CSC 2410 Assignment \#3, Fall 2017

Due: Tuesday Dec 5 at 10:00 AM

You may consult the text. You may not consult any other books and materials.

You may consult with each other only on problem 6. For the other problems, you can only consult with the instructor and the TA for this course.

Of course, each problem requires a well-written proof. Proofs that are unnecessarily lengthy might not get full marks, even if they are correct. And they might not be read thoroughly by the grader.

1. (5 pts) Either find a planar embedding of the Petersen Graph or find a $K_{5^{-}}$or $K_{3,3^{-}}$-subdivision in the Petersen Graph. (The Petersen Graph is on the cover of the text; see also Def 1.1.36.)
2. (10 pts) Prove that a planar embedded graph is bipartite iff every face has even size.
3. ($\mathbf{2 5} \mathbf{~ p t s}$) 6.2.9 from West.
4. (35 pts) In this problem, you may not apply the Four Colour Theorem.
(a) Prove that if G is a connected planar graph such that (i) G has maximum degree at most 5 , and (ii) G has at least one vertex of degree less than 5 , then $\chi(G) \leq 4$.
(b) Prove that if G is a 3-connected 5-regular planar graph then $\chi(G) \leq$ 4.

Hint: Choose two non-adjacent vertices a, b and contract them into a single vertex. If you choose a, b wisely, then the resultant graph will be planar, and you will be able to prove that it cannot contain a 5-critical subgraph. Then argue that this implies $\chi(G)<5$.
(c) Prove that if G is a planar graph with maximum degree at most 5 then $\chi(G) \leq 4$.
Note: If you do not solve (a) or (b), then you can assume that what they assert is true and still attempt (c).
5. (15 pts) You are given a multigraph with a label from $\{1, \ldots, k\}$ on each edge; there are no loops but there may be multiple edges. Your goal is to assign a label from $\{1, \ldots, k\}$ to each vertex so that there is no edge $u v$ where u, v and $u v$ all have the same label. This is a variation of k colouring where each edge only forbids one colour from appearing on both endpoints; if $u v$ is labelled 1 then u and v can have the same colour as long as it is not 1.
Use the probabilistic method to prove that if the number of edges is at most k^{2} then there is a way to label the vertices as required.
6. (20 pts) Suppose that G has n vertices and minimum degree δ. Suppose further that for every two vertices x, y in $G,|N(x) \cup N(y)|+\delta \geq n+10$. Prove that G has a Hamilton cycle.

Remark: The " +10 " term is much higher than necessary.

