
CSC 373 Lecture #3 Instructor: Milad Eftekhar

Huffman encoding:
Assume a context is available (a document, a signal, etc.). These contexts are formed by some symbols (words in
a document, discrete samples from a signal, etc). Each symbols si is occurred fi times in the context. We aim
to encode each symbol si as a binary string such that the size of the encoded context is minimized (zipped file).
Clearly if a symbol say s occurs very often (resp. infrequently), we want to use a relatively short (resp. long)
string to represent it.
In order to simplify decoding, a nice property is that the encodings satisfy the prefix-free property that no codeword
is the prefix of another code word.
Such an encoding is equivalent to a full ordered binary tree T ; that is, a rooted binary tree where

• Every non leaf has exactly two children

• With the left edge say labeled 0 and the right edge labeled 1

• With every leaf labeled by a symbol

Then the labels along the path to a leaf define the string encoding the symbol at that leaf. The goal is to create
such a tree T so as to minimize

cost(T) =
∑
i

fi × (depth of si in T)

The intuitive idea is to greedily combine the two lowest frequency symbols s1 and s2 to create a new symbol with
frequency f1 + f2.

Example (the DPV textbook): Symbols {A,B,C,D} with frequencies 70, 3, 20, 37.
Obvious choice: 2 bits per symbol (A : 00, B : 01, C : 10, D : 11).
Total document size = (70 + 3 + 20 + 37)× 2 = 260.
Pseudo-code:

Algorithm 1: Huffman algorithm

Input: An array of frequencies f [1 · · ·n] such that f1 6 f2 6 · · · 6 fn
Output: An encoding tree T with n leaves

1 Let H be a priority queue of integers, ordered by f
2 for i in 1 to n do
3 insert(H, i)

4 for k = n + 1 to 2n− 1 do
5 i = deletemin(H)
6 j = deletemin(H)
7 create a node numbered k with children i and j
8 f [k] = f [i] + f [j]
9 insert(H, k)

Figure 1: The best encoding tree for the aforementioned example (from DPV).

Huffman tree: (Total document size = 70× 1 + 3× 3 + 20× 3 + 37× 2 = 213.

Summer 2013 Page 1 of 6

CSC 373 Lecture #3 Instructor: Milad Eftekhar

Dynamic programming:

The weighted interval scheduling problem (WISP):

Interval Ii starts at si, finishes at fi, and has weight (or profit) wi. We want to identify a non-overlapping
subset S (S ⊆ {I1, · · · , In}) with maximum sum of interval weights in the chosen subset.

Does greedy approaches work?

• Greedy by finish time doesn’t work:

|-1-| |-1-|

|-------3-------|

• Greedy by max profit doesn’t work:

|----------2----------|

|-1-| |-1-| ... |-1-|

• Greedy by max unit profit doesn’t work:

|-1-| |-1-|

|-------3-------|

The DP approach:

Sort intervals by finish time, as before (f1 6 · · · 6 fn). Consider optimal schedule S. There are two possibilities:
In ∈ S or In 6∈ S.

• If In ∈ S, rest of S must consist of optimal way to schedule intervals I1, ..., Ik, where k is largest index of
intervals that do not overlap with In (i.e., Ik+1, ..., In−1 all overlap with In).

• If In 6∈ S, S must consist of optimal way to schedule intervals I1, ..., In−1.

In other words, problem has recursive structure: optimal solutions for I1, ..., In = optimal solution for I1, ..., In−1

or optimal solution for I1, ..., Ik together with In, where k is largest index of interval that does not overlap with
In.

Recursive solution:
Consider the following “semantic array”:

V [i] = max profit obtainable by a set of intervals which are a subset of the first i intervals {I1, · · · , Ii}

We can define V [0] = 0. Clearly V [n] is the optimal value.
How to compute the entries in V ? Define pred[i] = the largest index j such that fj 6 si (so Ipred[i] does not
overlap with Ii but Ipred[i]+1, ..., Ii−1 all overlap with Ii). Assume values of pred[] computed once and stored in an
array.

Computing V :

V [0] = 0

V [i] = max(V [i− 1], V [pred(i)] + wi)

Correctness: it is immediate from reasoning above: either interval In or don’t, and since we don’t know which
choice leads to best schedule, just try both.
Runtime:

Summer 2013 Page 2 of 6

CSC 373 Lecture #3 Instructor: Milad Eftekhar

• Recursive: Suppose for all i = 1, ..., n − 1, interval Ii overlaps Ii+1 and no other Ij for j > i + 1. Thus,
the complexity would be T [n] = T [n − 1] + T [n − 2]. The solution is exponential to n (recall Fibonacci
sequences).

• Iterative: There are only n + 1 values that should be computed: V [0], · · · , V [n]. Exponential runtime of
recursive algorithm is due to wasted time recomputing values.
Idea: store values in an array and compute each only once, looking it up afterwards.
Time: Θ(n log n) for sorting and computing pred[i] values + Θ(n) for computing V values. Thus Θ(n log n)
in total.

Computing optimal answer:

1 S = {}
2 i = n
3 while i > 0 do
4 if V [i] == V [i− 1] // don’t schedule interval Ii
5 then
6 i = i− 1

7 else
// schedule interval Ii

8 S = S ∪ {Ii}
9 i = pred[i]

10 return S

Dynamic Programming Paradigm:

• For optimization problems that satisfy the following properties:

– subproblem optimality: an optimal solution to the problem can always be obtained from optimal solu-
tions to subproblems;

– simple subproblems: subproblems can be characterized precisely using a constant number of parameters
(usually numerical indices);

– subproblem overlap: smaller subproblems are repeated many times as part of larger problems (for
efficiency).

