Problem 1. Fractional Knapsack (greedy algorithm). There are $n$ items $I_{1}, \cdots, I_{n}$. Item $I_{i}$ has weight $w_{i}$ and worth $v_{i}$. All these items can be broken into smaller pieces. We have a knapsack with capacity S and want to pack this knapsack with the maximum value. So we may decide to carry only a fraction $x_{i}$ of item $I_{i}$ where $0 \leqslant x_{i} \leqslant 1$. Example: if $\mathrm{S}=10$, $\mathrm{w} 1=5, \mathrm{v} 1=2, \mathrm{w} 2=6, \mathrm{v} 1=1, \mathrm{w} 3=4, \mathrm{v} 1=3$, then the optimal value we can get occurs when we take 4 units of the item 3 (worth 3 ), 5 units of item 1 (worth 2 ), and 1 unit of item 2 (worth $1 / 6$ ) for a total value of $31 / 6$.
Solution. Sort according to decreasing unit value: $\frac{v_{1}}{w_{1}} \geqslant \frac{v_{2}}{w_{2}} \geqslant \cdots \geqslant \frac{v_{n}}{w_{n}}$
Optimality: The optimality is trivial. There are two factors we should consider.

- There is an optimal solution that begins with the item that has the maximum unit value. To prove this, let the item $I^{\prime}$ has the maximum ratio $\frac{v^{\prime}}{w^{\prime}}$. Thus for all items $I$ we have $\frac{v^{\prime}}{w^{\prime}} \geqslant \frac{v}{w}$. Thus, $v^{\prime} \geqslant \frac{v \times w^{\prime}}{w}$. Now assume there is an optimal solution that does not use the full $w^{\prime}$ weight of $I^{\prime}$. Then if we replace any amount of any other item $I$ in the solution with $I^{\prime}$, the total value will not decrease.
- Let $O$ be the optimal solution for the original problem $P$. Moreover, let $I$ be the first greedy choice we make in $O$. Then $O-I$ is the optimal solution for the subproblem $P^{\prime}$ after the first greedy choice has been made.

Problem 2. Knapsack with repetition (dynamic programming): page 167, the DPV textbook (in Section 6.4). Note the difference with the classic knapsack problem (knapsack without repetition).

Problem 3. The traveling salesman problem (dynamic programming): pages 173-175, the DPV textbook (in Section 6.6).

