
CSC373 A2 solutions

Instructor: Milad Eftekhar

Summer 2013

This document contains the key ideas to solve A2 questions (not the complete solu-

tions). Note that many details may be ignored in several places.

Q1.

Define the semantic array as follows:

V [j, c] = The maximum value obtainable using items {I1, · · · , Ij} and a knapsack size bound c

To calculate V [j, c] we have several options for item Ij : we may choose 0, 1, 3, ... instances of Ij .

We calculate the maximum obtainable value of all of these options and select the maximum. Thus:

V [j, c] = max
k
{V [j − 1, c− k × wj] + k × vj} for k ∈ {0, 1, 3, · · · , hj}

where hj is the largest odd number that is ≤ bc/wjc

Also set V [j, 0] = 0 and V [0, c] = 0. The solution is V [n,C].

Complexity: Calculate O(nC) entries of V . Each entry takes O(C
minwj

) = O(n). Thus the run time

complexity is O(nCn) = O(n4).

Q2.

Possible[i, j, x]: Is it possible to parenthesize the substring from index i to index j (sisi+1 · · · sj)
such that the result is x where x is a, b, or c?

“Possible” is a boolean 3-dimensional array. The solution is Possible[1, n, a].

According to the table in question, we know
a = ac = bc = ca

b = aa = ab = bb

c = ba = cb = cc

Thus:

Possible[i, j, a] =
∨
k


Possible[i, k, a] ∧ Possible[k + 1, j, c]

Possible[i, k, b] ∧ Possible[k + 1, j, c]

Possible[i, k, c] ∧ Possible[k + 1, j, a]

 for all i ≤ k < j

1

In the aforementioned equation, Possible[i, j, a] is True if at least one of the above 3(j − i) terms

is True.

Similarly find the relation for Possible[i, j, b] and Possible[i, j, c].

Also initialize the values:

Possible[i, i, x] =

{
True if si = x

False otherwise
for all 1 ≤ i ≤ n and x ∈ {a, b, c}

The complexity is O(n3).

Q3.

Possible[v′, k′]: Is it possible to make change for v′ using at most k′ coins, of denominations

x1, · · · , xn?

Possible[v′, k′] =
∨
i

(
Possible[v′ − xi, k

′ − 1]
)

for all 1 ≤ i ≤ n.

Initialize Possible[0, k′] = True and Possible[v′, 0] = False for any 0 ≤ k′ ≤ k and 0 < v′ ≤ v.

The complexity of this algorithm is O(nkv).

Q4.

Let Pij =
∑j

k=i pk.

cost[i, j] = the cost of the opitmal binary search tree for words wi · · ·wj .

Any word wk from wi to wj can be the root of the optimal subtree for words wi · · ·wj . In that

case, the words wi · · ·wk−1 would form the left subtree and the words wk+1 · · ·wj would form the

right subtree. We calculate the cost of all of these options and get the minimum.

cost[i, j] = min
k

(
cost[i, k − 1] + cost[k + 1, j] + Pij

)
for all i ≤ k ≤ j. Here assume cost[i, j] = 0 if

i > j. (Save the best k to create the optimal subtree. Word wk is the root of this optimal subtree)

The lowest cost of the optimal tree for all words is cost[1, n] and the complexity is O(n3).

Q5.

Max flow = 13

Min cut: Vs = {S,C, F}, Vt = {A,B,D,E,G, T}.
Q6.

Let G denote the graph in the question and f is a max flow for G.

Property: For any edge e of G, if e is a bottleneck edge then f(e) = c(e).

Identify a max flow f . Create another graph G′ similar to G (the same nodes and edges) with new

edges’ weights. For any edge e in G: if f(e) = c(e), set the weight of the corresponding edge in G′

to 1. For any edge e in G: if f(e) < c(e), set the weight of the corresponding edge in G′ to 0. Find

all paths with a weight of 1 from s to t in G′ (run DFS). The edges with weight 1 on these paths

are the bottleneck edges. (why? If you increase the capacity of any of these edges since the edge is

on a path from s to t with all other edges having unused capacity, we can push more flow on the

path. Any bottleneck edge has this property.)

Q7.

Create a bipartite graph G = (L,R,E). There is a node in L for each injured individual. There

2

is a node in R for each hospital. There is a directed edge from node u ∈ L to node v ∈ R if the

location of individual u is within a 1km distance of the hospital v. Add a node s and t to this

graph. Connect s to each node in L (directed) with a capacity 1. Connect each node in R to t

(directed) with capacity dn/ke. The solution to the problem is YES iff the max flow in this graph

is n.

3