• Step 0: Describe recursive structure of problem: how problem can be decomposed into simple subproblems
and how global optimal solution relates to optimal solutions to these subproblems.

• Step 1: Define an array (“semantic array”) indexed by the parameters that define subproblems, to store the
optimal value for each subproblem (make sure one of the subproblems actually equals the whole problem).

• Step 2: Based on the recursive structure of the problem, describe a recurrence relation satisfied by the array
values from step 1.

• Step 3: Write iterative algorithm to compute values in the array, in a bottom-up fashion, following recurrence
from step 2.

• Step 4: Use computed array values to figure out actual solution that achieves best value (generally, describe
how to modify algorithm from step 3 to be able to find answer; can require storing additional information
about choices made while filling up array in Step 3).

Summer 2013 Page 3 of 6

CSC 373 Lecture #3 Instructor: Milad Eftekhar

Single-Source Shortest Paths with non-negative weights (Greedy approach):
Input: connected graph G = (V,E) with non-negative edge weights (costs) w(e) for all e ∈ E; Source
s ∈ V .
Output: a path from s to all v ∈ V with minimum total cost (shortest path).

Special case: if w(e) = 1 for all edges e: BFS!

In general: Dijkstra Algorithm (an “adjusted” BFS): use a priority queue instead of a queue to collect
unvisited vertices; set priority = shortest distance so far.

Pseudo-code:

Algorithm 2: Dijkstra’s shortest-path algorithm (similar to Figure 4.8 in DPV textbook)

Result: dist(u): The distance from s to u
// Initialization

1 forall the u in V do
2 dist(u) =∞ // minimum distance from s to u so far

3 prev(u) = nil // predecessor of u on the shortest path s-u so far

4 dist(s) = 0
5 H = makequeue(V) // using dist values as keys

// Main loop

6 while H is not empty do
7 u = deletemin(H)
8 forall the edges (u, v) ∈ E do
9 if dist(v) > dist(u) + w(u, v) then

10 dist(v) = dist(u) + w(u, v)
11 prev(v) = u
12 decreasekey(H, v)

Runtime:

– O(n) for initialization.

– n insert operations for makequeue

– n operations for deletemin (each iteration removes one vertex from the queue).

– Each iteration examines a subset of edges and updates priorities. Over all iterations, each edge generates
at most one queue update.

– The time needed for queue operations depends on implementation.

– Total (using a binary heap): O((m + n) log n) = O(m log n).

Correctness: Using the exchange technique with induction.

Summer 2013 Page 4 of 6

CSC 373 Lecture #3 Instructor: Milad Eftekhar

Single-Source Shortest Paths with real weights (Dynamic programming): Bellman-Ford Algo-
rithm.
Input: connected graph G = (V,E) with edge weights w(e) for all e ∈ E (weights can be negative but there
is no negative cycle); Vertex s ∈ V .
Output: For each v ∈ V , a shortest path (i.e., minimum weight) from s to v.

Two natural ways to characterize subproblems: restrict number of edges in a path, or restrict possible vertices
allowed on a path. Consider restricting edges.

Step 0: Consider a shortest path P from s to v. Since G contains no negative weight cycle, P must be
simple (no cycles) so it contains at most n−1 edges. If P contains more than 1 edge, let u be the last vertex
on P before v.

Claim: The part of P from s to u must be a shortest path in G.

Otherwise, there would be a shorter path from s to v.

Step 1: Define an array, using one index to restrict number of edges.

A[k, v] = smallest weight of paths from s to v with at most k edges where 0 6 k 6 n− 1, v ∈ V .

Step 2: Write a recurrence.

A[0, s] = 0

A[0, v] =∞ for all v 6= s (only node reachable from s with no edge is s itself)

A[k, v] = min(A[k − 1, v], A[k − 1, u] + w(u, v) : (u, v) ∈ E), for k ∈ [0, ..., n− 1] and v ∈ V (shortest path
with at most k edges either has at most k− 1 edges or it consists of a shortest path with at most k− 1 edges
followed by one edge (u, v); examine all possible last edges (u, v) to find the best)

Step 3: Compute values bottom-up. [will be explained next week]

Create a two dimensional array. Each column corresponds to a vertex v ∈ V . Each row corresponds to a
number from 0 to n− 1. Calculate the values row by row. The last row contains the weight of the shortest
path from s to any vertex v ∈ V .

Step 4: Find the optimal answer.

Work backwards from v. The amount of additional work required can be decreased by using a simple
trick and storing additional information as the values are computed in Step 3. Use second array p[v] to store
predecessor of v on shortest path.

[Intuition: algorithm examines many possibilities to compute best value of A[k, v] – remember the possibility
that gave the best answer.]

Modified algorithm:

1 forall the v in V do
2 A[0, v] :=∞
3 p[v] := NIL

4 A[0, s] := 0
5 for k = 1 to n− 1 do
6 forall the v in V do
7 A[k, v] := A[k − 1, v]
8 forall the edges (u, v) in E do
9 if A[k − 1, u] + w(u, v) < A[k, v] then

10 A[k, v] := A[k − 1, u] + w(u, v)
11 p[v] := u

Summer 2013 Page 5 of 6

CSC 373 Lecture #3 Instructor: Milad Eftekhar

To obtain the shortest s-v path (as list of edges):

Function Path(s, v)

1 if v = s then
2 return []

3 return [Path(s, p[v]) , (p[v], v)]

Summer 2013 Page 6 of 6

