
CSC 373 Lecture #5 Instructor: Milad Eftekhar

Network Flow
Definition: A network is a directed graph N = (V,E) with

• a single source s ∈ V with no incoming edge,

• a single sink t ∈ V with no outgoing edge,

• a nonnegative integer capacity c(e) for each edge e ∈ E.

Network flow problem: Assign flow f(e) to each edge e such that we have maximum flow in the network,
subject to:

• Capacity constraint: for each edge e, 0 6 f(e) 6 c(e) (flow does not exceed capacity);

• Conservation constraint: for each vertex v 6= s, t : f in(v) = fout(v), where f in(v) = total flow into v =
sum(u,v)∈Ef(u, v) and fout(v) = total flow out of v = sum(v,u)∈Ef(v, u);

• total flow in network is denoted by |f | and defined as |f | = fout(s) (by conservation, |f | = f in(t); this will
be proved later).

Previous approaches fail:
Brute force? Ω(

∏
e∈E c(e)) for integer flows – each edge e can get a flow of 0, 1, 2, ..., c(e), and we consider all

possibilities independently of other edges – much worse than simple exponential!

Greedy? No way to select any part of flow greedily.

Dynamic programming? No way to break down problem into independent recursive sub-problems.

An idea: Local search strategy: start with initial assignment of flow guaranteed to be correct but not necessarily
maximum, then try to make incremental improvements – stop when no improvement possible.

Algorithm 1: Ford-Fulkerson Algorithm

1 start with any valid flow f (e.g., f(e) = 0 for all e ∈ E)
2 while there is an augmenting path P do
3 augment f using P

4 return f

Augmenting paths?

Intuition: Since all flow must start at s and end at t, find s-t paths along which flow can be increased. Instead of
adding flow to edges in haphazard manner, this preserves conservation.

First idea: path P = s→ · · · → t where f(e) < c(e) for each e. Define residual capacity ∆f (e) = c(e)− f(e), and
residual capacity ∆f (P) = MINe∈P∆f (e). Augment path by adding ∆f (P) to all edge flows.

Problem: notion too narrow, can get stuck with sub-optimal solution. (Example.)

Second idea: allow reverse edges on path and re-define residual capacity of e:

• ∆f (e) = c(e)− f(e) if e is an original edge on the path;

• ∆f (e) = f(e) if e is a reverse edge on the path.

Summer 2013 Page 1 of 3

CSC 373 Lecture #5 Instructor: Milad Eftekhar

Intuition: original edge has unused capacity that can be used to push more flow from s to t; reverse edge has
surplus flow that can be redirected to push more flow from s to t.
Note: this is a form of backtracking – changing our mind about previously assigned flow.

Augmenting path: s-t path where each edge has positive residual capacity (i.e., c(e)− f(e) > 0 for original edges
e, f(e) > 0 for reverse edges e).

Augmentation: add ∆f (P) (defined as before) to original edges, subtract it from reverse edges. (Example.)

Correctness of Ford-Fulkerson Algorithm:
A cut is a partition of V into Vs, Vt (i.e., V = Vs ∪ Vt and Vs ∩ Vt = {}) such that s ∈ Vs and t ∈ Vt;

• an edge (u, v) with u ∈ Vs, v ∈ Vt is a forward edge;

• an edge (u, v) with u ∈ Vt, v ∈ Vs is a backward edge.

For any cut X = (Vs, Vt),

• The capacity of cut X is the sum of the capacities of the forward edges: c(X) = sume: forwardc(e).

• The flow across X is the total flow forward minus the total flow backward across the cut: f(X) =
sume: forwardf(e)− sume: backwardf(e).

Lemma: For any cut X and any flow f , f(X) 6 c(X).
Proof: f(X) = sume: forwardf(e)− sume: backwardf(e) 6 sume:forwardf(e) 6 sume: forwardc(e) = c(X).

Lemma: For any cut X and any flow f , f(X) = |f |.
Proof: Consider cut X = (Vs, Vt). By conservation, fout(v) = f in(v) for each v except s, t. By definition,
fout(s) = |f | and f in(s) = 0. Hence, by definition of fout and f in:

|f | = fout(s) =
∑
v∈Vs

fout(v)− f in(v)︸ ︷︷ ︸
cancels out for all except s

=
∑
v∈Vs

∑
(v,u)∈E

f(v, u)−
∑

(u,v)∈E

f(u, v) (1)

For each edge e = (u, v),

• if u, v ∈ Vt, then f(u, v) does not appear in Equation 1.

• if u, v ∈ Vs, then f(u, v) appears twice in Equation 1: once positively in fout(u) and once negatively in
f in(v), both of which cancel each other out.

• if u ∈ Vs, v ∈ Vt, then f(u, v) appears once in Equation 1: positively in fout(u).

• if u ∈ Vt, v ∈ Vs, then f(u, v) appears once in Equation 1: negatively in f in(v).

Hence, the only terms that appear in Equation 1 without canceling each other out are f(u, v) for u ∈ Vs, v ∈ Vt

and −f(u, v) for u ∈ Vt, v ∈ Vs, i.e.,

|f | =
∑
u∈Vs
v∈Vt

f(u, v)−
∑
u∈Vt
v∈Vs

f(u, v) =
∑

e: forward

f(e)−
∑

e: backward

f(e) = f(X).

Corollary: For any cut X and any flow f , |f | 6 c(X). (From two facts above). In particular, max flow in network
6 min capacity of any cut.

Summer 2013 Page 2 of 3

CSC 373 Lecture #5 Instructor: Milad Eftekhar

Theorem (Ford-Fulkerson): For any network N and flow f , |f | is maximum (and equal to c(X) for some cut
X) if and only if there is no augmenting path.
Proof: (⇒) augment
(⇐) Construct cut X as follows:

• Let Vs be all nodes in V that are reachable from s in Gf .

• Let vt = V − Vs (all nodes not reachable from s in Gf)

Since there is no augmenting path, t ∈ Vt. By definition of X, every edge crossing X has property that f(e) = c(e)
for forward edges and f(e) = 0 for backward edges (otherwise you can find a path from s to a node in Vt!). Hence,
|f | = f(X) = c(X).

Corollary (max-flow/min-cut theorem): For any network, the maximum flow value equals the minimum cut
capacity.

Additional property: because of nature of augmentation, we can prove by induction that max flow can always
be achieved with integer flow values (as long as all capacities are integer).

Summer 2013 Page 3 of 3

