
Trading Time and Space in Catalytic Branching
Programs

Ian Mertz

University of Toronto

July 23, 2022

Joint work with James Cook

Space-bounded computation

BP(w , `): layered branching programs of width w and length `

x3

x4

x1

x1

x6

xn

. . .

0

1
0

1

0

1

0

1

1

1

0

length

width

Space-bounded computation

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

`

w

BP(w , `) looks like SPACETIME (logw , `)

(idea: for a fixed
timestamp, w nodes in a layer ↔ logw bits in memory), but...

SPACETIME is uniform: machine is “easy to describe” for every n

BP is non-uniform: no restrictions on the description

Space-bounded computation

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

`

w

BP(w , `) looks like SPACETIME (logw , `) (idea: for a fixed
timestamp, w nodes in a layer ↔ logw bits in memory)

, but...

SPACETIME is uniform: machine is “easy to describe” for every n

BP is non-uniform: no restrictions on the description

Space-bounded computation

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

`

w

BP(w , `) looks like SPACETIME (logw , `) (idea: for a fixed
timestamp, w nodes in a layer ↔ logw bits in memory), but...

SPACETIME is uniform: machine is “easy to describe” for every n

BP is non-uniform: no restrictions on the description

Space-bounded computation

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

`

w

BP(w , `) looks like SPACETIME (logw , `) (idea: for a fixed
timestamp, w nodes in a layer ↔ logw bits in memory), but...

SPACETIME is uniform: machine is “easy to describe” for every n

BP is non-uniform: no restrictions on the description

Space-bounded computation

Every f can be computed by BP(2n−1, n)

x1

x2

x2

x3

x3

x3

x3

. . .

xn

xn

. . .

xn

. . .

xn

0

1

0

1

0

1

0

1

0

1

know x1 . . . xn →
know f (x1 . . . xn)

Space-bounded computation

Every f can be computed by BP(2n−1, n)

x1

x2

x2

x3

x3

x3

x3

. . .

xn

xn

. . .

xn

. . .

xn

0

1

0

1

0

1

0

1

0

1

know x1 . . . xn →
know f (x1 . . . xn)

Amortized space-bounded computation

x3

x4

x1

x1

x6

xn

. . .

0

1
0

1

0

1

0

1

1

1

0

`

w

Amortized space-bounded computation

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

`

w

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

w

. . .

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

w

Amortized space-bounded computation
mCBP(w , `,m): m different branching programs (one source →
two sinks) which can share states

1

2

. . .

i

. . .

m

(1, 0)

(1, 1)

(2, 0)

. . .

(i , 0)

(i , 1)

. . .

(m, 1)

. . .

. . .

. . .

m · w

`

Amortized space-bounded computation

mCBP(w , `,m): m different branching programs (one input node,
two output nodes) which can share states

1

2

. . .

i

. . .

m

(1, 0)

(1, 1)

(2, 0)

. . .

(i , 0)

(i , 1)

. . .

(m, 1)

f (x) = 0

f (x) = 1

Amortized space-bounded computation
mCBP(w , `,m): m different branching programs (one source →
two sinks) which can share states

1

2

. . .

i

. . .

m

(1, 0)

(1, 1)

(2, 0)

. . .

(i , 0)

(i , 1)

. . .

(m, 1)

. . .

. . .

. . .

m · w

`

Catalytic computation

CSPACETIME (s, t, c): space-bounded Turing Machines with an
extra worktape (c bits) of full memory

. . .

work tape

0 1 1 . . . 0 1

catalytic tape

x1 x2 . . . xn

input tape output

Catalytic computation

CSPACETIME (s, t, c): space-bounded Turing Machines with an
extra worktape (c bits) of full memory

1 1 0 . . . 1

work tape

1 0 1 . . . 0 0

catalytic tape

x1 x2 . . . xn

input tape output

Catalytic computation

CSPACETIME (s, t, c): space-bounded Turing Machines with an
extra worktape (c bits) of full memory

. . .

work tape

0 1 1 . . . 0 1

catalytic tape

x1 x2 . . . xn

input tape

f

output

Catalytic computation

1

2
. . .

i
. . .

m

(1, 0)

(1, 1)

(2, 0)
. . .

