P vs NP

So far, we've seen:

- problems solvable efficiently by simple algorithms (greedy);
- problems that cannot be solved efficiently by simple techniques, but that can be solved efficiently by more complex algorithms (network flows, dynamic programming, linear programming);
- problems that cannot be solved efficiently by any known algorithm (the only known solutions involve exhaustive search).

We want to find a general method to prove some problems has no efficient solution.

Running times and input size:

- What is the input size? The amount of space we need to save the input.
- consider bit-size, i.e., each integer a requires size $\left[\left(\log _{2}(a+1)\right)\right]$ approximately $\log _{2} a$. For example, bit size of list $\left[a_{1}, \ldots, a_{n}\right]$ is $\log _{2} a_{1}+\ldots+\log _{2} a_{n} \leqslant n \log _{2}\left(\max \left(a_{1}, \ldots, a_{n}\right)\right)$. With additional assumption that integers take up constant number of bits, this is equivalent to n within a constant factor - but that assumption does not always hold!
- One exception: representing integers in unary notation (i.e., integer k is represented using k many 1 's) requires exponentially many more characters than binary (or any other base), so we rule this out.
- As it turns out, different models of computation and different ways of measuring input size can affect running time by up to polynomial factors (e.g., doubling, squaring, etc.) So simply using big-Oh notation to measure running time is too "precise": e.g., problems solved in time $\Theta(n)$ on one model may require time $\Theta\left(n^{3}\right)$ on another model.
- Use coarser scale: ignore polynomial differences. Luckily, any polytime algorithm as a function of informal size is also polytime as a function of bitsize, as long as it uses only reasonable primitive operations comparisons, addition, subtraction - other operations (multiplication, exponentiation) are NOT considered reasonable because repeated application of the operation can make the result's size grow exponentially. This does not mean that we cannot use multiplication, just that we cannot count it as a primitive operation.

Search problems vs. Optimization problems vs. Decision problems:

For a problem X :

- Search problem: we need to find a solution that satisfies X.
- Optimization problem: we need to find a solution that satisfies X and minimizes (maximizes) an objective function.
- Decision Problem: we need to determine if there is any solution for X. In fact the output of a decision problem is a single yes/no answer. e.g., "Given graph G, vertices s, t, is there a path from s to t ?" or "Given weighted graph G, bound b, is there a spanning tree of G with weight $\leqslant b$?" We usually use the notation D to show a decision problem.
- Why limit ourselves to decision problems? We want to prove negative results (that problems have no efficient solution). Intuitively, decision problems are "easier" than corresponding optimization/search problems, so if we can show that a decision problem is hard (has no efficient algorithm), this would imply that the more general problem is also hard. We'll make this precise.

P, and NP:

- The class P: All decision problems for which solutions can be efficiently (i.e.in polynomial time) found.
- The class NP (non-deterministic polynomial): All decision problems that can be "verified" in polytime. A problem D can be "verified" in polytime if there is an algorithm V (the "verifier") that takes two inputs (x, c) such that:
- for all yes-instances x (inputs to D for which the answer is yes), there is some string c such that $V(x, c)$ outputs "yes" in polytime (c is called a "certificate");
- for all no-instances x, for all strings $c, V(x, c)$ outputs "no".

In other words, for all inputs x, the answer is yes iff there is a certificate c such that $V(x, c)$ outputs "yes" in polytime (measured as a function of $n=|x|$ only, ignoring the size of c).

- Equivalently: decision problem D is in NP iff there is an algorithm to solve D that has the following form:

On input x :

```
generate all "candidates" c, and for each one:
    verify some property of x and c
```

where the last "verification" step runs in worst-case polynomial time, as a function of size (x). The time required to generate all candidates is ignored.

- Why the complicated definition? Doesn't correspond to any practical notion of computation. However, turns out to exactly capture the computational complexity of the vast majority of "real-life" problems.

Example 1: Show that the decision problem COMPOSITE (given positive integer x, does x have any factors?) belongs to NP.
Consider the verifier $V(x, c)$:

- check that $1<c<x$,
- check that c divides x,
- output yes if both checks succeed; no otherwise.

If x is composite, $V(x, c)$ will output yes for some value of c (pick c to be any factor of x). If x is not composite (i.e., x is prime), $V(x, c)$ will output no for every value of c. Moreover, $V(x, c)$ runs in polytime as a function of $|x|$ because basic arithmetic operations are polytime.
Note: the obvious algorithm (try all prime numbers between 2 and \sqrt{x}) does NOT run in polytime because there are at least $\sqrt{x} / \ln x$ many such numbers to try. Expressed as a function of $n=\log _{2} x$ (the bit-size of x), this is $2^{n / 2} / n$, which is exponential.

Example 2: VERTEX-COVER

Input: Undirected graph G, positive integer k
Question: Does G contain a vertex cover of size k, i.e., a set C of k vertices such that each edge of G has at least one endpoint in C ?
VERTEX-COVER (VC) is in NP:
On input $\langle G, k, c\rangle$:

- verify that c is a subset of exactly k vertices of G
- check that c forms a vertex cover

First step takes time $\mathcal{O}(k n)$; second step takes time $\mathcal{O}(m k)$; total is $\mathcal{O}(k(m+n))$ that is polynomial.
Notation: From now on, the notation " $x \in D$ " means that " x is a yes-instance of the decision problem D " (similarly, " $x \notin D$ " means that " x is a no-instance of D ").
Note: P is a subset of NP; however it is not known whether $\mathrm{P}=\mathrm{NP}$ or $\mathrm{P} \neq \mathrm{NP}$. It is widely believed that $\mathrm{P} \neq$ NP (but not proven yet).

