Integer Programming:

Integer programming: more restricted version where all constants and variables are integers. NP-complete (no efficient algorithm).
Example: Minimum Vertex Cover: Given an undirected graph $G=(V, E)$, Identify a subset of vertices C that covers every edge (i.e., each edge has at least one endpoint in C), with minimum size.

We represent this problem as an integer program: use variable x_{i} for each vertex $v_{i} \in V$
minimize: $x_{1}+x_{2}+\ldots+x_{n}$
subject to:

- $x_{i}+x_{j} \geqslant 1$ for all $\left(v_{i}, v_{j}\right) \in E$
- $x_{i} \in\{0,1\}$ for all $v_{i} \in V$

This 0-1 integer program is completely equivalent to original problem, through correspondence: v_{i} in cover iff $x_{i}=1$. In more detail:

- Any vertex cover C yields feasible solution $x_{i}=1$ if $v_{i} \in C, 0$ if $v_{i} \notin C$ because each constraint $x_{i}+x_{j} \geqslant 1$ satisfied (C must include one endpoint of each edge).
- Any feasible solution to LP yields vertex cover $C=\left\{v_{i} \in V: x_{i}=1\right\}$ because for each edge (v_{i}, v_{j}), constraint $x_{i}+x_{j} \geqslant 1$ ensures C contains at least one of v_{i}, v_{j}.

Unfortunately, Integer Programming (IP) is NP-hard, so the problem cannot be solved in polytime this way. In the next lecture we will propose an algorithm to approximate the solution.

Linear relaxation method: remove restriction of x_{i} to integer values
minimize: $x_{1}+x_{2}+\ldots+x_{n}$ subject to:

- $x_{i}+x_{j} \geqslant 1$ for all $\left(v_{i}, v_{j}\right) \in E$
- $0 \leqslant x_{i} \leqslant 1$ for all $v_{i} \in V$

Solution can be found in polytime, but may include fractional values of x_{i} 's.
Example: $G=(V, E)$ with $V=\left\{v_{1}, v_{2}, v_{3}\right\}, E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{1}, v_{3}\right)\right\}$ becomes
minimize: $x_{1}+x_{2}+x_{3}$
subject to:

- $x_{1}+x_{2} \geqslant 1$
- $x_{2}+x_{3} \geqslant 1$
- $x_{1}+x_{3} \geqslant 1$
- $0 \leqslant x_{1}, x_{2}, x_{3} \leqslant 1$
with solution $x_{1}=x_{2}=x_{3}=1 / 2$.
Then how to solve this problem? Suppose the solution to the relaxed LP is x_{i}^{*} for each variable x_{i}. Create cover as follows: for each $v_{i} \in V$, put $v_{i} \in C$ iff $x_{i}^{*} \geqslant 1 / 2$. (C is a cover because constraint $x_{i}+x_{j} \geqslant 1$ guarantees at least one of x_{i}^{*}, and x_{j}^{*} is $\geqslant 1 / 2$ for each edge $\left(v_{i}, v_{j}\right)$.)
Approximation ratio?
Consider minimum vertex cover C^{\prime}. For $i=1, \ldots, n$, let $x_{i}^{\prime}=1$ if v_{i} in $C^{\prime} ; x_{i}^{\prime}=0$ otherwise. $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ is a
solution to linear program that satisfies all constraints with $0-1$ values so $\left|C^{\prime}\right|=\sum x_{i}^{\prime} \geqslant \sum x_{i}^{*}$ where x_{i}^{*} is optimal solution to linear program with no restriction on values, so guaranteed to be at least as small as any other solution, including those with additional restrictions. For $i=1, \ldots, n$, let $\hat{x}_{i}=1$ if $x_{i}^{*} \geqslant 1 / 2 ; \hat{x}_{i}=0$ otherwise. Then, for each $i, \hat{x}_{i} \leqslant 2 x_{i}^{*}$ so $|C|=\sum \hat{x}_{i} \leqslant 2 \sum x_{i}^{*} \leqslant 2\left|C^{\prime}\right|$ (by equation above) Hence, $|C|$ is no more than twice the size of a minimum vertex cover.

Q: In general, how can we compute ratio without knowing OPT?
A: Use a lower bound. Find another value LB that's easy to compute and for which you can prove $L B \leqslant O P T$ and $A \leqslant r \times L B$, as in the above example for vertex cover.

