
Tree Evaluation is in Space 𝑂 (log𝑛 · log log𝑛)
James Cook

Unaffiliated

Toronto, Canada

falsifian@falsifian.org

Ian Mertz

University of Warwick

Coventry, United Kingdom

ian.mertz@warwick.ac.uk

ABSTRACT
The Tree Evaluation Problem (TreeEval) (Cook et al. 2009) is a cen-

tral candidate for separating polynomial time (P) from logarithmic

space (L) via composition. While space lower bounds of Ω(log2 𝑛)
are known for multiple restricted models, it was recently shown

by Cook and Mertz (2020) that TreeEval can be solved in space

𝑂 (log2 𝑛/log log𝑛). Thus its status as a candidate hard problem for

L remains a mystery.

Our main result is to improve the space complexity of TreeEval
to𝑂 (log𝑛 · log log𝑛), thus greatly strengthening the case that Tree
Evaluation is in fact in L.

We show two consequences of these results. First, we show that

the KRW conjecture (Karchmer, Raz, and Wigderson 1995) implies

L ⊈ NC1
; this itself would have many implications, such as branch-

ing programs not being efficiently simulable by formulas. Our sec-

ond consequence is to increase our understanding of amortized
branching programs, also known as catalytic branching programs;
we show that every function 𝑓 on 𝑛 bits can be computed by such

a program of length poly(𝑛) and width 2
𝑂 (𝑛)

.

CCS CONCEPTS
• Theory of computation → Complexity theory and logic;
Complexity classes.

KEYWORDS
Tree Evaluation Problem, Catalytic Computation, KRW Conjecture,

Branching Programs, Logspace, Composition Theorems

ACM Reference Format:
James Cook and Ian Mertz. 2024. Tree Evaluation is in Space 𝑂 (log𝑛 ·
log log𝑛) . In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing (STOC ’24), June 24–28, 2024, Vancouver, BC, Canada. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3618260.3649664

1 INTRODUCTION
In complexity theory, many fundamental questions about time and

space remain open, including their relationship to one another.

We know that TIME(𝑡) is sandwiched between SPACE(log 𝑡) and
SPACE(𝑡/log 𝑡) [18], and both containments are widely considered

to be strict, but we have made little progress in proving this fact

for any 𝑡 .

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649664

1.1 Tree Evaluation and Composition
The Tree Evaluation Problem [10], henceforth TreeEval, has emerged

in recent years as a candidate for a function which is computable in

polynomial time (P = TIME(𝑛𝑂 (1))) but not in logarithmic space

(L = SPACE(𝑂 (log𝑛))). This would resolve one of the two funda-

mental questions of time and space, showing that TIME(𝑡) strictly
contains SPACE(log 𝑡) in at least one important setting.

TreeEval is parameterized by alphabet size 𝑘 and height ℎ. The

input is a rooted full binary tree of height ℎ, where each leaf is

given a value in [𝑘] and each internal node is given a function from

[𝑘] × [𝑘] to [𝑘] represented explicitly as a table of 𝑘2 values. This

defines a natural bottom-up way to evaluate the tree: inductively

from the leaves, the value of a node is the value its function takes

when given the labels from its two children as input. The output of

a TreeEval𝑘,ℎ instance is the value of its root node.

A TreeEval𝑘,ℎ instance has size 2
ℎ · poly(𝑘). The description

of the problem as given defines a polynomial time algorithm for

TreeEval𝑘,ℎ : evaluate each node starting from the bottom and going

up, spending poly(𝑘) time at each of the 2
ℎ
nodes.

But what about space? Evaluating the output node requires us

to have the values of both of its children, which themselves are

obtained by computing their respective children, and so on. Now

imagine we have computed one of the children of the output node

and are moving to the other. This seems to require remembering the

value we have computed on one side, using log𝑘 bits of memory,

and then on the other side computing a whole new TreeEval𝑘,ℎ−1
instance, for which the same logic applies. This would inductively

give a space Ω(ℎ log𝑘) algorithm, while TreeEval𝑘,ℎ ∈ L would

mean giving an algorithm using only 𝑂 (ℎ + log𝑘) bits of memory.

