
CSC 373 Lecture #10 Instructor: Milad Eftekhar

Cook’s Theorem: SAT is NP-complete.

• SAT in NP:
Given F ,c, where c is a setting of values (True/False) for the variables of F:

Output the value of F under the setting given by c.

This can be carried out in polynomial time: given a formula F and a setting of its variables, just substitute
the values for each variable and then evaluate each connective one-by-one, from the inside out.
Moreover, if F is satisfiable, then there is some value of c that will make this verifier output yes (when c = a
setting that makes F true); and if F is not satisfiable, then this verifier will output no for every possible
value of c (since no setting makes F true).

The same reasoning shows that Circuit-SAT, CNF-SAT and 3SAT also belong to NP.

• SAT is NP-hard (main idea):
Let D be any problem in NP. By definition, there is a polytime verifier V (x, c) for D. This polytime verifier
can be implemented as a circuit with input gates representing the values of x and c. For any input x for
D, we can hard-code the value of x into this circuit in such a way that there is a value of the certificate
for which the verifier outputs yes iff there is some setting of the input gates corresponding to c that make
the circuit output 1. It’s possible to show that this transformation can be carried out in polynomial time
(as a function of the size of x), and it’s also possible to show that this circuit can then be translated into
a formula in CNF (in polytime) such that settings of the circuit’s input gates correspond to settings of the
formula’s variables.

This shows that Circuit-SAT, SAT, and CNF-SAT are all NP-hard.

NP-completeness examples:
VERTEX-COVER: {< G, k > : G is a graph that contains a vertex cover of size k, i.e.a set C of k vertices such
that each edge of G has at least one endpoint in C}

VERTEX-COVER (VC) is NPC:

• VC in NP: Given G, k, c, we can verify in polytime that c represents a vertex cover of size k in G.

• VC is NP-hard: 3SAT 6p VC.
Given F = (a1 ∨ b1 ∨ c1) ∧ · · · ∧ (ar ∨ br ∨ cr), where ai, bi, ci ∈ {x1,∼ x1, x2,∼ x2, · · · , xs,∼ xs}, construct
G = (V,E) and k such that F satisfiable iff G contains vertex cover of size k, as follows:

k = s + 2r

V = {a1, b1, c1, · · · , ar, br, cr, x1,∼ x1, · · · , xs,∼ xs}
E = {(xi,∼ xi) : 1 6 i 6 s} ∪ {(ai, bi), (bi, ci), (ci, ai) : 1 6 i 6 r} ∪ {(l, x) : l = ai or bi or ci, and x =
xj or ∼ xj corresponding to l}

For example, if F = (x1∨ ∼ x2∨ ∼ x4)∧ (x2∨ ∼ x3 ∨x1)∧ (∼ x3 ∨x4∨ ∼ x2), then a1 = x1, b1 =∼ x2, c1 =∼
x4, a2 = x2, b2 =∼ x3, c2 = x1, a3 =∼ x3, b3 = x4, c3 =∼ x2 so

k = 4 + 2× 3 = 10

V = {a1, b1, c1, a2, b2, c2, a3, b3, c3, x1,∼ x1, x2,∼ x2, x3,∼ x3, x4,∼ x4}
E = {(x1,∼ x1), (x2,∼ x2), (x3,∼ x3), (x4,∼ x4), (a1, b1), (b1, c1), (c1, a1), (a1, x1), (b1,∼ x2), (c1,∼
x4), (a2, b2), (b2, c2), (c2, a2), (a2, x2), (b2,∼ x3), (c2, x1), (a3, b3), (b3, c3), (c3, a3), (a3,∼ x3), (b3, x4), (c3,∼
x2)}

Summer 2013 Page 1 of 4



CSC 373 Lecture #10 Instructor: Milad Eftekhar

Clearly, construction can be done in polytime (with one scan of F ).

Also, if F is satisfiable, then there is an assignment of truth values that make at least one literal in each
clause true. Pick a cover C as follows: for each variable, C contains xi or ∼ xi, whichever is true under the
truth assignment; for each clause, C contains every literal except one that’s true (pick arbitrarily if more
than one true literal). C contains exactly s + 2r vertices and is a cover: all edges (xi,∼ xi) are covered; all
edges in clause triangles are covered (because we picked two vertices from each triangle); all edges between
“clauses” and “variables” are covered (two from inside triangle, one from true literal for that clause).

Finally if G contains a cover C of size k = s + 2r, C must contain at least one of xi or ∼ xi for each i
(because of edges (xi,∼ xi)) and at least two of ai, bi, ci for each i (because of triangle), so only way for C
to have size s + 2r is to contain exactly one of xi or ∼ xi and exactly two of ai, bi, ci, for each i. Since C
covers all edges with only two vertices per triangle, the third vertex in each triangle must have its “outside”
edge covered because of xi or ∼ xi. If we set literals according to choices of xi or ∼ xi in C, this will make
formula F true: at least one literal will be true in each clause (because at least one edge from “variables” to
“clauses” is covered by the variable in C).

SUBSET-SUM: Given a set of positive integers S and a positive integer target t, is there some subset S′ of S
whose sum is exactly t, i.e.,

∑
x∈S′ x = t?

SUBSET-SUM (SS) is NPC:

• SS is in NP because it takes polytime to verify that the certificate represents a subset of S whose sum is t
(1- check if all items in the certificate c is in S. 2- check if sum of the items in c is t).

