
CSC 373 Lecture #1 Instructor: Milad Eftekhar

Introduction

Course Info sheet

Background:

• Asymptotic notation (O, Ω, Θ) [Chapter 0 in the textbook], analysis of runtimes for iterative and recursive
algorithms [Chapter 2], and the Master Theorem.

• Data structures: queues, stacks, hashing, balanced search trees, priority queues, heaps, union-find/disjoint
sets.

• Graphs: definitions, properties, traversal algos (BFS, DFS). [Ch 3, 4.2]

• Induction and other proof techniques, proving correctness of iterative and recursive algorithms.

A very brief review:

Master Theorem (Chapter 2.2): If T (n) = aT (dn/be) + O(nd) for some constants a > 0, b > 1, and d > 0,
then

T (n) =


O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a

Worst-case running time: For any algorithm A, worst-case running time of A is TA(n) = maximum # steps
executed by A over all inputs of size n. Definition of input size is problem-dependent but must be reasonable,
i.e., within a constant factor of actual bit-size of input for any reasonable implementation.

Upper bounds: To prove T (n) is O(f(n)), give a general argument that algorithm never takes more than c×f(n)
steps for all inputs of size n (for some constant c). Proving this for a single input is not enough, unless you
also prove that this input is the worst-case (which requires reasoning about all inputs of size n anyway).

Lower bounds: To prove T (n) is Ω(f(n)), produce a single input of size n for which algorithm takes at least
c× f(n) steps (for some constant c). It’s OK to prove this for all inputs, although that won’t always work.
For example, linear search takes worst-case time > n (when the element being searched for is not in the list),
but it does NOT take time > n for every input.

Tight bounds: To prove T (n) is Θ(f(n)), prove T (n) is O(f(n)) and T (n) is Ω(f(n)), as above.

DFS (depth-first search): Traverse the graph from one node (call it the root) and fully explore each branch
before backtracking.

BFS (breath-first search): Traverse the graph from one node (call it the root) and explore all neighboring
nodes. For each neighboring node (one after the other) explore its neighboring nodes. Continue until all
nodes are visited.

Example: Suppose 109 ops/sec. Collect raw petrol from 100 oil platforms.

a. Use a tanker

Summer 2013 Page 1 of 5



CSC 373 Lecture #1 Instructor: Milad Eftekhar

• parameters: cost(A,B) for any two platforms A, B

• could be different from distance (natural obstacles, etc.)

• best known algorithm: approx. 2100 operations. approx. 4× 1013 years.

b. Use pipelines

• parameters: cost(A,B) for any two platforms A, B; no junctions outside platforms

• best known algorithm: approx. 1002 operations. approx 10 micro-seconds.

c. Add constraint: cannot connect more than 4 pipelines at each platform (or any other fixed constant k instead
of 4)

• best known algorithm: approx. 4× 1013 years

NOTE: There are many problems with efficient algorithms such that a change may make them very hard (expo-
nential time complexity). For example:

• Interval Scheduling vs Job Interval Scheduling

• Minimum Spanning Tree (MST) vs Bounded degree MST

• MST vs Steiner tree

• Shortest paths vs Longest paths

• 2-Colourability vs 3-Colourability

Problem Classes

• P: class of problems that have “polynomial-time” (i.e., efficient) algorithmic solutions

• NP-hard: class of problems for which no efficient algorithm is known (only known algorithms are exponential
time)

• Important to recognize problems in each class and to handle both kinds of problems appropriately.

In this course we learn:

• techniques for writing efficient algorithms for problems in P;

• techniques for deciding whether a problem is in P or NP-hard;

• techniques for handling NP-hard problems.

GREEDY ALGORITHMS:
At each step, make the choice that seems best at the time; never change your mind.

Example (Interval Scheduling Problem)

Input: Intervals I1, I2, ..., In. Each interval Ii consists of positive integer start time si and finish time fi (si < fi).

Output: Subset of intervals S such that all intervals are compatible (no two of them overlap in time) and |S| is
maximum.

Summer 2013 Page 2 of 5



CSC 373 Lecture #1 Instructor: Milad Eftekhar

A. Brute force : consider each subset of intervals.
Correctness? Trivial.
Runtime? Ω(2n), not practical.

B. Greedy by start time :

Algorithm 1: Greedy by start time

1 Sort intervals such that s1 6 s2 6 . . . 6 sn
2 S := {} // partial schedule

3 f := 0 // last finish time of intervals in S
4 for i in [1, 2, ..., n] do
5 if f 6 si // Ii is compatible with S
6 then
7 S := S ∪ {Ii}
8 f := fi

9 return S

Correctness? Doesn’t work. Counter-example:

|-------------------------|

|---| |---| |---| |---|

C. Greedy by duration : similar to above except sort by nondecreasing duration, i.e., f1−s1 6 f2−s2 6 · · · 6
fn − sn and change line 5 to “if Ii is compatible with all intervals in S”

Correctness? Counter-example:

|-----| |-----|

|---|

D. Greedy by overlap count : similar to above except sort from fewest conflicts to most conflicts (conflict:
overlap with some other interval)

Correctness? Counter-example:

|---| |---| |---| |---|

|---| |---| |---|

|---| |---|

|---| |---|

E. Greedy by finish time : similar to above except sort by nondecreasing finish time, i.e.,

f1 6 f2 6 ... 6 fn

Correctness? No counter-example · · ·

The exchange proof

• Intuition: algorithm picks intervals that free up resources as early as possible. BUT: intuition for others
also made sense · · ·
• How to tell if this works? Will show general technique for proving correctness of greedy algorithms.