Thus if our intuition is correct, this should be a separating exam-

ple for L and P. This led Cook, McKenzie,Wehr, Braverman, and San-

thanam [10] to define TreeEval and conjecture that Ω(ℎ log𝑘) space
is optimal. The conjecture was supported by multiple subsequent

works, which showed it holds in restricted, but also non-uniform,

settings such as thrifty algorithms [10]—a TreeEval-specific restric-
tionwherein algorithms are not allowed to read “unnecessary” input

bits, i.e. locations in the internal function tables that do not corre-

spond to the true inputs to the node—and read-once [14] programs.

Later works extended both of these results to the non-deterministic

setting [20, 22].

This idea, known as composition or direct product theorems, is

not only studied in the context of space. The KRW conjecture of
Karchmer, Raz, and Wigderson [21] states that a similar logic holds

for formula depth, with the upshot being that TreeEval separates P
from the class of logarithmic depth formulas, known as NC1

. Even

more so than space, the study of the KRW conjecture has yielded

many partial results (see e.g. [6, 13]) as well as encouraging useful

parallel lines of work such as lifting theorems [16, 26].

https://orcid.org/0009-0003-4018-1352
https://orcid.org/0000-0002-4715-933X
https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1145/3618260.3649664

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada James Cook and Ian Mertz

Thus the study of composition, and by extension TreeEval, is
a very fruitful and well-founded line of study, and it is of great

interest as to when this logic holds and when it fails.

1.2 Known Upper Bounds
Nevertheless, the consensus and central composition logic of the

space hardness of TreeEval has faced a challenge ever since its incep-
tion. Buhrman, Cleve, Koucký, Loff, and Speelman [4] defined a new

model of space-bounded computation called catalytic computing in

order to challenge a crucial assumption in our lower bound strategy:

that the space used for remembering old values in the tree cannot

be useful for computing new values. Building on the work of Bar-

rington [1] and Ben-Or and Cleve [2], they show that the presence

of full memory can in fact assist in space-bounded computation in

a particular setting (unless L can compute log-depth threshold cir-

cuits, which would imply many things which are widely disbelieved,

e.g. NL = L).
The catalytic computing model later received attention from a

variety of works [3, 5, 12, 17], but while it was in part motivated to

challenge the conjecture of [10], it did not immediately lead to any

results about TreeEval. However, after a period of quiet on both

the upper and lower bound fronts, their objection was validated

by Cook and Mertz [7, 8], who showed that the Ω(ℎ log𝑘) argu-
ment does not hold. They proved that for any 𝑘 and ℎ, TreeEval𝑘,ℎ
can be computed in space 𝑂 (ℎ log𝑘/logℎ), which translates to an

algorithm using space at most 𝑂 (log2 𝑛/log log𝑛), shaving a loga-
rithmic factor off of the trivial algorithm using space 𝑂 (log2 𝑛).

This is a far cry from showing TreeEval ∈ L, but both the state-

ment and proof of the result undermine the central compositional

logic behind the approach of [10] to separate L from P.

1.3 Main Result
In this work we give an exponential improvement on the central

subroutine of [7, 8], which yields the following result.

Theorem 1. TreeEval can be computed in space𝑂 (log𝑛·log log𝑛).

Compared to having only a logarithmic factor improvement

given by [7, 8], we are now only a logarithmic factor improvement

away from showing TreeEval ∈ L.
Our proof relies on a few fundamental properties of primitive

roots of unity over finite fields. After defining the main preliminaries

in Section 2, we go over these properties in Section 3, with our main

proof of Theorem 1 in Section 4. We then improve and generalize

our main subroutine, plus a discussion of the implications of these

sharper results, in Section 5.

As observed in [7, 8], our techniques avoid the restrictions for

which strong lower bounds are known. First, our algorithms avoid

the read-once restriction by repeatedly recomputing values through-

out the tree. Second, and perhaps more interesting, is that our algo-

rithm avoids the “thrifty” restriction by relying on every value in

the table of any internal node, not only the one corresponding to

the true inputs.

1.4 Implications
Our improvement has immediate consequences outside of studying

space upper bounds on TreeEval. We discuss two such results in

this paper. All models and statements will be formally defined in

Sections 6 and 7 respectively.

1.4.1 The KRW Conjecture. First, we return to our brief discussion

of the KRW conjecture, which we recall implies that TreeEval ∉
NC1

. [7, 8] gave a space upper bound of 𝑂 (log2 𝑛/log log𝑛) for
TreeEval, asymptotically the same as the lower bound on formula

depth implied by the KRW conjecture; thus it was possible for the

KRW conjecture and L ⊆ NC1
to both be true. This is no longer

possible, as Theorem 1 makes these two hypotheses incompatible.

