Cook's Theorem: SAT is NP-complete.

- SAT in NP:

Given F, c, where c is a setting of values (True/False) for the variables of F :

Output the value of F under the setting given by c.
This can be carried out in polynomial time: given a formula F and a setting of its variables, just substitute the values for each variable and then evaluate each connective one-by-one, from the inside out.
Moreover, if F is satisfiable, then there is some value of c that will make this verifier output yes (when $c=a$ setting that makes F true); and if F is not satisfiable, then this verifier will output no for every possible value of c (since no setting makes F true).

The same reasoning shows that Circuit-SAT, CNF-SAT and 3SAT also belong to NP.

- SAT is NP-hard (main idea):

Let D be any problem in NP. By definition, there is a polytime verifier $V(x, c)$ for D. This polytime verifier can be implemented as a circuit with input gates representing the values of x and c. For any input x for D, we can hard-code the value of x into this circuit in such a way that there is a value of the certificate for which the verifier outputs yes iff there is some setting of the input gates corresponding to c that make the circuit output 1. It's possible to show that this transformation can be carried out in polynomial time (as a function of the size of x), and it's also possible to show that this circuit can then be translated into a formula in CNF (in polytime) such that settings of the circuit's input gates correspond to settings of the formula's variables.

This shows that Circuit-SAT, SAT, and CNF-SAT are all NP-hard.

NP-completeness examples:

VERTEX-COVER: $\{\langle G, k\rangle: G$ is a graph that contains a vertex cover of size k, i.e.a set C of k vertices such that each edge of G has at least one endpoint in $C\}$

VERTEX-COVER (VC) is NPC:

- VC in NP: Given G, k, c, we can verify in polytime that c represents a vertex cover of size k in G.
- VC is NP-hard: 3 SAT \leqslant_{p} VC.

Given $F=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge \cdots \wedge\left(a_{r} \vee b_{r} \vee c_{r}\right)$, where $a_{i}, b_{i}, c_{i} \in\left\{x_{1}, \sim x_{1}, x_{2}, \sim x_{2}, \cdots, x_{s}, \sim x_{s}\right\}$, construct $G=(V, E)$ and k such that F satisfiable iff G contains vertex cover of size k, as follows:

$$
\begin{aligned}
& k=s+2 r \\
& V=\left\{a_{1}, b_{1}, c_{1}, \cdots, a_{r}, b_{r}, c_{r}, x_{1}, \sim x_{1}, \cdots, x_{s}, \sim x_{s}\right\} \\
& E=\left\{\left(x_{i}, \sim x_{i}\right): 1 \leqslant i \leqslant s\right\} \cup\left\{\left(a_{i}, b_{i}\right),\left(b_{i}, c_{i}\right),\left(c_{i}, a_{i}\right): 1 \leqslant i \leqslant r\right\} \cup\left\{(l, x): l=a_{i} \text { or } b_{i} \text { or } c_{i}, \text { and } x=\right. \\
& \left.x_{j} \text { or } \sim x_{j} \text { corresponding to } l\right\}
\end{aligned}
$$

For example, if $F=\left(x_{1} \vee \sim x_{2} \vee \sim x_{4}\right) \wedge\left(x_{2} \vee \sim x_{3} \vee x_{1}\right) \wedge\left(\sim x_{3} \vee x_{4} \vee \sim x_{2}\right)$, then $a_{1}=x_{1}, b_{1}=\sim x_{2}, c_{1}=\sim$ $x_{4}, a_{2}=x_{2}, b_{2}=\sim x_{3}, c_{2}=x_{1}, a_{3}=\sim x_{3}, b_{3}=x_{4}, c_{3}=\sim x_{2}$ so
$k=4+2 \times 3=10$
$V=\left\{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, x_{1}, \sim x_{1}, x_{2}, \sim x_{2}, x_{3}, \sim x_{3}, x_{4}, \sim x_{4}\right\}$
$E=\left\{\left(x_{1}, \sim x_{1}\right),\left(x_{2}, \sim x_{2}\right),\left(x_{3}, \sim x_{3}\right),\left(x_{4}, \sim x_{4}\right),\left(a_{1}, b_{1}\right),\left(b_{1}, c_{1}\right),\left(c_{1}, a_{1}\right),\left(a_{1}, x_{1}\right),\left(b_{1}, \sim x_{2}\right),\left(c_{1}, \sim\right.\right.$ $\left.x_{4}\right),\left(a_{2}, b_{2}\right),\left(b_{2}, c_{2}\right),\left(c_{2}, a_{2}\right),\left(a_{2}, x_{2}\right),\left(b_{2}, \sim x_{3}\right),\left(c_{2}, x_{1}\right),\left(a_{3}, b_{3}\right),\left(b_{3}, c_{3}\right),\left(c_{3}, a_{3}\right),\left(a_{3}, \sim x_{3}\right),\left(b_{3}, x_{4}\right),\left(c_{3}, \sim\right.$ $\left.x_{2}\right)$ \}