• Let S0, S1, ..., Sn be the partial solutions constructed by the algorithm at the end of each iteration.

Summer 2013 Page 3 of 5



CSC 373 Lecture #1 Instructor: Milad Eftekhar

• Two possibilities:

– Prove each Si is optimal solution to sub-problem. Works for some problems, but does not generalize
well (some problems don’t decompose into sub-problems naturally).

– Prove each Si can be completed to reach optimal solution. Can be trickier but generalizes well.

• Say Si is promising if there is some optimal solution S′i that extends Si using only intervals from
Ii+1, ..., In (i.e., Si ⊆ S′i ⊆ Si ∪ {Ii+1, ..., In}). Note: S′i may not be unique (there may be more than
one way to achieve optimal).

• Prove that Si is promising is a loop invariant, by induction in i (number of iterations).

– Base case: S0 = {}: any optimal solution S′0 extends S0 using only intervals from {I1, ..., In}.
– Ind. Hyp.: Suppose i > 0 and optimal S′i extends Si using only intervals from {Ii+1, ..., In}.
– Ind. Step (To prove): Si+1 is promising w.r.t. {Ii+2, ..., In}.

From Si to Si+1, the algorithm either rejects or includes Ii+1.

∗ Case 1: Si+1 = Si

This means Ii+1 is not compatible with Si. Set S′i+1 = S′i. Then S′i+1 extends Si+1 using only
intervals from {Ii+2, ..., In} (since Si ⊆ S′i and Ii+1 is not compatible with Si).

∗ Case 2: Si+1 = Si ∪ {Ii+1}
S′i may or may not include Ii+1, so consider both possibilities.

· Subcase a: Ii+1 ∈ S′i
Then set S′i+1 = S′i, so S′i+1 extends Si+1 using only intervals from {Ii+2, ..., In}.
· Subcase b: Ii+1 6∈ S′i

How can this happen? There must be Ij ∈ S′i that overlaps with Ii+1 (otherwise, S′i ∪ Ii+1

would be better than optimal S′i).
j > i + 1 because S′i only uses intervals from {Ii+1, ..., In} to extend Si. Because of sorting
order, this means fi+1 6 fj .
Also at most one Ij overlaps Ii+1 (otherwise, assume there are two intervals that overlap
Ii+1. Call them Ij1 and Ij2 . Since fi+1 6 fj1 and fi+1 6 fj2 , intervals Ij1 and Ij2 overlap.
Thus S′i would contain overlapping intervals that is a contradiction).
Therefore, S′∗i = S′i ∪ {Ii+1} − {Ij} also extends Si using {Ii+1, ..., In} (it contains the same
number of intervals as S′i, and no overlap introduced).
Set S′i+1 = S′∗i . Then S′i+1 extends Si+1 using {Ii+2, ..., In}.

Argument above known as exchange lemma: arguing that any optimal solution can be made
to agree with greedy solution, one element at a time.

In all cases, there is some optimal S′i+1 that extends Si+1 using only intervals from Ii+2, ..., In.

– So each Si is promising. In particular, Sn is promising, i.e., there is optimal S′n that extends Sn

using only intervals from {}. In other words, Sn is optimal.

The charging proof (will be explained next week)

• The idea is to charge any interval in an optimal solution to a unique interval in the greedy solution.

• Let OPT be an optimal solution.

• Let S be the greedy solution (the solution identified by the greedy algorithm EFT).

• Define a 1-1 map (a 1-1 function) h : OPT → S. If such a map exists, we can conclude that |OPT | 6 |S|.
• Definition of h: h(J) is the interval J ′ ∈ S with two properties: (1) it intersects J , and (2) it has the

earliest finishing time amongst intervals in S intersecting J .

– First, h is a function (i.e., J ′ must exist and is unique). Why?

Summer 2013 Page 4 of 5



CSC 373 Lecture #1 Instructor: Milad Eftekhar

– Second, h is 1-1. Assume two intervals J1, J2 ∈ OPT are mapped to the same interval J ∈ S.
WLOG, assume that f1 < f2. Let f be the finishing time of J . By the denition of the mapping h,
f 6 f1 or else the greedy EFT algorithm would have taken J1 (and not J). So we have f 6 f1 < f2
and since J1 and J2 cannot intersect, J2 cannot intersect J ′.

• Thus, |OPT | 6 |S|. Therefore, S is optimal.

Summer 2013 Page 5 of 5