Theorem 2. If the KRW Conjecture holds, then L ⊈ NC1.

We have not formally stated the KRW conjecture, and refrain

from doing so until Section 6; in fact one can define it in a variety

of ways, some stronger than others. We should note, however,

that Theorem 2 is quite robust with respect to choosing weaker

versions of the conjecture; any statement that implies TreeEval
requires formula depth 𝜔 (log𝑛) is sufficient for Theorem 2. As we

show, the strongest (and most widely studied) version implies that L
requires formulas of depth Ω(log2 𝑛/log log𝑛), which nearly meets

the upper bound of 𝑂 (log2 𝑛) given by L ⊆ NC2
.

There are multiple important takeaways. First, the KRW con-

jecture now implies a much sharper separation than P ≠ NC1
.

Second, the KRW conjecture would give a superpolynomial size

separation between non-uniform formulas and uniform branching

programs; no superpolynomial separation is known even when

the uniformity, or lack thereof, is the same for both classes. Third,

proving formula lower bounds for TreeEval via KRW is formally
no easier than proving the same lower bounds for st-connectivity,

even in the undirected case. And fourth, and most philosophically,

continued belief in the KRW conjecture is a bet that the ability to

handle composition is the factor that separates space and formulas.

1.4.2 Catalytic Branching Programs. For our second result, we

consider the question of catalytic branching program size, or equiv-

alently amortized branching program size.

Branching programs are a syntactic model used to analyze space

in the non-uniform setting: we have a directed acyclic graph (DAG)

with one source node and two sinks, one for each potential output

of the function 𝑓 ; computation proceeds by starting at the source

and, until we reach a sink labeled with the output 𝑓 (𝑥), at the
current internal node we query a bit of 𝑥 and proceed down some

adjacent edge according to the value read.

Drawing a connection to a model of space known as catalytic
computation, Girard, Koucký, and McKenzie [15] introduced a

model known as𝑚-catalytic branching programs, which essentially

asks whether we can find smaller branching programs for comput-

ing an arbitrary function 𝑓 if we only want to do so in an amortized
sense. We now consider a DAG with𝑚 source nodes and 2𝑚 sink

nodes, one for each (source, output) pair, and require that restricting

attention to any individual source gives us a branching program

for 𝑓 in the usual sense. Nevertheless, we do not require internal

nodes to be disjoint; the question becomes whether such a program

can have size much less than 𝑠𝑚, where 𝑠 is the size of the optimal

single-source branching program for 𝑓 , and preferably with the

smallest value of𝑚, i.e. the least amount of amortization, possible.

Potechin [24] showed that, given enough amortization, this is

possible in the strongest way: every function 𝑓 has 𝑚-catalytic

Tree Evaluation is in Space𝑂 (log𝑛 · log log𝑛) STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

branching programs of size 𝑂 (𝑚𝑛), regardless of the complexity of

𝑓 with respect to ordinary branching programs; the only catch is

that𝑚 must be at least 2
2
𝑛
. Reinterpreting and building on work of

Potechin [24] and an improvement by Robere and Zuiddam [27],

Cook and Mertz [9] used the TreeEval argument of [7, 8] in the

non-uniform setting to show that the amount of amortization can

be reduced to𝑚 = 2
2
𝜖𝑛

for arbitrarily small constants 𝜖 > 0.

By improving (a generalization of) the central subroutine of [7, 8]

in Theorem 1, we show that a slight sacrifice in the length gives a

near-optimal improvement in the amount of amortization.

Theorem 3. For every function 𝑓 on 𝑛 bits, 𝑓 has 𝑚-catalytic
branching programs of the following size:
• size 𝑂 (𝑚 · 𝑛2+𝜖) with𝑚 = 𝑂 (2(1+2/𝜖)𝑛)
• size 𝑂 (𝑚 · 𝑛3/log2 𝑛) with𝑚 = 𝑂 (2(2+𝑜 (1))𝑛)
• size 𝑂 (𝑚 · 22/𝜖𝑛2) with𝑚 = 𝑂 (2(2+𝜖 log𝑛)𝑛)

where 𝜖 ∈ (0, 1/2] in the first and third points can be made arbitrarily
small.