• SS is NP-hard because 3SAT 6p SS:
Given formula F = (a1 ∨ b1 ∨ c1) ∧ · · · ∧ (ar ∨ br ∨ cr) where ai, bi, ci ∈ {x1,∼ x1, · · · , xs,∼ xs}, construct
numbers as follows:

– For j = 1, ..., s:
number xj = 1 followed by s− j 0s followed by r digits where k-th next digit equals 1 if xj appears in
clause Ck, 0 otherwise;
number ∼ xj = 1 followed by s− j 0s followed by r digits where k-th next digit equals 1 if ∼ xj appears
in clause Ck, 0 otherwise.

– For j = 1, ..., r:
number Cj = 1 followed by r − j 0s and
number Dj = 2 followed by r − j 0s.

– Target t = s 1s followed by r 4s.

Clearly, this can be constructed in polytime.

Example of reduction for F = (x1∨ ∼ x2∨ ∼ x4) ∧ (x2∨ ∼ x3 ∨ x1) ∧ (∼ x3 ∨ x4∨ ∼ x2):

So the numbers are:

Summer 2013 Page 2 of 4



CSC 373 Lecture #10 Instructor: Milad Eftekhar

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝑪𝟏 𝑪𝟐 𝑪𝟑

𝒙𝟏 1 0 0 0 1 1 0

~𝒙𝟏 1 0 0 0 0 0 0

𝒙𝟐 0 1 0 0 0 1 0

~𝒙𝟐 0 1 0 0 1 0 1

𝒙𝟑 0 0 1 0 0 0 0

~𝒙𝟑 0 0 1 0 0 1 1

𝒙𝟒 0 0 0 1 0 0 1

~𝒙𝟒 0 0 0 1 1 0 0

𝑪𝟏 0 0 0 0 1 0 0

𝑫𝟏 0 0 0 0 2 0 0

𝑪𝟐 0 0 0 0 0 1 0

𝑫𝟐 0 0 0 0 0 2 0

𝑪𝟑 0 0 0 0 0 0 1

𝑫𝟑 0 0 0 0 0 0 2

t 1 1 1 1 4 4 4

dummies to 
get clause 
columns to 
sum to 4

S =



x1 = 1000110,
∼ x1 = 1000000,

x2 = 100010,
∼ x2 = 100101,

x3 = 10000,
∼ x3 = 10011,

x4 = 1001,
∼ x4 = 1100,
D1 = 200,
C1 = 100,
D2 = 20,
C2 = 10,
D3 = 2,
C3 = 1.


and t = 1111444

If F is satisfiable, then there is a setting of variables such that each clause of F contains at least one true
literal. Consider the subset S′ = {numbers that correspond to true literals}. By construction,

∑
x∈S′ x = s

1s followed by r digits, each one of which is either 1, 2, or 3 (because each clause contains at least one true
literal). This means it is possible to add suitable numbers from {C1, D1, ..., Cr, Dr} so that the last r digits
of the sum are equal to 4, i.e., there is a subset S′ such that

∑
x∈S′ x = t.

If there is a subset S′ of S such that
∑

x∈S′ x = t, then S′ must contain exactly one of {xj,∼ xj} for
j = 1, ..., n, because that is the only way for the numbers in S′ to add to the target (with a 1 in the first s
digits). Then, F is satisfied by setting each variable according to the numbers in S′: for each clause j, the
corresponding digit in the target is equal to 4 but the numbers Cj and Dj together only add up to 3 in that
digit; this means that the selection of numbers in S′ must include some literal with a 1 in t.

Template for proofs of NP-completeness: To show A is NPC, prove that

• A in NP: Describe a polytime verifier for A.
“Given (x, c), check c has correct format and properties...”
Argue that verifier runs in polytime and that x is a yes-instance iff verifier outputs “yes” for some c.

Note that all problems in NP we’ve seen so far have a similar structure to their definition: “the answer
for object A is Yes iff there is some related object B such that some property holds about A and B” –

Summer 2013 Page 3 of 4



CSC 373 Lecture #10 Instructor: Milad Eftekhar

for example, for CLIQUE: “the answer for undirected graphs G and integers k is Yes iff there is a subset
of vertices C that forms a k-clique in G”. For all such problems, the verifier will also have a common
structure: “on input (A, c), check that c encodes an object B and that A and B have the required property”.
Because of the way these decision problems are defined, this guarantees (A, c) is accepted for some c iff A is
a yes-instance. All that remains is to ensure checking property of A,B can be done in polytime.

• A is NP-hard: Show B 6p A for some NP-hard problem B.
“Given x, construct yx as follows: ...”
Argue that construction can be carried out in polytime and that x yes-instance iff yx yes-instance (often by
showing x yes-instance ⇒ yx yes-instance and yx yes-instance ⇒ x yes-instance)
In more detail, this involves:

– starting with arbitrary input y for B (i.e., without making any assumption about whether y is a yes-
instance or a no-instance),

– describing explicit construction of specific input xy for A,

– arguing construction can be carried out in polytime,

– arguing if y is a yes-instance, then so is xy,

– arguing if xy is a yes-instance, then so was y (or equivalently, if y is a no-instance, then so is xy).

Watch last step! Argument starts from xy constructed earlier (not from arbitrary input x for A), and relates
it to arbitrary y that xy was constructed from.

Traps to watch out for:

• Direction of reduction: must start from arbitrary input x for B (cannot place any restrictions on input;
reduction must work with all possible inputs) and explicitly construct specific input yx for A.

• “Reduction” that does something different for yes-instances vs. no-instances: this would involve telling the
difference, which can’t be done in polytime when B is NP-hard.

Some NP-Complete problems:

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

Summer 2013 Page 4 of 4