Clearly, construction can be done in polytime (with one scan of F).
Also, if F is satisfiable, then there is an assignment of truth values that make at least one literal in each clause true. Pick a cover C as follows: for each variable, C contains x_{i} or $\sim x_{i}$, whichever is true under the truth assignment; for each clause, C contains every literal except one that's true (pick arbitrarily if more than one true literal). C contains exactly $s+2 r$ vertices and is a cover: all edges ($x_{i}, \sim x_{i}$) are covered; all edges in clause triangles are covered (because we picked two vertices from each triangle); all edges between "clauses" and "variables" are covered (two from inside triangle, one from true literal for that clause).

Finally if G contains a cover C of size $k=s+2 r, C$ must contain at least one of x_{i} or $\sim x_{i}$ for each i (because of edges $\left(x_{i}, \sim x_{i}\right)$) and at least two of a_{i}, b_{i}, c_{i} for each i (because of triangle), so only way for C to have size $s+2 r$ is to contain exactly one of x_{i} or $\sim x_{i}$ and exactly two of a_{i}, b_{i}, c_{i}, for each i. Since C covers all edges with only two vertices per triangle, the third vertex in each triangle must have its "outside" edge covered because of x_{i} or $\sim x_{i}$. If we set literals according to choices of x_{i} or $\sim x_{i}$ in C, this will make formula F true: at least one literal will be true in each clause (because at least one edge from "variables" to "clauses" is covered by the variable in C).

SUBSET-SUM: Given a set of positive integers S and a positive integer target t, is there some subset S^{\prime} of S whose sum is exactly t, i.e., $\sum_{x \in S^{\prime}} x=t$?

SUBSET-SUM (SS) is NPC:

- SS is in NP because it takes polytime to verify that the certificate represents a subset of S whose sum is t (1- check if all items in the certificate c is in S. 2- check if sum of the items in c is t).
- SS is NP-hard because 3 SAT \leqslant_{p} SS:

Given formula $F=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge \cdots \wedge\left(a_{r} \vee b_{r} \vee c_{r}\right)$ where $a_{i}, b_{i}, c_{i} \in\left\{x_{1}, \sim x_{1}, \cdots, x_{s}, \sim x_{s}\right\}$, construct numbers as follows:

- For $j=1, \ldots, s$:
number $x_{j}=1$ followed by $s-j$ 0s followed by r digits where k-th next digit equals 1 if x_{j} appears in clause $C_{k}, 0$ otherwise;
number $\sim x_{j}=1$ followed by $s-j$ 0s followed by r digits where k-th next digit equals 1 if $\sim x_{j}$ appears in clause $C_{k}, 0$ otherwise.
- For $j=1, \ldots, r$:
number $C_{j}=1$ followed by $r-j 0 \mathrm{~s}$ and number $D_{j}=2$ followed by $r-j 0$ s.
- Target $\mathrm{t}=\mathrm{s} 1 \mathrm{~s}$ followed by r 4 s .

