1. Show that the following TRIANGLE decision problem belongs to P .

Input: An undirected graph $G=(V, E)$.
Question: Does G contain a "triangle", i.e., a subset of three vertices with all edges between them present in the graph?

Solution: The following algorithm decides TRIANGLE.
On input G :
For each triplet of vertices (u, v, w) in G :
Return True if G contains all edges $(u, v),(v, w),(w, u)$.
Return False.

By definition of TRIANGLE, the algorithm will return True iff G contains a triangle.
Let $n=|V|$ (number of vertices) and $m=|E|$ (number of edges) in G. There are $\binom{n}{3}=\Theta\left(n^{3}\right)$ many triplets of vertices in G, and it is possible to enumerate them one by one in time $\mathcal{O}\left(n^{3}\right)$. For each triplet, it takes time $\mathcal{O}(m)$ to verify the presence of the three edges (depending on how G is encoded, this could be reduced). So the algorithm runs in time $\mathcal{O}\left(m n^{3}\right)$.
2. Show that the following CLIQUE decision problem belongs to NP.

Input: An undirected graph $G=(V, E)$ and a positive integer k.
Question: Does G contain a k-clique, i.e., a subset of k vertices with all edges between them present in the graph?

For example, the shown graph contains a 3 -clique (there are sets of 3 vertices with all edges between them, e.g., $\{a, b, c\}$), but it does not contain a 4 -clique (every set of 4 vertices is missing at least one edge, e.g., $\{a, b, c, d\}$ is missing (b, d)).

Solution:

Verifier for CLIQUE:
On input $\langle G, k, c\rangle$, where c is a subset of vertices:
Return True if c contains k vertices and G contains edges between all pairs of vertices in c; return False otherwise.

Verifier runs in polytime (where $n=|V|, m=|E|$): checking all pairs of vertices in c takes time $\mathcal{O}\left(k^{2} m\right)$ ($\mathcal{O}\left(k^{2}\right)$ pairs in c, times $\mathcal{O}(m)$ for each one).
If $\langle G, k\rangle \in$ CLIQUE, then verifier returns True when $c=$ a k-clique of G;
if verifier returns True for some c, then $\langle G, k\rangle \in$ CLIQUE (c is a k-clique).
CLIQUE \in P? Unknown (checking all possible subsets not polytime because k not fixed, part of input).
Contrast CLIQUE with TRIANGLE: TRIANGLE \in NP (on input $\langle G, c\rangle$, check c encodes a triangle in $G)$, but TRIANGLE $\in \mathrm{P}$ as well.

What's the difference? Same algorithm to decide CLIQUE takes time $\mathcal{O}\left(n^{k+1}\right)$, except that k is part of the input (instead of being fixed) so this could be as bad as, e.g., $\mathcal{O}\left(n^{n / 2}\right)$ - not polytime.
3. Show that the following IndependentSet (IS) decision problem belongs to NP.

Input: An undirected graph $G=(V, E)$ and a positive integer k.
Question: Does G contain an independent set of size at least k, i.e., a subset of vertices $I \subseteq V$ such that $|I| \geqslant k$ and G contains no edge between any two vertices in I ?

Solution: Verifier for IS:
On input (G, k, c), where c is a subset of k vertices of G :
Return True if G does not contain any one of the edges between vertices in c; return False otherwise.

This takes time $\mathcal{O}\left(k^{2} m\right)$: there are $\mathcal{O}\left(k^{2}\right)$ pairs of vertices in c and $\mathcal{O}(m)$ edges to check for each one.
Also, if there is some value of c such that the verifier returns True for (G, k, c), then G contains an independent set of size k or more (c is such an independent set), and if G contains an independent set of size k or more, then there is some value of c such that the verifier returns True for (G, k, c) (let c be the independent set).
It does not appear likely that IS $\in \mathrm{P}$, because checking every subset of k vertices takes more than polynomial time (time $\Omega\left(n^{k}\right)$ where k can depend on n), and there is no obvious way to speed this up.
4. Show that the following UNARY-PRIMES decision problem belongs to P.

Input: 1^{n} (i.e., a string of ' 1 's of length n).
Question: Is n prime?

Solution: The following algorithm decides UNARY-PRIMES:
On input 1^{n} :
For $k=2,3, \ldots, n-1$:
If k divides n, return False
Return True if no value of k worked.

The algorithm returns True iff n is prime, by definition. The division can be carried out by repeated subtraction, which takes time $\mathcal{O}\left(n^{2}\right)$ for each value of k, so the entire algorithm runs in time $\mathcal{O}\left(n^{3}\right)$.

NOTE: This works because n is the size of the input at the same time as the value of the input. For any other base, this would NOT work because the value m would be represented using $n=\log m$ many digits so the size would be proportional to $n=\log m$ and the running time would become exponential (as a function of n).

