Trading Time and Space in Catalytic Branching
Programs

lan Mertz

University of Toronto

July 23, 2022

Joint work with James Cook

Space-bounded computation

BP(w,{): layered branching programs of width w and length ¢

length

1 width

Space-bounded computation

BP(w, ¢) looks like SPACETIME (log w, ?)

Space-bounded computation

BP(w, ?) looks like SPACETIME (log w, ¢) (idea: for a fixed
timestamp, w nodes in a layer <> log w bits in memory)

Space-bounded computation

BP(w, ?) looks like SPACETIME (log w, ¢) (idea: for a fixed
timestamp, w nodes in a layer <> log w bits in memory), but...

SPACETIME is uniform: machine is “easy to describe” for every n

Space-bounded computation

BP(w, ?) looks like SPACETIME (log w, ¢) (idea: for a fixed
timestamp, w nodes in a layer <> log w bits in memory), but...

SPACETIME is uniform: machine is “easy to describe” for every n

BP is non-uniform: no restrictions on the description

Space-bounded computation

Every f can be computed by BP(2"~1, n)

Space-bounded computation

Every f can be computed by BP(2"~1, n)

\@ know x1...x, —

know f(x1...xn)

Amortized space-bounded computation

Amortized space-bounded computation
J4

(N

o
o
fin
-
o

ao
e’e_
» O O

o
fin
-
o =

(3)
©,

Amortized space-bounded computation

mCBP(w, ¢, m): m different branching programs (one source —
two sinks) which can share states

Amortized space-bounded computation

mCBP(w, ¢, m): m different branching programs (one input node,
two output nodes) which can share states

YO (1,0)
1 O RO o (171)
>0 *O (2,0)
I ® (.0)

() (m,1)

Amortized space-bounded computation

mCBP(w, ¢, m): m different branching programs (one source —
two sinks) which can share states

Catalytic computation

CSPACETIME(s, t, c): space-bounded Turing Machines with an
extra worktape (c bits) of full memory

papel[x] [
input tape output

work tape

HEEEN

catalytic tape

oai] o1

Catalytic computation

CSPACETIME(s, t, c): space-bounded Turing Machines with an
extra worktape (c bits) of full memory

el][]

input tape output

work tape

HEIENE

catalytic tape

o[l Tolo]

Catalytic computation

CSPACETIME(s, t, c): space-bounded Turing Machines with an
extra worktape (c bits) of full memory

el Xl
input tape output

work tape

HEEEN

catalytic tape

oai] o1

Catalytic computation

Again mCBP(w, ¢, m) looks like non-uniform
CSPACETIME (log w, ¢, log m)

Catalytic computation

Again mCBP(w, ¢, m) looks like non-uniform
CSPACETIME (log w, ¢, log m)
» m- w nodes in a layer <+ log m + log w bits in memory

Catalytic computation

Again mCBP(w, ¢, m) looks like non-uniform
CSPACETIME (log w, ¢, log m)
» m- w nodes in a layer <+ log m + log w bits in memory
» m sources plus source-sink pairing requirement < resetting
log m catalytic memory)

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space
(w = (w - m)/m) needed to compute f, or the number of copies
(m) needed for amortization to help

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space
(w = (w - m)/m) needed to compute f, or the number of copies
(m) needed for amortization to help

2) catalytic space: reducing the amount of space (log w) and
catalytic space (log m) needed to compute f

Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Known results
[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2(").

Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2(").

In contrast, [Potechin’17] gives (asymptotically) optimal amortized
width w = O(1) and length ¢ = O(n) simultaneously

Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2(").

In contrast, [Potechin’17] gives (asymptotically) optimal amortized
width w = O(1) and length ¢ = O(n) simultaneously

...but we need m = 221 to get it!