Focusing on the first point, Theorem 3 can be interpreted as say-

ing that every function can be computed in amortized branching

program size just above 𝑛2, where the total size of the program is

roughly 2
𝑂 (𝑛)

. By the same counting argument as ordinary branch-

ing programs, we can hope for no better than amortized size𝑂 (𝑛)—
as achieved by [9, 24, 27]—and total size 𝑂 (2𝑛/𝑛), meaning we are

not far from the tightest parameters possible.

2 PRELIMINARIES
In this work the base of logarithms will always be 2: log𝑥 := log

2
𝑥 .

2.1 Register Programs
Wewill use register programs as a convenient abstraction for describ-
ing space-bounded algorithms. Register programs were introduced

by Ben-Or and Cleve [2] based on work of Coppersmith and Gross-

man [11] and explored in a number of follow-up works [4, 7, 9].

Definition 1. A register program over ringR consists of a collection

of memory locations 𝑅 = {𝑅1 . . . 𝑅𝑠 }, called registers, each of which

can hold one element from R, and an ordered list of instructions in
the form of updates to some register 𝑅𝑖 based the current values of

the registers and an input 𝑥 ∈ {0, 1}𝑛 .
We are primarily interested in register programs which can be

simulated by space-bounded algorithms:

Definition 2. A family of register programs 𝑃 = {𝑃𝑛}𝑛∈N is space
𝑐 (𝑛) uniform if there is an algorithm using space 𝑐 (𝑛) which, given
(𝑡, 𝑥) and access to an array of registers, performs the 𝑡-th instruc-

tion of 𝑃𝑛 on input 𝑥 ∈ {0, 1}𝑛 .
Although it is common to restrict register programs to a small

vocabulary of instructions, in this work we make no restriction

beyond Definition 2. So, our programs may include any instruction

𝑅𝑖 ← 𝑅𝑖 + 𝑔(𝑥1 . . . 𝑥𝑛, 𝑅1 . . . 𝑅𝑠)
as long as 𝑔 can be computed in space 𝑐 (𝑛).

Following [4], rather than directly writing their output to a reg-

ister, our programs will add their output to a register while leaving

other registers unchanged, a process we call clean computation.

This will be useful for making our algorithms space-efficient.

Definition 3. Let R be a ring and let 𝑓 be a function whose output

can be represented in R. A register program over R with 𝑠 registers

cleanly computes 𝑓 into a register 𝑅𝑜 if for all possible 𝑥1 . . . 𝑥𝑛 ∈
{0, 1}𝑛 and 𝜏1 . . . 𝜏𝑠 ∈ R, if the program is run after initializing each

register 𝑅𝑖 = 𝜏𝑖 , then at the end of the execution

𝑅𝑜 = 𝜏𝑜 + 𝑓 (𝑥1 . . . 𝑥𝑛)
𝑅𝑖 = 𝜏𝑖 ∀𝑖 ≠ 𝑜

We will often want to undo the effect of a register program:

Definition 4. If 𝑃 is a register program that cleanly computes

𝑓 (𝑥1 . . . 𝑥𝑛), an inverse to 𝑃 is any program 𝑃−1 which computes

−𝑓 (𝑥1 . . . 𝑥𝑛).

For example, one way to construct 𝑃−1 is:
1: 𝑅𝑜 ← −𝑅𝑜
2: 𝑃

3: 𝑅𝑜 ← −𝑅𝑜
Notice that running 𝑃 followed by 𝑃−1, or vice versa, leaves every
register including 𝑅𝑜 unchanged.

We justify our use of uniform register programs and clean com-

putation to describe space-bounded algorithms with the following

connection:

Proposition 1. For 𝑛 ∈ N, let 𝑐 := 𝑐 (𝑛), 𝑠 := 𝑠 (𝑛), 𝑡 := 𝑡 (𝑛) ∈ N,
and let R := R𝑛 be a ring. Let 𝑓 := 𝑓𝑛 be a Boolean function on 𝑛

variables, and let 𝑃 := 𝑃𝑛 be a space 𝑐 uniform register program, which
𝑠 registers over R and which has 𝑡 instructions in total, that cleanly
computes 𝑓 . Then 𝑓 can be computed in space𝑂 (𝑐 + 𝑠 log |R | + log 𝑡).

