The solution to Q3 (midterm)

Instructor: Milad Eftekhar

Summer 2013

Q3.
Let G denote the graph in the question and f is a max flow for G.
For any edge e of G, we just need to increase the capacity if $f(e)>c(e)-1$.
Identify a max flow f. Create another graph G^{\prime} similar to G (the same nodes and edges) with new edges' weights. For any edge e in G : if $f(e)>c(e)-1$, set the weight of the corresponding edge in G^{\prime} to $p(e)$; otherwise, set the weight to 0 . We want to find a path from s to t with the smallest weight in this graph (the shortest path from s to t) that can be done by Dijkstra algorithm. The run time of the algorithm is $\mathcal{O}(m \log n)$.

