
CSC 373 Tutorial #5 Instructor: Milad Eftekhar

Problem 1: Consider the following “Longest Increasing Sublist” problem.

Input: A list of integers L = [a1, a2, . . . , an].

Output: A sublist L′ = [ai1 , ai2 , . . . , aik] such that 1 6 i1 < i2 < · · · < ik 6 n and ai1 < ai2 < · · · < aik and k is
maximum.

For example, if L = [4, 1, 7, 3, 10, 2, 5, 9], then L1 = [1, 3, 5, 9] and L2 = [1, 2, 5, 9] are two optimal solutions, but
[1, 2, 3, 4] is not a solution (it takes integers from L out of order), [1, 7, 3, 10] is not a solution (it is not increasing),
and [4, 7, 10] is not an optimal solution (it is not as long as possible).

Give a dynamic programming algorithm to solve the Longest Increasing Sublist problem.

Step 0: Describe the recursive structure of sub-problems.

Any optimal solution for input [a1, a2, . . . , an] either contains an, or it does not. Consider sub-problems
whose solutions have last element ak, for various values of k.

Step 1: Define an array (“semantic array”) that stores optimal values for arbitrary sub-problems.

Let M [k] represent the length of a longest increasing sublist that ends with ak, for k = 1, 2, . . . , n.

Step 2: Give a recurrence relation for the array values.

M [k] = max{M [i] + 1 : 0 < i < k ∧ ai < ak}, for k = 1, 2, . . . , n.

MAX = maxn
k=1M [k] is the optimal value.

Step 3: Write a bottom-up algorithm to compute the array values, following the recurrence.

for k in [1,2,...,n]:

M[k] := 1

for i in [1,2,...,k-1]:

if a_i < a_k and M[i] + 1 > M[k]:

M[k] := M[i] + 1

Step 4: Use the computed values to reconstruct an optimal solution.

Use a second array N [k] to store the index of the second-last element in the longest sub-list that ends with
ak.

Complete algorithm.

for k in [1,2,...,n]:

M[k] := 1

N[k] := k

for i in [1,2,...,k-1]:

if a_i < a_k and M[i] + 1 > M[k]:

M[k] := M[i] + 1

N[k] := i

Figure out the last element in the longest increasing sub-list.

b := 1

for k in [2,3,...,n]:

if M[k] > M[b]: b = k

Summer 2013 Page 1 of 3

CSC 373 Tutorial #5 Instructor: Milad Eftekhar

Generate the sub-list, working backwards.

S := [b]

while N[b] != b:

S := N[b] + S

b := N[b]

Problem 2: Consider the problem of creating a weekly schedule of TA office hours. You are given a list of TA’s
t1, t2, . . . , tn and a list of time slots s1, s2, . . . , sm for office hours. Each TA is available for some of the time slots
and unavailable for others. Each time slot sj must be assigned at most one TA, and every week, each TA ti is
responsible for some positive integer number of office hours hi.
We want to know if there is a feasible schedule of office hours, i.e., if it is possible to assign time slots to TA’s
to satisfy all of the problem constraints (each TA gets exactly hi time slots and each time slot gets at most one
TA — some time slots may remain unfilled).

(a) Describe precisely how to model this problem as a network flow problem. (Don’t forget to specify all edge
directions and capacities in your network.)

Solution: Create a network N with

• vertices V =
{
s, s1, . . . , sm, t1, . . . , tn, t

}
,

• edges E =
{

(s, si) : 1 6 i 6 m
}
∪
{

(si, tj) : 1 6 i 6 m, 1 6 j 6 n, and TA tj is available at time
si
}
∪
{

(tj , t) : 1 6 j 6 n}, where c(s, si) = 1 and c(si, tj) = 1 and c(tj , t) = hj for 1 6 i 6 m, 1 6 j 6 n.

(Note: It is also correct to do this with all edges directed in the opposite direction.)

(b) Explain clearly the correspondence between valid assignments of TAs to office hour time slots and valid integer
flows in your network above.

Solution:

• Every valid assignment of TAs to time slots generates a valid flow in N by setting f(si, tj) = 1 iff tj is
assigned to si, f(s, si) = 1 iff someone is assigned to time si, f(tj , t) = the number of hours assigned to tj .

• Every valid integer flow in N corresponds to a valid assignment of TAs to time slots by assigning tj to si
for all edges with f(si, tj) = 1, because no time can have more than one TA assigned and no TA ti can be
assigned to more than hi times, by the capacity and conservation constraints.

Problem 3 [If you have time]:
Consider the following “teaching assignment” problem: We are given a set of profs p1, ..., pn with teaching loads
L1, ..., Ln, and a set of courses c1, ..., cm with number of sections S1, ..., Sm, along with subsets of courses that
each prof is available to teach. The goal is to assign profs to courses so that: (1) each prof pi assigned exactly Li

courses, and (2) each course cj assigned exactly Sj profs.

Show how to represent this problem as a network flow, and how to solve it using network flow algorithms. Justify
carefully that your solution is correct and can be obtained in polytime.

Solution: Given input, create network with vertices p1, ..., pn, c1, ..., cm, source s, sink t, and edges (s, pi) of
capacity Li for each pi, edges (cj , t) of capacity Sj for each cj , edges (pi, cj) of capacity 1 for each pi, cj such that
pi is available to teach cj .

• Any assignment of profs to courses yields flow in network: set f(pi, cj) = 1 if pi assigned cj , 0 otherwise; set
f(s, pi) = number of courses assigned to pi; set f(cj , t) = number of profs assigned to cj . Value of this flow

Summer 2013 Page 2 of 3

CSC 373 Tutorial #5 Instructor: Milad Eftekhar

= number of course sections assigned. This implies maximum flow in network at least as large as maximum
number of course sections that can be assigned.

• Any integer flow in network yields assignment of profs to courses: assign pi to cj iff f(pi, cj) = 1. By capacity
constraints, no prof can be assigned more than Li courses, no course can be assigned more than Sj profs,
and no prof will be assigned to a course they are unavailable to teach. This means the maximum number of
courses sections that can be assigned is at least as large as the maximum flow value for the network.

In other words, maximum flow value = maximum number of course sections that can be assigned. So, find
max flow f (in polytime). If |f | = L1 + ... + Ln = S1 + ... + Sm, then it is possible to assign profs to courses to
satisfy all constraints (as indicated above); otherwise it isn’t. If it is not possible, max flow yields max assignment
possible. This could be used to determine set of courses that can be offered, or maximum teaching load for profs,
for example.

Summer 2013 Page 3 of 3