2.2 Finite Fields
In our programs, the ring R will always be a finite field. For a prime

number 𝑝 and positive integer 𝑎, we define F𝑝𝑎 to be the unique

(up to isomorphism) field with 𝑝𝑎 elements.

Proposition 2. Every element 𝑥 ∈ F𝑝𝑎 can be represented by a
string of length 𝑂 (log |F𝑝𝑎 |) = 𝑂 (𝑎 log𝑝), and given any two such
strings representing 𝑥,𝑦 ∈ F𝑝𝑎 , the representation of 𝑥 +𝑦, 𝑥 ×𝑦, and
𝑥/𝑦 over F𝑝𝑎 can be computed in space 𝑂 (log |F𝑝𝑎 |) = 𝑂 (𝑎 log 𝑝).

Proof. Fix an irreducible degree-𝑎 polynomial 𝑓 (𝑥) ∈ F𝑝 [𝑥],
so that F𝑝𝑎 is isomorphic to F𝑝 [𝑥]/(𝑓 (𝑥)). Then each field element

is represented by a polynomial of degree less than 𝑎, which we can

store as an 𝑎-tuple of coefficients in F𝑝 . It is then straightforward

to add, multiply and divide field elements in 𝑂 (𝑎 log𝑝) space. All
this requires finding a suitable 𝑓 (𝑥) to begin with; this can also be

done in 𝑂 (𝑎 log 𝑝) space by exhaustive search. □

We will sometimes need a smaller field inside a larger finite field:

Proposition 3. For every prime number 𝑝 and positive integers 𝑎, 𝑏,
the field F𝑝𝑎 is isomorphic to a subfield of F𝑝𝑎𝑏 .

Again it is computationally possible to find representations of

F𝑝𝑎 and F𝑝𝑎𝑏 that agree
1
; thus we will treat F𝑝𝑎 as a subset of F𝑝𝑎𝑏

when performing computations.

1
For example, one way to do that is to first find an irreducible polynomial 𝑓 (𝑥) ∈
F𝑝 [𝑥] such that F𝑝𝑎 is isomorphic to F𝑝 [𝑥]/(𝑓 (𝑥)) , and then find 𝑔 (𝑦) ∈ F𝑝𝑎 [𝑦]
such that 𝐹

𝑝𝑎𝑏
is isomorphic to F𝑝𝑎 [𝑦]/(𝑔 (𝑦)) , with elements of F𝑎 being repre-

sented as constant (degree-0) polynomials in 𝐹𝑝𝑎 [𝑦].

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada James Cook and Ian Mertz

3 ROOTS OF UNITY
Our work will use primitive roots of unity, and so we introduce them
and some of their properties before describing our algorithms. All

definitions and statements appearing in this section are standard

and have been used many times before in the literature, but will be

crucial to the proof of our main results.

Definition 5. An element 𝜔 of a field K is a root of unity of order

𝑚 if 𝜔𝑚 = 1. It is a primitive root of unity if additionally 𝜔𝑘 ≠ 1 for

every integer 0 < 𝑘 < 𝑚.

Our algorithm relies on some properties of primitive roots of

unity—naturally, first we require that they exist, with the order we

need:

Proposition 4. Every finite field K has a primitive root of unity of
order |K | − 1.

This follows from the fact that the multiplicative group K× of a

finite field is always a cycle. For K = F𝑝𝑎 , such a primitive root of

unity can be found in 𝑂 (𝑎 log𝑝) space through exhaustive search.

We will use, and for completeness prove, a generalization of the

fact that

∑𝑚
𝑗=1 𝜔

𝑗 = 0.

Proposition 5. Let K be a finite field, and let 𝜔 be a primitive root
of unity of order𝑚 in K . Then for all 0 < 𝑏 < 𝑚,

𝑚∑︁
𝑗=1

𝜔 𝑗𝑏 = 0

Proof. Let 𝑠 =

𝑚∑︁
𝑗=1

𝜔 𝑗𝑏
. Then

𝜔𝑏𝑠 =

𝑚+1∑︁
𝑗=2

𝜔 𝑗𝑏 = 𝑠 + 𝜔 (𝑚+1)𝑏 − 𝜔𝑏 = 𝑠 + 𝜔𝑏 (𝜔𝑚𝑏 − 1) = 𝑠

since 𝜔𝑚𝑏 = 1
𝑏 = 1. So either 𝜔𝑏 = 1 or 𝑠 = 0, but the former is

ruled out because 𝜔 is a primitive root of unity and 0 < 𝑏 < 𝑚. □

Corollary 6. Let K be a finite field, let𝑚 = |K | − 1, and let 𝜔 be a
primitive root of unity of order𝑚 in K . Then for all 0 ≤ 𝑏 < 𝑚,