Our results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22""1,

Our results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,

n_
where m = 221,

Main result 1: for any ¢ > 0, every function f can be
computed by an m-catalytic branching program of width 2m
and length O.(n), where m = 227,

Our results (permutation branching programs)

[Potechin’17]’: every function f can be computed by a
read-4 permutation branching program of width 22"+1,

Main result 1': for any ¢ > 0, every function f can be
computed by a read-O.(1) permutation branching program of
width 227",

[Potechin'17] in one slide

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22""1,

[Potechin'17] in one slide

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22""1,

Setup: catalytic space logm = 2" — 1 in some initial state
Ty ...7Ton_1, plus log4 = 2 bits of free work space

... ((00...0),0)

(00...0) O O ((00....0), 1)
(00...1) O »O ((00...1),0)
(7'17'2...7’2"—1) . R fv(x?“:O >. ((7'17'2.~7'2”71)70)

Fx) =T 3@ ((ri72...720-1),1)
11...10) O

=20 ((11...1),1)

[Potechin’17] in two slides

0) First free bit: 0 entry of g

g(0) =

O
O

0

OO

OO

OO

OO

O O

OO

O

OO

OO

[Potechin’17] in two slides

Dglar...aj...ap) = glag...a: ..

g¥(x)=0
O O
o ® ©
o
O
O O

X1...Xn

Xi
]

OO

OO

Q)

O O

OO

O

OO

OO

[Potechin’17] in two slides

2) gly) — gly) +f(y)

OO

(87 +f)(x) = f(x)

o 0
() O
o @
o O

(no reads)

O
O

OO

O O

OO

O

OO

OO

[Potechin’17] in two slides

3) g(al ..

OO

(8% +1)¥(0) = f(x)

O

X1...

afan) = glar..a..

O
O

OO

.Qtp)

O
O

OO

O

OO

OO

[Potechin’17] in two slides

4) Second free bit (output): copy the answer from first free bit

(g% +£)*(0) = f(x)

O
O O O o O

O [} O O O

- . _ O
Y O b 3 =0

® 7o © O
O O O

O O ® O

[Potechin’17] in two slides

5) Undo steps 1-3 (do steps 3-1)

o g(0)=0
O O O o O
o [O O O
O ..
O O
O e n;
O 0 9
O L
O O () O

Trading time and space

Truth table representation [Potechin’17]:

fx)= Y fla) [x=qd]

ae{0,1}"

Trading time and space

Truth table representation [Potechin’17]:

fx)= Y fla) [x=qd]

ae{0,1}"

Monomial representation [Cook-Mertz'20,21]:

meon)‘Hx,- mod 2

5C|n] ieS

Trading time and space

Truth table representation [Potechin’17]:

fx)= Y fla) [x=qd]

ae{0,1}"

Monomial representation [Cook-Mertz'20,21]:

meon)‘Hx,- mod 2

5C|n] ieS

Catalytic algorithms give us a way to compute f over the
monomial basis only using catalytic memory.

Trading time and space

Monomial representation [Cook-Mertz'20,21]:

meon)‘Hx,- mod 2

S5C|n] ieS

Two algorithms for monomial rep., different types of efficiency:

Trading time and space

Monomial representation [Cook-Mertz'20,21]:

Z fmon()‘Hx,- mod 2

S5C|n] ieS
Two algorithms for monomial rep., different types of efficiency:
1) Potechin algorithm (monomial basis edition)

» compute each monomial into separate memory in parallel

> linear time, exponential space

Trading time and space

Monomial representation [Cook-Mertz'20,21]:

meon)‘Hx,- mod 2

S5C|n] ieS
Two algorithms for monomial rep., different types of efficiency:

1) Potechin algorithm (monomial basis edition)
» compute each monomial into separate memory in parallel

> linear time, exponential space

2) Cook-Mertz algorithm (branching program edition)

P> compute each monomial directly into the output register in
series

P> exponential time, linear space

Trading time and space

Main result 1: for any € > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m

and length 2V/¢ . 2¢n, where m = N2,

Trading time and space

Main result 1: for any € > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m
and length 2V/¢ . 2¢n, where m = o2,

Proof idea: use time-efficient algorithm to compute monomials
only up to degree en, then use space-efficient algorithm to combine
them to get the higher degree monomials.