Polytime reductions/transformations:

A technique to formalize this notion that one problem is not "harder" than another.
$D_{1} \leqslant{ }_{p} D_{2}$ if there is a function f computable in polytime such that for all inputs $x, x \in D_{1}$ iff $f(x) \in D_{2}$. In other words, inputs for D_{1} can be transformed (in polytime) into inputs for D_{2} such that the answers are the same for both inputs.

We have seen many concrete examples of reductions, when working with network flows and linear programming.
Theorem: If $D_{1} \leqslant_{p} D_{2}$ and D_{2} is in P, then D_{1} is in P. (same for NP)
Proof: By definition, $D_{1} \leqslant{ }_{p} D_{2}$ means there is some polytime computable transformation f such that $x \in D_{1}$ iff $f(x) \in D_{2} . D_{2}$ in P means that there is some algorithm A such that $A(x)=$ yes iff $x \in D_{2}$. The following is a polytime algorithm for D_{1} :

On input x, compute $f(x)$ and call $A(f(x))$, returning same answer.
Since $f(x)$ computable in polytime, $|f(x)|$ (the size of $f(x)$) is a polynomial in $|x|$, so runtime of $A(f(x))$ is a polynomial function of a polynomial in $|x|$, which is still polynomial.
Same argument works with polytime verifier $V(x, c)$ in place of algorithm $A(x)$, to show the result for NP.
Corollary: If $D_{1} \leqslant_{p} D_{2}$ and D_{1} not in P, then D_{2} not in P.

NP-completeness:

* Use \leqslant_{p} to identify "hardest" problems in NP.

Decision problem D is "NP-complete" if:

1. D in NP
2. D is "NP-hard", i.e., for all D ' in NP, D ' $\leqslant_{p} \mathrm{D}$.

Theorem: Suppose D is an NP-complete problem. Then D in P iff $\mathrm{P}=\mathrm{NP}$.
Proof:
(\Leftarrow) If $\mathrm{P}=\mathrm{NP}$, then D in $\mathrm{NPc} \rightarrow \mathrm{D}$ in $\mathrm{NP} \rightarrow \mathrm{D}$ in P .
(\Rightarrow) If D in P , then D in NPc $\rightarrow \mathrm{D}$ in NP-hard \rightarrow for all D^{\prime} in $\mathrm{NP}, \mathrm{D}^{\prime} \leqslant_{p} \mathrm{D}$ so D^{\prime} in P since D in P . Hence, NP subset of P so $\mathrm{NP}=\mathrm{P}$.

Corollary: If $P \neq N P$ and D is NP-complete, then D not in P .

Some well-known NP-complete problems:

- Circuit-SAT: Given a circuit with a single output gate, is there some setting of the inputs that will make the output equal to 1 ?
- SAT: Given a propositional formula F (written using propositional connectives negation, and, or, implication), is there some setting of the variables that will make F true (in which case F is said to be satisfiable)?
- CNF-SAT: Given a propositional formula F in Conjunctive Normal Form (also called product of sums), is F satisfiable? Note this means F has the form $C_{1} \wedge C_{2} \wedge \cdots \wedge C_{k}$, where each "clause" $C_{i}=a_{1} \vee a_{2} \vee \ldots \vee a_{r}$,
where each "literal" a_{j} is either a variable (x) or negated variable $(\sim x)$. For example: $\left(x_{1} \vee \sim x_{2}\right) \wedge \sim$ $x_{3} \wedge\left(\sim x_{1} \vee x_{2} \vee x_{3} \vee x_{2}\right)$
- 3SAT: Given a propositional formula F in 3-CNF (CNF where each clause contains exactly 3 literals), is F satisfiable?

NP-hardness:

Theorem: To show that D is NP-hard, it is sufficient to find some known NP-hard problem D^{\prime} and prove $D^{\prime} \leqslant p$.
Proof: Since D^{\prime} NP-hard, for all $D^{\prime \prime}$ in NP, $D^{\prime \prime} \leqslant_{p} D^{\prime}$. Moreover we know that if $A \leqslant_{p} B$ and $B \leqslant_{p} C$, then $A \leqslant p C$ (you should show it in your assignment). Therefore, $D^{\prime \prime} \leqslant_{p} D$ (since $D^{\prime} \leqslant p D$). This shows that D is NP-hard.

Cook's Theorem: SAT is NP-complete.

- SAT in NP:

Given F, c, where c is a setting of values (True/False) for the variables of F :

Output the value of F under the setting given by c.
This can be carried out in polynomial time: given a formula F and a setting of its variables, just substitute the values for each variable and then evaluate each connective one-by-one, from the inside out.
Moreover, if F is satisfiable, then there is some value of c that will make this verifier output yes (when $c=a$ setting that makes F true); and if F is not satisfiable, then this verifier will output no for every possible value of c (since no setting makes F true).

The same reasoning shows that Circuit-SAT, CNF-SAT and 3SAT also belong to NP.

- SAT is NP-hard (next week)

