
CSC 373 Lecture #2 Instructor: Milad Eftekhar

Interval Coloring (a.k.a. Interval Partitioning):
Input: n intervals I1 = (s1, f1), . . . , In = (sn, fn)
Goal: Color all the intervals with as few colors as possible so that intervals having the same color do not intersect.

Figure 1: An interval coloring problem. 4 colors is used in this figure.

An optimal algorithm: Surprisingly the EST(earliest starting time) algorithm that considers intervals with
ordering s1 6 s2 6 · · · 6 sn (which was arbitrarily bad for interval scheduling) now leads to an optimal greedy
algorithm for interval coloring.

The algorithm: Having sorted the intervals by non-decreasing starting times, we assign each interval the smallest
numbered color that is feasible given the intervals already colored. Note that this algorithm is equivalent to LFT
(latest finishing time first).

Proof idea: The style of argument used to prove optimality is different here. Essentially, the argument is to show
some intrinsic lower bound (in terms of some parameter of the input instance) for any allowable solution and then
show that the greedy solution achieves this bound. In this case, the bound (k) is the maximum number of
intervals that can intersect at any point of time. That is, |G| = k 6 |OPT | where G is the set of colors used
by the greedy algorithm EST and OPT is any solution. So an optimal algorithm must then use exactly k colors
(as does the greedy algorithm). We show that the greedy algorithm will never use more than this number of colors.

Proof sketch: Recall that we have sorted the intervals by nondecreasing starting time (i.e. earliest start time
first).
Let k be the maximum number of intervals in the input set that intersect at any given point.
Suppose for a contradiction that the algorithm used more than k colors.
Consider the first time (say on some interval l) that the greedy algorithm would have used k + 1 of colors.

• Then it must be that there are k intervals intersecting l.

• Let sl be the starting time of interval Il.

• These intersecting intervals must all include sl.

• Hence, there are k + 1 intervals intersecting at sl!

Summer 2013 Page 1 of 4

CSC 373 Lecture #2 Instructor: Milad Eftekhar

Minimum Spanning Tree (MST):
Input: Connected undirected weighted graph G = (V,E) with weight (or cost) c(e) for each edge e ∈ E.
Output: A spanning tree T ⊆ E such that cost(T) (sum of the costs of edges in T) is minimal.

Terminology:

• Spanning tree: acyclic connected subset of edges.

• Acyclic: does not contain any cycle.

• Connected: contains a path between any two vertices.

Properties: For all spanning trees T of a graph G,

• T contains exactly n− 1 edges;

• the removal of any edge from T disconnects it into two disjoint subtrees (otherwise T would contain a cycle);

• the addition of any edge to T creates exactly one cycle (otherwise T would be disconnected).

Note: We explain three optimal algorithms: Kruskal, Prim, Reverse-Delete

1- Kruskal’s algorithm: Repeatedly put in smallest-cost edge remaining, as long as it doesn’t create a cycle.

Pseudo-code:

Algorithm 1: Kruskal’s algorithm

1 Sort edges such that c(e1) 6 c(e2) 6 . . . 6 c(em)
2 T := {}
3 for k in [1, 2, ...,m] do
4 let (u, v) = ek
5 if T does not contain a path between u and v then
6 T = T ∪ {ek}

Runtime? Θ(m logm) for sorting; main loop involves sequence of m Union and FindSet operations on n elements
which is Θ(m log n). Total is Θ(m log n) since logm is Θ(log n).

Correctness: Using the exchange argument technique and induction. Similar to the optimality proof of EFT for
the Interval Scheduling problem.

2- Prim’s algorithm: Start with some vertex s ∈ V (pick arbitrarily) and at each step, add lowest-cost edge
that connects a new vertex to the existing partial tree.

Runtime? Θ(m log n) using a heap to implement a priority queue of candidate edges to pick from next.

Correctness: Using the exchange technique with induction.

3- Reverse-Delete algorithm: Start with full graph; repeatedly delete highest-cost edge remaining, as long as
it doesn’t disconnect the graph we currently have.

Cut property: Assume that all edge costs are distinct. Let S be a subset of V such that neither S nor V − S is
empty. Let e be the edge with minimum cost with one endpoint in S and one endpoint in V − S. Then edge e is
part of every minimum spanning tree.

Summer 2013 Page 2 of 4

