
CSC 373 Lecture #5 Instructor: Milad Eftekhar

Network Flow
Definition: A network is a directed graph N = (V,E) with

• a single source s ∈ V with no incoming edge,

• a single sink t ∈ V with no outgoing edge,

• a nonnegative integer capacity c(e) for each edge e ∈ E.

Network flow problem: Assign flow f(e) to each edge e such that we have maximum flow in the network,
subject to:

• Capacity constraint: for each edge e, 0 6 f(e) 6 c(e) (flow does not exceed capacity);

• Conservation constraint: for each vertex v 6= s, t : f in(v) = fout(v), where f in(v) = total flow into v =
sum(u,v)∈Ef(u, v) and fout(v) = total flow out of v = sum(v,u)∈Ef(v, u);

• total flow in network is denoted by |f | and defined as |f | = fout(s) (by conservation, |f | = f in(t); this will
be proved later).

Previous approaches fail:
Brute force? Ω(

∏
e∈E c(e)) for integer flows – each edge e can get a flow of 0, 1, 2, ..., c(e), and we consider all

possibilities independently of other edges – much worse than simple exponential!

Greedy? No way to select any part of flow greedily.

Dynamic programming? No way to break down problem into independent recursive sub-problems.

An idea: Local search strategy: start with initial assignment of flow guaranteed to be correct but not necessarily
maximum, then try to make incremental improvements – stop when no improvement possible.

Algorithm 1: Ford-Fulkerson Algorithm

1 start with any valid flow f (e.g., f(e) = 0 for all e ∈ E)
2 while there is an augmenting path P do
3 augment f using P

4 return f

Augmenting paths?

Intuition: Since all flow must start at s and end at t, find s-t paths along which flow can be increased. Instead of
adding flow to edges in haphazard manner, this preserves conservation.

First idea: path P = s→ · · · → t where f(e) < c(e) for each e. Define residual capacity ∆f (e) = c(e)− f(e), and
residual capacity ∆f (P ) = MINe∈P∆f (e). Augment path by adding ∆f (P ) to all edge flows.

Problem: notion too narrow, can get stuck with sub-optimal solution. (Example.)

Second idea: allow reverse edges on path and re-define residual capacity of e:

• ∆f (e) = c(e)− f(e) if e is an original edge on the path;

• ∆f (e) = f(e) if e is a reverse edge on the path.
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Intuition: original edge has unused capacity that can be used to push more flow from s to t; reverse edge has
surplus flow that can be redirected to push more flow from s to t.
Note: this is a form of backtracking – changing our mind about previously assigned flow.

Augmenting path: s-t path where each edge has positive residual capacity (i.e., c(e)− f(e) > 0 for original edges
e, f(e) > 0 for reverse edges e).

Augmentation: add ∆f (P ) (defined as before) to original edges, subtract it from reverse edges. (Example.)

Correctness of Ford-Fulkerson Algorithm:
A cut is a partition of V into Vs, Vt (i.e., V = Vs ∪ Vt and Vs ∩ Vt = {}) such that s ∈ Vs and t ∈ Vt;

• an edge (u, v) with u ∈ Vs, v ∈ Vt is a forward edge;

• an edge (u, v) with u ∈ Vt, v ∈ Vs is a backward edge.

For any cut X = (Vs, Vt),

• The capacity of cut X is the sum of the capacities of the forward edges: c(X) = sume: forwardc(e).

• The flow across X is the total flow forward minus the total flow backward across the cut: f(X) =
sume: forwardf(e)− sume: backwardf(e).

Lemma: For any cut X and any flow f , f(X) 6 c(X).
Proof: f(X) = sume: forwardf(e)− sume: backwardf(e) 6 sume:forwardf(e) 6 sume: forwardc(e) = c(X).

Lemma: For any cut X and any flow f , f(X) = |f |.
Proof: Consider cut X = (Vs, Vt). By conservation, fout(v) = f in(v) for each v except s, t. By definition,
fout(s) = |f | and f in(s) = 0. Hence, by definition of fout and f in:

|f | = fout(s) =
∑
v∈Vs

fout(v)− f in(v)︸ ︷︷ ︸
cancels out for all except s

=
∑
v∈Vs

∑
(v,u)∈E

f(v, u)−
∑

(u,v)∈E

f(u, v) (1)

For each edge e = (u, v),

• if u, v ∈ Vt, then f(u, v) does not appear in Equation 1.

• if u, v ∈ Vs, then f(u, v) appears twice in Equation 1: once positively in fout(u) and once negatively in
f in(v), both of which cancel each other out.

• if u ∈ Vs, v ∈ Vt, then f(u, v) appears once in Equation 1: positively in fout(u).

• if u ∈ Vt, v ∈ Vs, then f(u, v) appears once in Equation 1: negatively in f in(v).

Hence, the only terms that appear in Equation 1 without canceling each other out are f(u, v) for u ∈ Vs, v ∈ Vt

and −f(u, v) for u ∈ Vt, v ∈ Vs, i.e.,

|f | =
∑
u∈Vs
v∈Vt

f(u, v)−
∑
u∈Vt
v∈Vs

f(u, v) =
∑

e: forward

f(e)−
∑

e: backward

f(e) = f(X).

Corollary: For any cut X and any flow f , |f | 6 c(X). (From two facts above). In particular, max flow in network
6 min capacity of any cut.
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Theorem (Ford-Fulkerson): For any network N and flow f , |f | is maximum (and equal to c(X) for some cut
X) if and only if there is no augmenting path.
Proof: (⇒) augment
(⇐) Construct cut X as follows:

• Let Vs be all nodes in V that are reachable from s in Gf .

• Let vt = V − Vs (all nodes not reachable from s in Gf )

Since there is no augmenting path, t ∈ Vt. By definition of X, every edge crossing X has property that f(e) = c(e)
for forward edges and f(e) = 0 for backward edges (otherwise you can find a path from s to a node in Vt!). Hence,
|f | = f(X) = c(X).

Corollary (max-flow/min-cut theorem): For any network, the maximum flow value equals the minimum cut
capacity.

Additional property: because of nature of augmentation, we can prove by induction that max flow can always
be achieved with integer flow values (as long as all capacities are integer).
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