𝑚∑︁
𝑗=1

𝜔 𝑗𝑏 = −1 · [𝑏 = 0]

where [𝑏 = 0] is the indicator function which takes value 1 if 𝑏 = 0

and 0 otherwise.

Proof. The case of 𝑏 ≠ 0 is handled by Proposition 5. For 𝑏 = 0

we have that over K ,
𝑚∑︁
𝑗=1

𝜔 𝑗0 =

𝑚∑︁
𝑗=1

1 =𝑚 = −1

where the last equality holds because𝑚 = −1 in K . □

4 TREE EVALUATION IN LOW SPACE
We now move on to the main goal of our paper, which is to prove

Theorem 1. The following is our main result for TreeEval𝑘,ℎ , stated
in terms of the two main parameters. It implies Theorem 1 for any

setting of 𝑘 and ℎ, and is stronger as 𝑘 gets smaller with respect to

the total input size.

Theorem 4. Any TreeEval𝑘,ℎ instance can be computed in space
𝑂 ((ℎ + log𝑘) · log log𝑘).

We will build our algorithm from the ground up, first showing

how to compute each individual node.

Lemma 7. Let K be a finite field, let𝑚 = |K | − 1, and let 𝜔 be a
primitive root of unity of order𝑚 in K . Let 𝑑 < 𝑚, and let 𝜏𝑖 , 𝑥𝑖 be
elements of K for 𝑖 ∈ [𝑑]. Then

𝑚∑︁
𝑗=1

𝑑∏
𝑖=1

(𝜔 𝑗𝜏𝑖 + 𝑥𝑖) = −1 ·
𝑑∏
𝑖=1

𝑥𝑖

Before going into the proof of Lemma 7, we should stress why it

is useful. Our overall goal is to compute the function 𝑓𝑢 at node 𝑢

in our TreeEval instance while only using clean access to its inputs,

i.e. we only assume we can add some input bit 𝑥𝑖 to whatever 𝜏𝑖
already exists in the target register 𝑅𝑖 . Thus, when operating over

registers 𝑅𝑖 , we need to remove the contributions of the 𝜏𝑖 values

themselves when computing 𝑓𝑢 . Lemma 7 accomplishes just this

for the AND function over 𝑑 inputs, albeit using 𝜏𝑖 multiplied by𝑚

different coefficients. After proving this lemma, we will move to

the actual question, which is to compute an arbitrary 𝑓𝑢 .

Proof. For a fixed 𝑗 , expanding the product on the left hand

side gives

𝑑∏
𝑖=1

(𝜔 𝑗𝜏𝑖 + 𝑥𝑖) =
∑︁

𝑆⊆[𝑑]

(∏
𝑖∈𝑆

𝜔 𝑗𝜏𝑖

) ©­«
∏

𝑖∈[𝑑]\𝑆
𝑥𝑖

ª®¬
=

∑︁
𝑆⊆[𝑑]

𝜔 𝑗 |𝑆 |
(∏
𝑖∈𝑆

𝜏𝑖

) ©­«
∏

𝑖∈[𝑑]\𝑆
𝑥𝑖

ª®¬
If we sum over all 𝑗 and switch the sums we get

𝑚∑︁
𝑗=1

𝑑∏
𝑖=1

(𝜔 𝑗𝜏𝑖 + 𝑥𝑖)

=

𝑚∑︁
𝑗=1

∑︁
𝑆⊆[𝑑]

𝜔 𝑗 |𝑆 |
(∏
𝑖∈𝑆

𝜏𝑖

) ©­«
∏

𝑖∈[𝑑]\𝑆
𝑥𝑖

ª®¬
=

∑︁
𝑆⊆[𝑑]

