
CSC 373 Lecture #4 Instructor: Milad Eftekhar

All pairs Shortest Paths
Input: a connected graph G = (V,E) with edge weights w(e) for all e ∈ E Vertex s ∈ V .
Output: For each u, v ∈ V , a shortest path (i.e., minimum weight) from u to v.

W.L.O.G let’s assume V = {1, 2, · · · , n}. We define the following semantic array.

V [u, v, k] =the weight of the shortest path from u to v such that the path just goes through
nodes in the subset of {1, 2, · · · , k}.
In other words, among all paths from u to v that use just the vertices in {1, 2, · · · , k} we get the minimum weight.

These values can be calculated as follows:

V [u, v, 0] =


0 if u = v
w(u, v) if (u, v) is an edge
∞ otherwise

and
V [u, v, k] = min(V [u, v, k − 1], V [u, k, k − 1] + V [k, v, k − 1])

Explanation for V [u, v, k]: This value is the weight of the shortest path from u to v when the path goes through
some nodes in the subset of {1, 2, · · · , k}. There are two possibilities:

1. The path does not go through node k. Therefore, the minimum weight among all these paths is V [u, v, k−1].

2. The path goes through node k. Therefore this path can be segmented into two parts: in the first part it
goes from u to node k using some nodes in the subset of {1, 2, · · · , k− 1}; the second part it continues from
node k and finishes at node v using some nodes in the subset of {1, 2, · · · , k − 1}. The minimum weight
among all these paths occurs when we find the shortest path in each part. Thus the minimum weight here
is V [u, k, k − 1] + V [k, v, k − 1].

This algorithm is called Floyd-Warshall algorithm. This algorithm creates a 3 dimensional table that stores
the values of V . The first dimension is for different source nodes (n nodes), the second dimension is for different
destination nodes (n nodes) and the third dimension is for k (n + 1 values). We start from k = 0, calculate the
values of V [u, v, 0] for all u, v ∈ V . Increment k till k = n. Calculating the value for each entry in this table takes
constant time. Thus, the worst-case time complexity of this algorithm is O(n3).

Identify all shortest paths: The shortest path from node u to v is Path(u, v, n).

Function Path(u, v, k)

// Note: We have already calculated and stored V values.

1 if k = 0 then
2 if u = v then
3 return []

4 else
5 return [(u,v)]

6 if V [u, v, k − 1] 6 V [u, k, k − 1] + V [k, v, k − 1] then
7 return Path(u, v, k − 1)

8 else
9 return [Path(u, k, k − 1),Path(k, v, k − 1)]

Summer 2013 Page 1 of 3



CSC 373 Lecture #4 Instructor: Milad Eftekhar

The Knapsack problem
Input: We are given a set of n items I1, I2, · · · , In and a knapsack with an integer capacity C. Each item Ij has
an integer weight wj and a value vj .
Output: Identify a subset of items S that (1) maximizes the sum of the values of items in S, and (2) the sum of
the weight of items in S is at most C.

Note: This version of the problem is also called {0, 1}-knapsack because each item can be picked at most once
(two options for item Ij : (1) Ij ∈ S, and (2) Ij 6∈ S).

Semantic array:
V [i, c] = the maximum value possible using only the first i items and a knapsack of capacity c.

These values can be calculated as follows:

V [i, c] =

{
0 if i = 0 or c = 0
max{V [i− 1, c], V [i− 1, c− wi] + vi} otherwise

Explanation: To find the optimal value V [i, c], either item Ii is needed or it’s not needed.

Note: In the calculation of max{V [i− 1, c], V [i− 1, c− wi] + vi}, the second part is invoked only if wi 6 c.

The solution of this problem is V [n,C]. To calculate this value we create a 2 dimensional table V . There are n+ 1
rows and C + 1 columns. Each entry in this table takes constant time. Thus, the running time is O(nC).

The last step is to identify the items in the optimal solution. We use V values to decide if we should choose item
Ii or not. Try to find out how you can make this decision. It’s similar to other DP examples and is easy!

Summer 2013 Page 2 of 3



CSC 373 Lecture #4 Instructor: Milad Eftekhar

Chain Matrix Multiplication

Suppose we want to multiply three matrices A, B, C. To calculate the result of this multiplication, we should iter-
atively multiply two matrices each time. Note that matrix multiplication is not commutative (i.e., A×B 6= B×A);
however, it is associative (i.e., A × (B × C) = (A × B) × C). So to do this multiplication we can parenthesize
in different ways (e.g., A(BC) or (AB)C). All will yield same answer but not same running time. Using classical
matrix multiplication, multiplying a matrix with dimensionality p×q and a matrix with dimensionality q×r costs
pqr operations.

Example: Consider three matrices A,B,C with dimensions (respectively) 5 × 10, 10 × 100, 100 × 50. Using
(A×B)× C costs 5000 + 25000 = 30000 operations. Using A× (B × C) costs 50000 + 2500 = 52500 operations.
As you can see the order of multiplications can significantly change the total run time.

The goal is to identify the optimal order.

Input: There are n matrices M1, · · · ,Mn. Matrix Mi has dimension di−1 × di.
Output: Identify the optimal parenthesized product with smallest total cost.

Note: The input in this problem is the dimensions of the matrices not the actual matrix entries.

The optimal parenthesization (the optimal order of pairwise products) can be represented by an optimal parse
tree. The leaves are the matrices. Each internal node represents a pairwise matrix multiplication. The root is the
last pairwise multiplication. The subtrees are the subproblems that must be computed optimally.

Semantic array:
C[i, j] = the cost of an optimal product ordering of Mi × · · · ×Mj.

These values can be calculated as follows:

C[i, j] =

{
0 if i = j
min{C[i, k] + C[k + 1, j] + di−1dkdj : i 6 k < j} if i < j

Identifying the optimal way to parenthesize the product: store the optimal k (the break point) for each
C[i, j] in another array B[i, j].

B[i, j] =

{
−1 if i = j
arg min{C[i, k] + C[k + 1, j] + di−1dkdj : i 6 k < j} if i < j

The following function identifies the best way to parenthesize the matrices.

Function Parenthesize(i, j)

1 if i = j then
2 print Mi

3 print “(” + Parenthesize(i, B[i, j]) + “×” + (B[i, j] + 1, j) + “)”

The optimal way to parenthesize M1M2 · · ·Mn is Parenthesize(1, n).

Summer 2013 Page 3 of 3


