
CSC 373 Lecture #7 Instructor: Milad Eftekhar

Linear Programming:

The profit maximization problem in DPV textbook section 7.1.1 together with Figure 7.1
Solving linear programs:

• Feasible region is the set of values of variables that satisfy all constraints. Feasible region can be:

– Empty, e.g., constraints x1 > 2 and x1 6 1; no solution to linear program in this case.

– Unbounded, e.g., constraints x1 > 0, x2 > 0, x1 + x2 > 10; no solution to linear program in this case
(value of objective function can be arbitrarily large so there is no maximum) – if objective function is
minimization, then treat this as bounded.

– Bounded, e.g., constraints x1 > 0, x2 > 0, x1 + x2 6 10; either one or infinitely many solutions to linear
program in this case, depending on objective function, e.g., with same constraints, unique solution
to maximize objective function 2x1 − x2 (solution: x1 = 10, x2 = 0) but infinitely many solutions to
maximize objective function x1 + x2 (any two nonnegative values that add up to 10).

• Simplex method solves linear programs by, intuitively, moving from vertex to vertex along the boundary
of the feasible region, using algebraic manipulations similar to Gaussian elimination. It runs in worst-case
exponential time but in practice, this behaviour is very rarely encountered (most of the time it is quite
efficient).

• Interior point methods solve linear programs in worst-case polynomial time but are just recently starting to
be competitive with Simplex in practice.

Examples:
Political Advertising problem (from ”Introduction to Algorithms, 2nd ed.” by Cormen et al., pp. 770-772):
A political party can advertise on four different platforms: building roads, gun control, farm subsidies, and gasoline
tax. Voters come from three types of ridings: urban, suburban, and rural. Assume that advertising can only be
done globally: all advertising is seen in all three types of ridings.

Market research has provided the party with the following information: for each advertising platform and riding
type, this table summarizes number of voters gained or lost in ridings of that type, for each dollar of advertising
spent on that platform.

urban suburb rural

roads -2 5 3
guns 8 2 -5
farm 0 0 10
gas 10 0 -2

Leaders of the party have figured out that the party needs to gain at least 50,000 urban voters, 100,000 subur-
ban voters, and 25,000 rural voters. Your task is to figure out how much to spend on advertising for each platform
in order to gain the required number of votes in each type of riding, while spending as little as possible overall.

Problem representation: Here is one way to represent the problem.

What are we looking for exactly? Amount to advertise on each platform. So introduce variables:

• x1 = advertising budget on building roads

• x2 = advertising budget on gun controls

• x3 = advertising budget on farm subsidies

• x4 = advertising budget on gasoline tax
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What’s our goal? Spend as little as possible, in other words, minimize

x1 + x2 + x3 + x4

What are the constraints? The need to gain some number of voters in each riding type, which can be expressed
by linear inequalities:

• −2x1 + 8x2 + 0x3 + 10x4 > 50, 000 (for urban ridings)

• 5x1 + 2x2 + 0x3 + 0x4 > 100, 000 (for suburban ridings)

• 3x1 − 5x2 + 10x3 − 2x4 > 25, 000 (for rural ridings)

Anything else? Numerically, we cannot spend negative amounts, so

x1, x2, x3, x4 > 0

This is known as a linear program.

LPs in standard form:
In general we can represent a linear program as an optimization problem consisting some variables: x1, x2, ..., xn

(real numbers) with an objective function: c1x1 + c2x2 + ...+ cnxn where ci are real number constants. Moreover,
there are some linear constraints that should be satisfied: ai1x1 +ai2x2 + ...+ainxn 6 / = / > bi for i = 1, 2, ...,m.
Often written Ax 6 / = / > b for matrix A, vector of variables x and vector of constants b.
Example for political advertising (including non-negativity):

−2 8 0 10
5 2 0 0
3 −5 10 −2
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x1
x2
x3
x4

 >



50
100
25
0
0
0
0


Goal: Identify the real values of xi’s that maximize/minimize objective function and satisfy all constraints.

Network Flow: Given network N = (V,E) with capacities c(e) for e ∈ E, construct a linear program with
variables fe (one for each e ∈ E):

maximize:
∑

(s,u)inE f(s, u)
subject to:

• fe > 0 for all e ∈ E

• fe 6 c(e) for all e ∈ E

•
∑

(u,v)inE f(u, v)−
∑

(v,u)inE f(v, u) = 0 for all v ∈ V

This is a direct re-statement of network flow problem, i.e., any valid flow in N yield values for fe that satisfy all
constraints (feasible values), and any feasible values for fe is a valid flow in N . So finding max flow in N equivalent
to maximizing objective function.

Might this allow us to solve max flow problem more easily or faster?
Unfortunately not: solving LP no more efficient than solving max flow (not surprisingly since problem is more
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general).

One more catch: LP solution cannot guarantee integer flow on all edges (even when all edge capacities are integer),
in contrast with Ford-Fulkerson algorithm that guarantees integer flows in that case.

Shortest s-t path: Given graph G = (V,E) with weights w(e) for all e ∈ E, construct linear program with
variables dv for each v ∈ V :
maximize: dt
subject to:

• dv 6 du + w(u, v) for each (u, v) ∈ E

• ds = 0

• dv > 0 for each v ∈ V

Minimizing dt doesn’t work because it allows settings of dv smaller than true distances (e.g., dv = 0 for all v ∈ V ).
Maximizing works because constraints force dv to be no more than shortest distance and maximization forces dv
to be at least shortest distance, for all v.

Example: Graph with vertices V = {s, a, b, t} and edges (s, a) with weight 1, (s, t) with weight 6, (a, b) with weight
2, (a, t) with weight 4, (b, t) with weight 1.
Linear program (each edge yields two constraints):
maximize: dt
subject to:

• ds = 0

• 0 6 da 6 ds + 1 and 0 6 ds 6 da + 1

• 0 6 db 6 da + 2 and 0 6 da 6 db + 2

• 0 6 dt 6 ds + 6 and 0 6 ds 6 dt + 6

• 0 6 dt 6 da + 4 and 0 6 da 6 dt + 4

• 0 6 dt 6 db + 1 and 0 6 db 6 dt + 1

Integer programming: more restricted version where all constants and variables are integers. NP-complete (no
efficient algorithm).

Example: Minimum Vertex Cover: Given an undirected graph G = (V,E), Identify a subset of vertices C
that covers every edge (i.e., each edge has at least one endpoint in C), with minimum size.

We represent this problem as an integer program: use variable xi for each vertex vi ∈ V
minimize: x1 + x2 + ... + xn
subject to:

• xi + xj > 1 for all (vi, vj) ∈ E

• xi ∈ {0, 1} for all vi ∈ V

This 0-1 integer program is completely equivalent to original problem, through correspondence: vi in cover iff
xi = 1. In more detail:

• Any vertex cover C yields feasible solution xi = 1 if vi ∈ C, 0 if vi 6∈ C because each constraint xi + xj > 1
satisfied (C must include one endpoint of each edge).
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• Any feasible solution to LP yields vertex cover C = {vi ∈ V : xi = 1} because for each edge (vi, vj), constraint
xi + xj > 1 ensures C contains at least one of vi, vj .

Unfortunately, Integer Programming (IP) is NP-hard, so the problem cannot be solved in polytime this way.
In the next lecture we will propose an algorithm to approximate the solution.
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