©­«
𝑚∑︁
𝑗=1

𝜔 𝑗 |𝑆 |ª®¬
(∏
𝑖∈𝑆

𝜏𝑖

) ©­«
∏

𝑖∈[𝑑]\𝑆
𝑥𝑖

ª®¬
By Corollary 6 we have

𝑚∑︁
𝑗=1

𝜔 𝑗 · |𝑆 | = −1 · [|𝑆 | = 0]

and thus the outer sum simplifies to the |𝑆 | = 0 term, which only

has 𝑆 = ∅:
𝑚∑︁
𝑗=1

𝑑∏
𝑖=1

(𝜔 𝑗𝜏𝑖 + 𝑥𝑖) = −1 ·
(∏
𝑖∈∅

𝜏𝑖

) ©­«
∏

𝑖∈[𝑑]\∅
𝑥𝑖

ª®¬ = −1 ·
∏
𝑖∈[𝑑]

𝑥𝑖 □

Thus the next step is to move from individual products to poly-

nomials. This is accomplished by a simple corollary of Lemma 7.

Tree Evaluation is in Space𝑂 (log𝑛 · log log𝑛) STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Lemma 8. Let K be a finite field, let 𝑚 = |K | − 1, and let 𝜔 be
a primitive root of unity of order 𝑚 in K . Let 𝑝 : K𝑛 → K be a
degree-𝑑 polynomial for some 𝑑 < 𝑚, and let 𝜏𝑖 , 𝑥𝑖 be elements of K
for 𝑖 ∈ [𝑛]. Then

𝑚∑︁
𝑗=1

−1 · 𝑝 (𝜔 𝑗𝜏1 + 𝑥1, . . . , 𝜔 𝑗𝜏𝑛 + 𝑥𝑛) = 𝑝 (𝑥1 . . . 𝑥𝑛)

Proof. Writing 𝑝 as a sum of monomials we have

𝑝 (𝑦1 . . . 𝑦𝑛) =
∑︁

𝐼⊆[𝑛]
|𝐼 | ≤𝑑

𝑐𝐼

∏
𝑖∈𝐼

𝑦𝑖

for some coefficients 𝑐𝐼 ∈ K and formal variables 𝑦1 . . . 𝑦𝑛 . Then by

substituting 𝜔 𝑗𝜏𝑖 + 𝑥𝑖 for each 𝑦𝑖 and summing over all 𝑗 , Lemma 7

gives

𝑚∑︁
𝑗=1

−1 · 𝑝 (𝜔 𝑗𝜏1 + 𝑥1, . . . , 𝜔 𝑗𝜏𝑛 + 𝑥𝑛)

=

𝑚∑︁
𝑗=1

−1 ·
∑︁

𝐼⊆[𝑛]
|𝐼 | ≤𝑑

𝑐𝐼

∏
𝑖∈𝐼
(𝜔 𝑗𝜏𝑖 + 𝑥𝑖)

=
∑︁

𝐼⊆[𝑛]
|𝐼 | ≤𝑑

𝑐𝐼 ·
©­«−1 ·

𝑚∑︁
𝑗=1

∏
𝑖∈𝐼
(𝜔 𝑗𝜏𝑖 + 𝑥𝑖)ª®¬

=
∑︁

𝐼⊆[𝑛]
|𝐼 | ≤𝑑

𝑐𝐼

∏
𝑖∈𝐼

𝑥𝑖

and the last line is 𝑝 (𝑥1 . . . 𝑥𝑛) by definition. □

Finally, we show how to use Lemma 8 in a register program to

compute our polynomial 𝑓𝑢 in the way we described above, given

an appropriate choice of K .

Lemma 9. LetK be a finite field such that𝑚 := |K | − 1 > 2⌈log𝑘⌉.
Let 𝑃ℓ , 𝑃𝑟 be register programs which cleanly compute values 𝑣ℓ , 𝑣𝑟 ∈
{0, 1}⌈log𝑘 ⌉ into registers 𝑅ℓ , 𝑅𝑟 ∈ K ⌈log𝑘 ⌉ , respectively, and let
𝑃−1
ℓ

, 𝑃−1𝑟 be their inverses. Let 𝑓𝑢 : {0, 1}2⌈log𝑘 ⌉ → {0, 1}⌈log𝑘 ⌉ be
the function at node 𝑢 in our TreeEval𝑘,ℎ instance.

