph with exactly $2 k+1$ vertices has a Hamiltonian cycle. For part (b), you can use the following lemma (which you don't need to prove):
Lemma: Every 2-connected graph with $n \geq 3$ vertices and minimum degree δ has a cycle of length at least $\min \{n, 2 \delta\}$.

This is essentially the same as 7.2 .40 on page 298
5. (15 pts) Prove that if G is triangle-free (i.e. contains no cycles of length 3) then $\chi(G) \leq 2 \sqrt{n}$, where n is the number of vertices in G.

This is 5.2.15 on page 216. West provides the following hint: Use large neighbourhoods as colour classes while there remain vertices of high degree; then apply Brooks' Theorem.
6. (25 pts) H is a tournament, and $x \in H$ is a vertex with maximum outdegree.
(a) (5 pts) Prove that every vertex $u \in H$ can be reached from x using a directed path with at most 2 edges.
(b) (20 pts) Prove that H has a spanning tree T rooted at x such that
(i) The edges of T are directed away from the root;
(ii) The height of T is at most 2 ;
(iii) Every vertex other than x has outdegree at most 2 in T.

Hint: Use either network flows or Hall's Theorem.
This is Exercise 4.3.16 from page 190.
See Definition 1.4.27 from page 62.