Clearly, this can be constructed in polytime.
Example of reduction for $F=\left(x_{1} \vee \sim x_{2} \vee \sim x_{4}\right) \wedge\left(x_{2} \vee \sim x_{3} \vee x_{1}\right) \wedge\left(\sim x_{3} \vee x_{4} \vee \sim x_{2}\right)$:

So the numbers are:

$$
S=\left\{\begin{array}{rr}
x_{1}= & 1000110, \\
\sim x_{1}= & 1000000, \\
x_{2}= & 100010, \\
\sim x_{2}= & 100101, \\
x_{3}= & 10000, \\
\sim x_{3}= & 10011, \\
x_{4}= & 1001, \\
\sim x_{4}= & 1100, \\
D_{1}= & 200, \\
C_{1}= & 100, \\
D_{2}= & 20, \\
C_{2}= & 10, \\
D_{3}= & 2, \\
C_{3}= & 1 .
\end{array}\right\}
$$

and $\quad t=1111444$
If F is satisfiable, then there is a setting of variables such that each clause of F contains at least one true literal. Consider the subset $S^{\prime}=\{$ numbers that correspond to true literals $\}$. By construction, $\sum_{x \in S^{\prime}} x=s$ 1 s followed by r digits, each one of which is either 1,2 , or 3 (because each clause contains at least one true literal). This means it is possible to add suitable numbers from $\left\{C_{1}, D_{1}, \ldots, C_{r}, D_{r}\right\}$ so that the last r digits of the sum are equal to 4 , i.e., there is a subset S^{\prime} such that $\sum_{x \in S^{\prime}} x=t$.
If there is a subset S^{\prime} of S such that $\sum_{x \in S^{\prime}} x=t$, then S^{\prime} must contain exactly one of $\{x j, \sim x j\}$ for $j=1, \ldots, n$, because that is the only way for the numbers in S^{\prime} to add to the target (with a 1 in the first s digits). Then, F is satisfied by setting each variable according to the numbers in S^{\prime} : for each clause j, the corresponding digit in the target is equal to 4 but the numbers C_{j} and D_{j} together only add up to 3 in that digit; this means that the selection of numbers in S^{\prime} must include some literal with a 1 in t.

Template for proofs of NP-completeness: To show A is NPC, prove that

- A in NP: Describe a polytime verifier for A.
"Given (x, c), check c has correct format and properties..."
Argue that verifier runs in polytime and that x is a yes-instance iff verifier outputs "yes" for some c.
Note that all problems in NP we've seen so far have a similar structure to their definition: "the answer for object A is Yes iff there is some related object B such that some property holds about A and $B "-$
for example, for CLIQUE: "the answer for undirected graphs G and integers k is Yes iff there is a subset of vertices C that forms a k-clique in G ". For all such problems, the verifier will also have a common structure: "on input (A, c), check that c encodes an object B and that A and B have the required property". Because of the way these decision problems are defined, this guarantees (A, c) is accepted for some c iff A is a yes-instance. All that remains is to ensure checking property of A, B can be done in polytime.
- A is NP-hard: Show $B \leqslant_{p} A$ for some NP-hard problem B.
"Given x, construct y_{x} as follows: ..."
Argue that construction can be carried out in polytime and that x yes-instance iff y_{x} yes-instance (often by showing x yes-instance $\Rightarrow y_{x}$ yes-instance and y_{x} yes-instance $\Rightarrow x$ yes-instance)
In more detail, this involves:
- starting with arbitrary input y for B (i.e., without making any assumption about whether y is a yesinstance or a no-instance),
- describing explicit construction of specific input x_{y} for A,
- arguing construction can be carried out in polytime,
- arguing if y is a yes-instance, then so is x_{y},
- arguing if x_{y} is a yes-instance, then so was y (or equivalently, if y is a no-instance, then so is x_{y}).

Watch last step! Argument starts from x_{y} constructed earlier (not from arbitrary input x for A), and relates it to arbitrary y that x_{y} was constructed from.

Traps to watch out for:

- Direction of reduction: must start from arbitrary input x for B (cannot place any restrictions on input; reduction must work with all possible inputs) and explicitly construct specific input y_{x} for A.
- "Reduction" that does something different for yes-instances vs. no-instances: this would involve telling the difference, which can't be done in polytime when B is NP-hard.

Some NP-Complete problems:

