CSC 373 LECTURE # 10 Instructor: Milad Eftekhar

Cook’s Theorem: SAT is NP-complete.

e SAT in NP:
Given F',c, where c is a setting of values (True/False) for the variables of F:

Output the value of F' under the setting given by c.

This can be carried out in polynomial time: given a formula F' and a setting of its variables, just substitute
the values for each variable and then evaluate each connective one-by-one, from the inside out.

Moreover, if F' is satisfiable, then there is some value of ¢ that will make this verifier output yes (when ¢ = a
setting that makes F true); and if F' is not satisfiable, then this verifier will output no for every possible
value of ¢ (since no setting makes F' true).

The same reasoning shows that Circuit-SAT, CNF-SAT and 3SAT also belong to NP.

e SAT is NP-hard (main idea):

Let D be any problem in NP. By definition, there is a polytime verifier V(x, ¢) for D. This polytime verifier
can be implemented as a circuit with input gates representing the values of x and ¢. For any input x for
D, we can hard-code the value of x into this circuit in such a way that there is a value of the certificate
for which the verifier outputs yes iff there is some setting of the input gates corresponding to ¢ that make
the circuit output 1. It’s possible to show that this transformation can be carried out in polynomial time
(as a function of the size of x), and it’s also possible to show that this circuit can then be translated into
a formula in CNF (in polytime) such that settings of the circuit’s input gates correspond to settings of the
formula’s variables.

This shows that Circuit-SAT, SAT, and CNF-SAT are all NP-hard.

NP-completeness examples:
VERTEX-COVER: {< G,k > : G is a graph that contains a vertex cover of size k, i.e.a set C' of k vertices such
that each edge of G has at least one endpoint in C'}

VERTEX-COVER (VC) is NPC:
e VC in NP: Given G, k, ¢, we can verify in polytime that c represents a vertex cover of size k in G.

e VC is NP-hard: 3SAT <, VC.
Given F = (a1 Vb Ver) A+ Alap Vb V), where a;, b, ¢; € {x1,~ x1,22,~ T2, -+ ,Ts,~ Xs}, construct
G = (V,E) and k such that F satisfiable iff G contains vertex cover of size k, as follows:
k=s+2r
V == {(11,1)1,61, e 7a7“7b1“707”7x1)w Lly 3 Tgy ™ 1‘5}
E={(zi,~z;):1<i<stU{(as,bi), (bi,ci),(ciya;) : 1 <i<r}U{(l,z):l=a;orb;orc, and z =

xj or ~ x; corresponding to [}

For example, if F' = (x1V ~ xaV ~ x4) A (22V ~ 23V 21) A (~ 23V 24V ~ 22), then a1 = x1,b; =~ x2,¢1 =~
T4,a2 = T2,by =~ x3,c0 = x1,a3 =~ x3,b3 = T4,C3 =~ T3 SO

k=44+2x3=10

V ={ai1,b1,c1,a2,b2,c2,a3,b3,¢c3, 21, ~ 1, T2, ~ T2, T3, ~ X3, T4, ~ T4}

E = {($1, ~ xl)v ($2, ~ $2)a ($37 ~ $3)a (.1)4, ~ $4)7 (alv bl)v (bla Cl)? (Cla (11), (alvxl)a (b17 ~ 'r?)a (617 ~
x4), (az,b2), (b2, c2), (c2, a2), (a2, x2), (ba, ~ x3), (c2, 1), (a3, b3), (b3, c3), (c3,a3), (a3, ~ x3), (b3, x4), (c3,~
z2)}

Summer 2013 Page 1 of 4

CSC 373 LECTURE # 10 Instructor: Milad Eftekhar

Clearly, construction can be done in polytime (with one scan of F').

Also, if F' is satisfiable, then there is an assignment of truth values that make at least one literal in each
clause true. Pick a cover C' as follows: for each variable, C' contains z; or ~ x;, whichever is true under the
truth assignment; for each clause, C' contains every literal except one that’s true (pick arbitrarily if more
than one true literal). C' contains exactly s + 2r vertices and is a cover: all edges (z;, ~ x;) are covered; all
edges in clause triangles are covered (because we picked two vertices from each triangle); all edges between
“clauses” and “variables” are covered (two from inside triangle, one from true literal for that clause).

Finally if G contains a cover C' of size k = s + 2r, C' must contain at least one of x; or ~ x; for each i
(because of edges (z;,~ x;)) and at least two of a;, b;, ¢; for each i (because of triangle), so only way for C
to have size s + 2r is to contain exactly one of x; or ~ x; and exactly two of a;, b;, ¢;, for each 7. Since C
covers all edges with only two vertices per triangle, the third vertex in each triangle must have its “outside”
edge covered because of x; or ~ x;. If we set literals according to choices of z; or ~ x; in C, this will make
formula F' true: at least one literal will be true in each clause (because at least one edge from “variables” to
“clauses” is covered by the variable in C').

SUBSET-SUM: Given a set of positive integers S and a positive integer target ¢, is there some subset S’ of S
whose sum is exactly ¢, ie., > .oz =17

SUBSET-SUM (SS) is NPC:

e SS is in NP because it takes polytime to verify that the certificate represents a subset of S whose sum is ¢
(1- check if all items in the certificate ¢ is in S. 2- check if sum of the items in c is t).

e SS is NP-hard because 3SAT <, SS:
Given formula F' = (a3 Vb1 V1) A+ A(ar V by V¢) where a;,b;,¢; € {x1,~ x1,-++ ,xs,~ Ts}, construct
numbers as follows:

— Forj=1,...,s:
number z; = 1 followed by s — j Os followed by r digits where k-th next digit equals 1 if z; appears in
clause C}, 0 otherwise;
number ~ x; = 1 followed by s — j Os followed by r digits where k-th next digit equals 1 if ~ x; appears
in clause C%, 0 otherwise.

— Forj=1,...,7:
number C; = 1 followed by r — j 0s and
number D; = 2 followed by r — j 0s.

— Target t = s 1s followed by r 4s.

Clearly, this can be constructed in polytime.

Example of reduction for F' = (z1V ~ xaV ~ x4) A (22V ~ 23V 1) A (~ 23 V 24V ~ 22):

So the numbers are:

Summer 2013 Page 2 of 4

CSC373

X1
~]
€2
€3
T4
Dy
Cq
Do
Co
D3
Cs3

and t

LECTURE # 10 Instructor: Milad Eftekhar

X1 1 0 0 0 1 1 0
~Xq 1 0 0 0 0 0 0
X2 0 1 0 0 0 1 0
~X, 0 1 0 0 1 0 1
X3 0 0 1 0 0 0 0
~X3 0 0 1 0 0 1 1
X4 0 0 0 1 0 0 1
~Xy4 0 0 0 1 1 0 0
Cq 0 0 0 0 1 0 0
D, 0 0 0 0 2 0 0
dummies to
get clause C, 0 0 0 0 0 1 0
columns to D, 0 0 0 0 0 2 0
sum to 4 Cs 0 0 0 0 0 0 1
D 0 0 0 0 0 0 2
t 1 1 1 1 4 4 4
)
1000110,
1000000,
100010,
100101,
10000,
10011,
1001,
1100,
200,
100,
20,
10,
2,
1.
1111444

If F is satisfiable, then there is a setting of variables such that each clause of F' contains at least one true
literal. Consider the subset S’ = {numbers that correspond to true literals}. By construction, > .2 =s
1s followed by r digits, each one of which is either 1, 2, or 3 (because each clause contains at least one true
literal). This means it is possible to add suitable numbers from {C4, Dy, ..., C, D, } so that the last r digits
of the sum are equal to 4, i.e., there is a subset S’ such that Yopeg T =1

If there is a subset S’ of S such that > .o o = ¢, then S’ must contain exactly one of {zj,~ xj} for
j =1,...,n, because that is the only way for the numbers in S’ to add to the target (with a 1 in the first s
digits). Then, F is satisfied by setting each variable according to the numbers in S’: for each clause j, the
corresponding digit in the target is equal to 4 but the numbers C; and D; together only add up to 3 in that
digit; this means that the selection of numbers in S’ must include some literal with a 1 in ¢.

Template for proofs of NP-completeness: To show A is NPC, prove that

e A in NP: Describe a polytime verifier for A.
“Given (z,c), check ¢ has correct format and properties...”
Argue that verifier runs in polytime and that x is a yes-instance iff verifier outputs “yes” for some c.

Note that all problems in NP we’ve seen so far have a similar structure to their definition: “the answer
for object A is Yes iff there is some related object B such that some property holds about A and B” —

Summer 2013

Page 3 of 4

CSC 373 LECTURE # 10 Instructor: Milad Eftekhar

for example, for CLIQUE: “the answer for undirected graphs G and integers k is Yes iff there is a subset
of vertices C' that forms a k-clique in G”. For all such problems, the verifier will also have a common
structure: “on input (A, ¢), check that ¢ encodes an object B and that A and B have the required property”.
Because of the way these decision problems are defined, this guarantees (A, ¢) is accepted for some ¢ iff A is
a yes-instance. All that remains is to ensure checking property of A, B can be done in polytime.

A is NP-hard: Show B <, A for some NP-hard problem B.

“Given z, construct y, as follows: ...”

Argue that construction can be carried out in polytime and that x yes-instance iff y, yes-instance (often by
showing x yes-instance = y, yes-instance and y, yes-instance = z yes-instance)

In more detail, this involves:

— starting with arbitrary input y for B (i.e., without making any assumption about whether y is a yes-
instance or a no-instance),

— describing explicit construction of specific input x, for A,

arguing construction can be carried out in polytime,

arguing if y is a yes-instance, then so is z,

— arguing if z, is a yes-instance, then so was y (or equivalently, if y is a no-instance, then so is z,).

Watch last step! Argument starts from z, constructed earlier (not from arbitrary input = for A), and relates
it to arbitrary y that x, was constructed from.

Traps to watch out for:

e Direction of reduction: must start from arbitrary input x for B (cannot place any restrictions on input;

reduction must work with all possible inputs) and explicitly construct specific input y, for A.

e “Reduction” that does something different for yes-instances vs. no-instances: this would involve telling the

difference, which can’t be done in polytime when B is NP-hard.

Some NP-Complete problems:

3-SAT

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP
packing and covering sequencing partitioning numerical

Summer 2013

Page 4 of 4