Trading time and space

Main result 1: for any € > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m
and length 2V/¢ . 2¢n, where m = o2,

Proof idea: use time-efficient algorithm to compute monomials
only up to degree en, then use space-efficient algorithm to combine
them to get the higher degree monomials.

» Small monomials: (<’;n) monomials — space n®"

Trading time and space

Main result 1: for any € > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m
and length 2V/¢ . 2¢n, where m = o2,

Proof idea: use time-efficient algorithm to compute monomials
only up to degree en, then use space-efficient algorithm to combine
them to get the higher degree monomials.

» Small monomials: (<’;n) monomials — space n®"

» better: split variables into % groups — space % 29" (4+n)

Trading time and space

Main result 1: for any € > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m
and length 2V/¢ . 2¢n, where m = o2,

Proof idea: use time-efficient algorithm to compute monomials
only up to degree en, then use space-efficient algorithm to combine
them to get the higher degree monomials.

» Small monomials: (<’;n) monomials — space n®"
» better: split variables into % groups — space % 29" (4+n)

> Large monomials: degree 1/e — time 2/ (-2¢n)

Trading time and space

Main result 1: for any € > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m
and length 2V/¢ . 2¢n, where m = o2,

Proof idea: use time-efficient algorithm to compute monomials
only up to degree en, then use space-efficient algorithm to combine
them to get the higher degree monomials.

» Small monomials: (<’;n) monomials — space n®"
» better: split variables into % groups — space % 29" (4+n)

> Large monomials: degree 1/e — time 2/ (-2¢n)

Extending to easier functions

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22""1,

Extending to easier functions

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22""1,

[Robere-Zuiddam’22]: if f is a degree d polynomial over [y,

then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(S"d)_1.

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F»,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(Snd)_1.

Proof idea (original): for low degree f, the Potechin algorithm has
many isomorphic disjoint components based on the symmetries of
the polynomial associated with f.

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F»,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(Snd)_1.

Proof idea (original): for low degree f, the Potechin algorithm has
many isomorphic disjoint components based on the symmetries of
the polynomial associated with f.

Proof idea (new): monomial version of Potechin algorithm again,
but now only compute monomials which actually appear in f ((<"d)
by assumption). -

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F»,

then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(§nd)_1.

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F»,

then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(§nd)_1.

Main result 2: for any € > 2/d, if f is a degree d polynomial
over Fy, then f can be computed by an m-catalytic branching
program of of width 2m and length 2/¢ . 2n, where

n

m = 2n+%(§cd)

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F»,

then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(§nd)_1.

Main result 2: for any € > 2/d, if f is a degree d polynomial
over Fy, then f can be computed by an m-catalytic branching
program of of width 2m and length 2/¢ . 2n, where

n

m = 2n+%(§cd)

Proof idea: same* time-space tradeoff as before, now with ed
instead of en.]

Saving time

All results are linear time, which is optimal up to a constant factor.
But how small can we get the constant?

Saving time

All results are linear time, which is optimal up to a constant factor.
But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic
(or even permutation) branching program of length 4n — 4
and width 4m, where m = 22"71,

Saving time

All results are linear time, which is optimal up to a constant factor.
But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic
(or even permutation) branching program of length 4n — 4
and width 4m, where m = 22"71,

Main result 4: any permutation* branching program
calculating the AND function which reads any variable less
than three times requires length at least 4n — 4.

Open problems

Save on either time or space (while keeping other optimal)

» would give better tradeoff algorithm

Open problems

Save on either time or space (while keeping other optimal)

» would give better tradeoff algorithm

Show that for some f, m must be at least 27 to get linear
amortized size

» counting only gives m > 2"/0(n)

Open problems

Save on either time or space (while keeping other optimal)

» would give better tradeoff algorithm

Show that for some f, m must be at least 2”7 to get linear
amortized size

» counting only gives m > 2"/0(n)

Optimal permutation branching program length for any function
» somewhere between 3n* and 4n — 4

» can get a read-3 program for AND(x1, x2, x3)