(i, 0)

(i, 1)
. . .

(m, 1)

. . .

. . .

. . .

m · w

`

Again mCBP(w , `,m) looks like non-uniform
CSPACETIME (logw , `, logm)

I m · w nodes in a layer ↔ logm + logw bits in memory

I m sources plus source-sink pairing requirement ↔ resetting
logm catalytic memory)

Catalytic computation

1

2
. . .

i
. . .

m

(1, 0)

(1, 1)

(2, 0)
. . .

(i, 0)

(i, 1)
. . .

(m, 1)

. . .

. . .

. . .

m · w

`

Again mCBP(w , `,m) looks like non-uniform
CSPACETIME (logw , `, logm)

I m · w nodes in a layer ↔ logm + logw bits in memory

I m sources plus source-sink pairing requirement ↔ resetting
logm catalytic memory)

Catalytic computation

1

2
. . .

i
. . .

m

(1, 0)

(1, 1)

(2, 0)
. . .

(i, 0)

(i, 1)
. . .

(m, 1)

. . .

. . .

. . .

m · w

`

Again mCBP(w , `,m) looks like non-uniform
CSPACETIME (logw , `, logm)

I m · w nodes in a layer ↔ logm + logw bits in memory

I m sources plus source-sink pairing requirement ↔ resetting
logm catalytic memory)

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space
(w = (w ·m)/m) needed to compute f , or the number of copies
(m) needed for amortization to help

2) catalytic space: reducing the amount of space (logw) and
catalytic space (logm) needed to compute f

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space
(w = (w ·m)/m) needed to compute f , or the number of copies
(m) needed for amortization to help

2) catalytic space: reducing the amount of space (logw) and
catalytic space (logm) needed to compute f

Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space
(w = (w ·m)/m) needed to compute f , or the number of copies
(m) needed for amortization to help

2) catalytic space: reducing the amount of space (logw) and
catalytic space (logm) needed to compute f

Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2Ω(n).

In contrast, [Potechin’17] gives (asymptotically) optimal amortized
width w = O(1) and length ` = O(n) simultaneously

...but we need m = 22
n−1 to get it!

Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2Ω(n).

In contrast, [Potechin’17] gives (asymptotically) optimal amortized
width w = O(1) and length ` = O(n) simultaneously

...but we need m = 22
n−1 to get it!

Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2Ω(n).

In contrast, [Potechin’17] gives (asymptotically) optimal amortized
width w = O(1) and length ` = O(n) simultaneously

...but we need m = 22
n−1 to get it!

Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2Ω(n).

In contrast, [Potechin’17] gives (asymptotically) optimal amortized
width w = O(1) and length ` = O(n) simultaneously

...but we need m = 22
n−1 to get it!

Our results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

Main result 1: for any ε > 0, every function f can be
computed by an m-catalytic branching program of width 2m
and length Oε(n), where m = 22εn .

Our results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

Main result 1: for any ε > 0, every function f can be
computed by an m-catalytic branching program of width 2m
and length Oε(n), where m = 22εn .

Our results (permutation branching programs)

[Potechin’17]’: every function f can be computed by a
read-4 permutation branching program of width 22n+1.

Main result 1’: for any ε > 0, every function f can be
computed by a read-Oε(1) permutation branching program of
width 22εn .

[Potechin’17] in one slide

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

Setup: catalytic space logm = 2n − 1 in some initial state
τ1 . . . τ2n−1, plus log 4 = 2 bits of free work space

(00 . . . 0)

(00 . . . 1)

. . .

(τ1τ2 . . . τ2n−1)

. . .

