
CSC 373 Tutorial #8 Instructor: Milad Eftekhar

Describe each problem with a linear or integer program.

1. Simple Scheduling with Prerequisites (SSP):
Given a set of problems, some of which need to be finished in order to begin others, give start times to the jobs
which allow all of the prerequites to be met (if there are circular prerequisites, then no solution is possible). More
precisely, we are given a list of durations d1, d2, ..., dn for each job, together with prerequisites between the jobs,
i.e., values pi,j for 1 6 i, j 6 n such that pi,j = 1 if job i is a prerequisite of job j; pi,j = 0 otherwise. We want to
find start times s1, s2, ..., sn for each job such that each job i finished no later than the start time of all jobs that
have i as a prerequisite.

Solution: For each job, we have 1 variable si = start time of job i. In addition, we have one more variable T =
time to completion.

Minimize time to completion T

Subject to:

T > si + di for i = 1, 2, ..., n

si > pj,i × (sj + dj) for i = 1, 2, ..., n; j = 1, 2, ..., n

The constraints ensure that each job starts only after each of its prerequisites has completed, and that the
total completion time has the correct value. The fact that we try to minimize T ensures that none of the values
in a solution are greater than they need to be.

2. A problem on Sets:
Given a set of elements E = {x1, x2, ..., xn} and a set of subsets of E, S = {H1, H2, ...,Hm}, we want to find the
smallest subset C of E such that for each set Hi, C ∩Hi 6= ∅.

Solution: We have one variable vi for each element of E.

Minimize
∑n

i=1 vi

Subject to:

vi ∈ {0, 1} for each element xi

va + vb + ... + vk > 1 for each Hj = {xa, xb, ..., xk}

Let C = {xi : vi = 1}.

Minimization ensures that we pick as few values vi = 1 as possible. Constraints ensure that at least one element
is picked for each set.
NOTE: This is Integer Programming (restricting solution to integer values), which is not strictly the same as
Linear Programming.

Summer 2013 Page 1 of 2



CSC 373 Tutorial #8 Instructor: Milad Eftekhar

3. Satisfiablity (SAT):
Given a formula F in CNF, we want to know if F is satisfiable, i.e., if there is some setting of the variables of F
that makes F true.

F has the form C1∧C2∧ ...∧Cr, where each clause Cj is a disjunction of one or more literals, Cj = (aj,1∨ ...∨aj,sj ),
with each ai in {v1,∼ v1, ..., vn,∼ vn}. For example,

F = (v1 ∨ v2) ∧ (∼ v1 ∨ v3 ∨ v4) ∧ (∼ v2)

Solution: Use one variable xi for each propositional variable vi.
Constraints:

xi ∈ {0, 1} for each xi

b1 + ... + bs > 1 for each clause (a1 ∨ ... ∨ as),

where bj = xi if aj = vi and bj = (1− xi) if aj =∼ vi.

For example, for the formula above,

x1, x2, x3, x4 ∈ {0, 1}

x1 + x2 > 1

(1− x1) + x3 + x4 > 1

1− x2 > 1
Objective function? None! We only care whether or not the constraints can be satisfied as they correspond

exactly to the structure of the formula (and whether or not it can be satisfied).
To get answer to original question, set vi = true iff xi = 1. Any assignment of values to the variables of F

making F true must make at least one literal true in each clause of F, and this corresponds to a setting of the
variables of the integer program that satisfies each constraint. The converse is also true because of the way the
integer program constraints are written based on the formula.

Summer 2013 Page 2 of 2


