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Space-bounded computation

BP(w, ?) looks like SPACETIME (log w, ¢) (idea: for a fixed
timestamp, w nodes in a layer <> log w bits in memory), but...

SPACETIME is uniform: machine is “easy to describe” for every n

BP is non-uniform: no restrictions on the description
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Every f can be computed by BP(2"~1, n)

\@ know x1...x, —

know f(x1...xn)
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Amortized space-bounded computation

mCBP(w, ¢, m): m different branching programs (one source —
two sinks) which can share states
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mCBP(w, ¢, m): m different branching programs (one input node,
two output nodes) which can share states
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Amortized space-bounded computation

mCBP(w, ¢, m): m different branching programs (one source —
two sinks) which can share states
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Catalytic computation

CSPACETIME(s, t, c): space-bounded Turing Machines with an
extra worktape (c bits) of full memory
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Catalytic computation

Again mCBP(w, ¢, m) looks like non-uniform
CSPACETIME (log w, ¢, log m)
» m- w nodes in a layer <+ log m + log w bits in memory
» m sources plus source-sink pairing requirement < resetting
log m catalytic memory)
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Catalytic computation

Two interpretations of reducing w and m (non-uniform):

1) amortized space: reducing the amortized space
(w = (w - m)/m) needed to compute f, or the number of copies
(m) needed for amortization to help

2) catalytic space: reducing the amount of space (log w) and
catalytic space (log m) needed to compute f
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Known results

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n.

Counting argument: almost every function f requires branching
programs to have either non-amortized width or length 2(").

In contrast, [Potechin’17] gives (asymptotically) optimal amortized
width w = O(1) and length ¢ = O(n) simultaneously

...but we need m = 221 to get it!
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[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,

n_
where m = 221,

Main result 1: for any ¢ > 0, every function f can be
computed by an m-catalytic branching program of width 2m
and length O.(n), where m = 227,



Our results (permutation branching programs)

[Potechin’17]’: every function f can be computed by a
read-4 permutation branching program of width 22"+1,

Main result 1': for any ¢ > 0, every function f can be
computed by a read-O.(1) permutation branching program of
width 227",
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[Potechin'17] in one slide

[Potechin’17]: every function f can be computed by an
m-catalytic branching program of width 4m and length 4n,
where m = 22""1,

Setup: catalytic space logm = 2" — 1 in some initial state
Ty ...7Ton_1, plus log4 = 2 bits of free work space
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[Potechin’17] in two slides

0) First free bit: 0 entry of g
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[Potechin’17] in two slides
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[Potechin’17] in two slides
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[Potechin’17] in two slides
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[Potechin’17] in two slides

4) Second free bit (output): copy the answer from first free bit

(g% +£)*(0) = f(x)
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[Potechin’17] in two slides

5) Undo steps 1-3 (do steps 3-1)
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Trading time and space

Truth table representation [Potechin’17]:

fx)= Y fla) [x=qd]

ae{0,1}"

Monomial representation [Cook-Mertz'20,21]:

meon )‘Hx,- mod 2

5C|n] ieS

Catalytic algorithms give us a way to compute f over the
monomial basis only using catalytic memory.
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Trading time and space

Monomial representation [Cook-Mertz'20,21]:

meon )‘Hx,- mod 2

S5C|n] ieS
Two algorithms for monomial rep., different types of efficiency:

1) Potechin algorithm (monomial basis edition)
» compute each monomial into separate memory in parallel

> linear time, exponential space

2) Cook-Mertz algorithm (branching program edition)

P> compute each monomial directly into the output register in
series

P> exponential time, linear space
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Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F»,
then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(Snd)_1.

Proof idea (original): for low degree f, the Potechin algorithm has
many isomorphic disjoint components based on the symmetries of
the polynomial associated with f.

Proof idea (new): monomial version of Potechin algorithm again,
but now only compute monomials which actually appear in f ((<"d)
by assumption). -
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Extending to easier functions

[Robere-Zuiddam’22]: if f is a degree d polynomial over F»,

then f can be computed by an m-catalytic branching

program of width 4m and length 4n, where m = 2(§nd)_1.

Main result 2: for any € > 2/d, if f is a degree d polynomial
over Fy, then f can be computed by an m-catalytic branching
program of of width 2m and length 2/¢ . 2n, where

n

m = 2n+%(§cd)

Proof idea: same* time-space tradeoff as before, now with ed
instead of en. ]
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Saving time

All results are linear time, which is optimal up to a constant factor.
But how small can we get the constant?

Main result 3: every f can be computed by an m-catalytic
(or even permutation) branching program of length 4n — 4
and width 4m, where m = 22"71,

Main result 4: any permutation* branching program
calculating the AND function which reads any variable less
than three times requires length at least 4n — 4.
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Open problems

Save on either time or space (while keeping other optimal)

» would give better tradeoff algorithm

Show that for some f, m must be at least 2”7 to get linear
amortized size

» counting only gives m > 2"/0(n)

Optimal permutation branching program length for any function
» somewhere between 3n* and 4n — 4

» can get a read-3 program for AND(x1, x2, x3)



