
This document contains the key ideas to solve A1 questions. Note that many details

may be ignored in several places.

Q2.

Assume the road starts at a, ends at b. There are n houses at points xi where a ≤ xi ≤ b. We

represent each house by an interval Ii that starts at max(a, xi − 4) and min(b, xi + 4). Identifying

the minimum base stations that cover all houses is equivalent to maximizing the number of non-

overlapping intervals (why?). Therefore the earliest finish time greedy algorithm (EFT) solves the

problem. Place a base station at the end point of each selected interval.

Q3.

We need to remove 7 edges. In a graph with distinct edges, the edge with maximum weight in any

cycle does not belong to the MST (why?). You can find a cycle using BFS algorithm. Thus one

algorithm follows: Find a cycle by DFS (O(n)). Find the edge with maximum weight in that

cycle (O(n)). Remove that edge. Continue this for 7 items. Thus the total run time is O(n).

Q4.

The longest codeword (the maximum height of the huffman tree) is n− 1. Note that the huffman

tree is a binary tree where each inner node has two children. So a huffman tree with a larger height

is not possible.

Example: f1 = 1, f2 = 1, f3 = 2, f4 = 4, f5 = 8, f6 = 16, · · · , fn = 2n−2. In general it happens

when fi ≥
∑i−1

j=1 fj .

Q5.

Proof by contradiction. All of the numbers are in percentage.

𝑓𝑦1 𝑓𝑦2

𝑓𝑦

𝑓𝑥 40+

𝑓𝑧

𝑓𝑟 = 100

Assume there exist one character (z) with a frequency > 40 but there is no codeword of length 1.

1

Note that the huffman algorithm sorts the characters according to the frequency (non-decreasing)

and creates the tree based on this ordering. Assume character z has a frequency fz > 40. Since

there is no codeword of length 1, in the last iteration two inner nodes are merged to create the root

node r. WLOG, assume character z is in the right subtree. Thus, the root of the right subtree

is composed of a node with frequency greater than 40 and a node with frequency fx. Moreover,

assume the root of the left subtree has a frequency of fy. Therefore, fx ≤ fy and fz ≤ fy. Since

fz > 40, fy > 40. Thus, fx < 20 (sum of all frequencies is 100). Now, assume the children of the

node with frequency fy have frequencies fy1 and fy2 . Either (1) these two nodes are considered

and merged after node z then they should have a frequency of more than 40 that is not possible,

or (2) these nodes are considered and merged before node z so fy1 ≤ fx and fy2 ≤ fx. Thus

fy = fy1 + fy2 < 40. This is in contradiction with fy > 40. Hence the first assumption is incorrect.

Q6.

Assume OPT is an optimal solution and S is the result of EFT. We define a map h : OPT → S.

Similar to lecture, define h(I) = J where I ∈ OPT ; J ∈ S; J conflicts I; and among all intervals

in S conflicting I, J has the earliest finish time. Note that if h(I) = J then f(J) ≤ f(I) otherwise

I should be in S not J .

First h is a function: h(I) has a unique value. (why?)

Second, at most two jobs in OPT can be mapped to a single job in S. For this part we use proof

by contradiction technique. Assume there are three intervals I1, I2, I3 ∈ OPT that are mapped to

the same interval J ∈ S. So all of these intervals should conflict with J either by having the same

type or overlapping. At most one of I1, I2, and I3 can have the same type as J otherwise OPT is

conflicting and not a solution. Thus, at least two intervals (say I1 and I2) overlap with I. Since

f(J) ≤ f(I1) and f(J) ≤ f(I2): f(J) ∈ I1 and f(J) ∈ I2. Thus, I1 and I2 overlap and OPT is

conflicting and not a solution.

In all cases OPT is not a solution. This is a contradiction. Hence EFT is a 2-approximation

algorithm for JISP.

Q7.

Semantic array: V [i] contains the maximum total weight of an independent set utilizing nodes 1

to i.

V [0] = 0.

V [i] = max(V [i− 1], wi + V [i− 2]).

2

1 V [0] = 0

2 for i = 1 to n do

3 Used[i] = false

4 for i = 1 to n do

5 V [i] = V [i− 1]

6 if V [i] < wi + V [i− 2] then

7 V [i] = wi + V [i− 2]

8 Used[i] = true

9 S = {} // the optimal independent set

10 i = n

11 while i > 0 do

12 if Used[i] then

13 S = S ∪ {Vi}
14 i = i− 2

15 else

16 i = i− 1

3