(11 . . . 1)

((00 . . . 0), 0)

((00 . . . 0), 1)

((00 . . . 1), 0)

. . .

((τ1τ2 . . . τ2n−1), 0)

((τ1τ2 . . . τ2n−1), 1)

. . .

((11 . . . 1), 1)

f (x) = 0

f (x) = 1

[Potechin’17] in one slide

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

Setup: catalytic space logm = 2n − 1 in some initial state
τ1 . . . τ2n−1, plus log 4 = 2 bits of free work space

(00 . . . 0)

(00 . . . 1)

. . .

(τ1τ2 . . . τ2n−1)

. . .

(11 . . . 1)

((00 . . . 0), 0)

((00 . . . 0), 1)

((00 . . . 1), 0)

. . .

((τ1τ2 . . . τ2n−1), 0)

((τ1τ2 . . . τ2n−1), 1)

. . .

((11 . . . 1), 1)

f (x) = 0

f (x) = 1

[Potechin’17] in two slides

0) First free bit: ~0 entry of g

. . .

. . .

g(0) = 0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

[Potechin’17] in two slides

1) g(α1 . . . αi . . . αn)→ g(α1 . . . α
xi
i . . . αn)

. . .

. . .

. . .

. . .

x1 . . . xn

g⊕x(x) = 0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

[Potechin’17] in two slides

2) g(y)→ g(y) + f (y)

. . .

. . .

. . .

. . .

. . .

. . .

(no reads)

(g⊕x + f)(x) = f (x)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

[Potechin’17] in two slides

3) g(α1 . . . α
xi
i . . . αn)→ g(α1 . . . αi . . . αn)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

x1 . . . xn

(g⊕x + f)⊕x(0) = f (x)

. . .

. . .

. . .

. . .

. . .

. . .

[Potechin’17] in two slides

4) Second free bit (output): copy the answer from first free bit

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

f (x) = 1

f (x) = 0

(g⊕x + f)⊕x(0) = f (x)

. . .

. . .

. . .

. . .

. . .

. . .

[Potechin’17] in two slides

5) Undo steps 1-3 (do steps 3-1)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

x1 . . . xn x1 . . . xn

f (x) = 1

f (x) = 0

g(0) = 0

Trading time and space

Truth table representation [Potechin’17]:

f (x) =
∑

α∈{0,1}n
f (α) · [x = α]

Monomial representation [Cook-Mertz’20,21]:

f (x) =
∑
S⊆[n]

fmon(S) ·
∏
i∈S

xi mod 2

Catalytic algorithms give us a way to compute f over the
monomial basis only using catalytic memory.

Trading time and space

Truth table representation [Potechin’17]:

f (x) =
∑

α∈{0,1}n
f (α) · [x = α]

Monomial representation [Cook-Mertz’20,21]:

f (x) =
∑
S⊆[n]

fmon(S) ·
∏
i∈S

xi mod 2

Catalytic algorithms give us a way to compute f over the
monomial basis only using catalytic memory.

Trading time and space

Truth table representation [Potechin’17]:

f (x) =
∑

α∈{0,1}n
f (α) · [x = α]

Monomial representation [Cook-Mertz’20,21]:

f (x) =
∑
S⊆[n]

fmon(S) ·
∏
i∈S

xi mod 2

Catalytic algorithms give us a way to compute f over the
monomial basis only using catalytic memory.

Trading time and space

Monomial representation [Cook-Mertz’20,21]:

f (x) =
∑
S⊆[n]

fmon(S) ·
∏
i∈S

xi mod 2

Two algorithms for monomial rep., different types of efficiency:

1) Potechin algorithm (monomial basis edition)

I compute each monomial into separate memory in parallel

I linear time, exponential space

2) Cook-Mertz algorithm (branching program edition)

I compute each monomial directly into the output register in
series

I exponential time, linear space

Trading time and space

Monomial representation [Cook-Mertz’20,21]:

f (x) =
∑
S⊆[n]

fmon(S) ·
∏
i∈S

xi mod 2

Two algorithms for monomial rep., different types of efficiency:

1) Potechin algorithm (monomial basis edition)

I compute each monomial into separate memory in parallel

I linear time, exponential space

2) Cook-Mertz algorithm (branching program edition)

I compute each monomial directly into the output register in
series

I exponential time, linear space

Trading time and space

Monomial representation [Cook-Mertz’20,21]:

f (x) =
∑
S⊆[n]

fmon(S) ·
∏
i∈S

xi mod 2

Two algorithms for monomial rep., different types of efficiency:

1) Potechin algorithm (monomial basis edition)

I compute each monomial into separate memory in parallel

I linear time, exponential space

2) Cook-Mertz algorithm (branching program edition)

I compute each monomial directly into the output register in
series

I exponential time, linear space

Trading time and space

Main result 1: for any ε > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m

and length 21/ε · 2εn, where m = 2n+ 1
ε
·2εn .

Proof idea: use time-efficient algorithm to compute monomials
only up to degree εn, then use space-efficient algorithm to combine
them to get the higher degree monomials.

I Small monomials:
(n
≤εn
)

monomials → space nεn

I better: split variables into 1
ε groups → space 1

ε · 2
εn (+n)

I Large monomials: degree 1/ε → time 21/ε (·2εn)

Trading time and space

Main result 1: for any ε > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m

and length 21/ε · 2εn, where m = 2n+ 1
ε
·2εn .

Proof idea: use time-efficient algorithm to compute monomials
only up to degree εn, then use space-efficient algorithm to combine
them to get the higher degree monomials.

I Small monomials:
(n
≤εn
)

monomials → space nεn

I better: split variables into 1
ε groups → space 1

ε · 2
εn (+n)

I Large monomials: degree 1/ε → time 21/ε (·2εn)

Trading time and space

Main result 1: for any ε > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m

and length 21/ε · 2εn, where m = 2n+ 1
ε
·2εn .

Proof idea: use time-efficient algorithm to compute monomials
only up to degree εn, then use space-efficient algorithm to combine
them to get the higher degree monomials.

I Small monomials:
(n
≤εn
)

monomials → space nεn

I better: split variables into 1
ε groups → space 1

ε · 2
εn (+n)

I Large monomials: degree 1/ε → time 21/ε (·2εn)

Trading time and space

Main result 1: for any ε > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m

and length 21/ε · 2εn, where m = 2n+ 1
ε
·2εn .

Proof idea: use time-efficient algorithm to compute monomials
only up to degree εn, then use space-efficient algorithm to combine
them to get the higher degree monomials.

I Small monomials:
(n
≤εn
)

monomials → space nεn

I better: split variables into 1
ε groups → space 1

ε · 2
εn (+n)

I Large monomials: degree 1/ε → time 21/ε (·2εn)

Trading time and space

Main result 1: for any ε > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m

and length 21/ε · 2εn, where m = 2n+ 1
ε
·2εn .

Proof idea: use time-efficient algorithm to compute monomials
only up to degree εn, then use space-efficient algorithm to combine
them to get the higher degree monomials.

I Small monomials:
(n
≤εn
)

monomials → space nεn

I better: split variables into 1
ε groups → space 1

ε · 2
εn (+n)

I Large monomials: degree 1/ε → time 21/ε (·2εn)

Trading time and space

Main result 1: for any ε > 2/n, every function f can be
computed by an m-catalytic branching program of width 2m

and length 21/ε · 2εn, where m = 2n+ 1
ε
·2εn .

Proof idea: use time-efficient algorithm to compute monomials
only up to degree εn, then use space-efficient algorithm to combine
them to get the higher degree monomials.

I Small monomials:
(n
≤εn
)

monomials → space nεn

I better: split variables into 1
ε groups → space 1

ε · 2
εn (+n)

I Large monomials: degree 1/ε → time 21/ε (·2εn)

Extending to easier functions

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

[Robere-Zuiddam’22]: if f is a degree d polynomial over F2,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(n
≤d)−1.

Extending to easier functions

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22n−1.

[Robere-Zuiddam’22]: if f is a degree d polynomial over F2,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(n
≤d)−1.

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F2,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(n
≤d)−1.

Proof idea (original): for low degree f , the Potechin algorithm has
many isomorphic disjoint components based on the symmetries of
the polynomial associated with f .

Proof idea (new): monomial version of Potechin algorithm again,
but now only compute monomials which actually appear in f (

(n
≤d
)

by assumption).

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F2,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(n
≤d)−1.

Proof idea (original): for low degree f , the Potechin algorithm has
many isomorphic disjoint components based on the symmetries of
the polynomial associated with f .

Proof idea (new): monomial version of Potechin algorithm again,
but now only compute monomials which actually appear in f (

(n
≤d
)

by assumption).

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F2,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(n
≤d)−1.

Main result 2: for any ε > 2/d , if f is a degree d polynomial
over F2, then f can be computed by an m-catalytic branching
program of of width 2m and length 21/ε · 2n, where
m = 2

n+ 1
ε
·(n

≤εd).

Proof idea: same* time-space tradeoff as before, now with εd
instead of εn.

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F2,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(n
≤d)−1.

Main result 2: for any ε > 2/d , if f is a degree d polynomial
over F2, then f can be computed by an m-catalytic branching
program of of width 2m and length 21/ε · 2n, where
m = 2

n+ 1
ε
·(n

≤εd).

Proof idea: same* time-space tradeoff as before, now with εd
instead of εn.

Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F2,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(n
≤d)−1.

Main result 2: for any ε > 2/d , if f is a degree d polynomial
over F2, then f can be computed by an m-catalytic branching
program of of width 2m and length 21/ε · 2n, where
m = 2

n+ 1
ε
·(n

≤εd).

Proof idea: same* time-space tradeoff as before, now with εd
instead of εn.

Saving time

All results are linear time, which is optimal up to a constant factor.
But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic
(or even permutation) branching program of length 4n − 4
and width 4m, where m = 22n−1.

Main result 4: any permutation* branching program
calculating the AND function which reads any variable less
than three times requires length at least 4n − 4.

Saving time

All results are linear time, which is optimal up to a constant factor.
But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic
(or even permutation) branching program of length 4n − 4
and width 4m, where m = 22n−1.

Main result 4: any permutation* branching program
calculating the AND function which reads any variable less
than three times requires length at least 4n − 4.

Saving time

All results are linear time, which is optimal up to a constant factor.
But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic
(or even permutation) branching program of length 4n − 4
and width 4m, where m = 22n−1.

Main result 4: any permutation* branching program
calculating the AND function which reads any variable less
than three times requires length at least 4n − 4.

Open problems

Save on either time or space (while keeping other optimal)

I would give better tradeoff algorithm

Show that for some f , m must be at least 2n to get linear
amortized size

I counting only gives m ≥ 2n/O(n)

Optimal permutation branching program length for any function

I somewhere between 3n* and 4n − 4

I can get a read-3 program for AND(x1, x2, x3)

Open problems

Save on either time or space (while keeping other optimal)

I would give better tradeoff algorithm

Show that for some f , m must be at least 2n to get linear
amortized size

I counting only gives m ≥ 2n/O(n)

Optimal permutation branching program length for any function

I somewhere between 3n* and 4n − 4

I can get a read-3 program for AND(x1, x2, x3)

Open problems

Save on either time or space (while keeping other optimal)

I would give better tradeoff algorithm

Show that for some f , m must be at least 2n to get linear
amortized size

I counting only gives m ≥ 2n/O(n)

Optimal permutation branching program length for any function

I somewhere between 3n* and 4n − 4

I can get a read-3 program for AND(x1, x2, x3)