Then there exists a register program 𝑃𝑢 which cleanly computes
𝑓𝑢 (𝑣ℓ , 𝑣𝑟) ∈ {0, 1}⌈log𝑘 ⌉ into registers 𝑅𝑢 ∈ K ⌈log𝑘 ⌉ , as well as an
inverse program 𝑃−1𝑢 . Both 𝑃𝑢 and 𝑃−1𝑢 make𝑚 recursive calls each
to 𝑃ℓ , 𝑃𝑟 , 𝑃−1ℓ

, and 𝑃−1𝑟 , and use 5𝑚⌈log𝑘⌉ other basic instructions.

Proof. Our goal will be to use Lemma 8 in order to compute the

output of 𝑓𝑢 using only clean access to the values of its children.

In order to do this, we first need to convert 𝑓𝑢 into a tuple of

polynomials. We can write the 𝑖-th bit of 𝑓𝑢 as:

(𝑓𝑢 (𝑦, 𝑧))𝑖 =
∑︁

𝛼,𝛽,𝛾 ∈[𝑘]3
[𝛼𝑖 = 1] [𝑓𝑢 (𝛽,𝛾) = 𝛼] [𝑦 = 𝛽] [𝑧 = 𝛾]

Wewill turn this into a polynomial whose 2⌈log𝑘⌉ variables are the
bits of 𝑦 and 𝑧 by replacing [𝑦 = 𝛽] with the polynomial 𝑒 (𝑦, 𝛽) =∏⌈log𝑘 ⌉

𝑖=1
(1 − 𝑦𝑖 + (2𝑦𝑖 − 1)𝛽𝑖), which equals [𝑦 = 𝛽] when all

𝑦𝑖 ∈ {0, 1}, and similarly replacing [𝑧 = 𝛾] with 𝑒 (𝑧,𝛾). This gives
the polynomial ∑︁

𝛼,𝛽,𝛾 ∈[𝑘]3
𝛼𝑖=1

[𝑓𝑢 (𝛽,𝛾) = 𝛼]𝑒 (𝑦, 𝛽)𝑒 (𝑧,𝛾) (1)

We call this 𝑞𝑢,𝑖 (𝑦, 𝑧) and note that it is multilinear and thus has

degree at most 2⌈log𝑘⌉.
Now given the conversion to polynomials 𝑞𝑢,𝑖 , we use Lemma 8

to compute the values 𝑞𝑢,𝑖 (𝑦, 𝑧) for inputs 𝑦, 𝑧 coming from 𝑃ℓ and

𝑃𝑟 respectively. Let 𝜔 be a primitive root of unity of order𝑚 in K ,
and for all 𝑐 ∈ {ℓ, 𝑟 } and 𝑖 ∈ [⌈log𝑘⌉], let 𝜏𝑐,𝑖 be the initial value of
𝑅𝑐,𝑖 . Our goal will be to compute

𝑅𝑢,𝑖 ← 𝑅𝑢,𝑖 +
𝑚∑︁
𝑗=1

−1 · 𝑞𝑢,𝑖 (𝜔 𝑗𝜏ℓ + 𝑦, 𝜏𝑟 + 𝑧) ∀𝑖 ∈ [⌈log𝑘⌉]

where 𝜔 𝑗𝜏ℓ + 𝑦 and 𝜔 𝑗𝜏𝑟 + 𝑧 are shorthand for ⌈log𝑘⌉ values each.
We do so using the following program 𝑃𝑢 :

1: for 𝑗 = 1 . . .𝑚 do
2: for 𝑐 ∈ {ℓ, 𝑟 }, 𝑖 = 1 . . . ⌈log𝑘⌉ do
3: 𝑅𝑐,𝑖 ← 𝜔 𝑗 · 𝑅𝑐,𝑖
4: 𝑃ℓ , 𝑃𝑟
5: for 𝑖 = 1 . . . ⌈log𝑘⌉ do
6: 𝑅𝑢,𝑖 ← 𝑅𝑢,𝑖 − 𝑞𝑢,𝑖 (𝑅ℓ , 𝑅𝑟)
7: 𝑃−1

ℓ
, 𝑃−1𝑟

8: for 𝑐 ∈ {ℓ, 𝑟 }, 𝑖 = 1 . . . ⌈log𝑘⌉ do
9: 𝑅𝑐,𝑖 ← 𝜔− 𝑗 · 𝑅𝑐,𝑖
We use for . . .do as shorthand for concatenating several copies

of a block of instructions with varying parameters. So, for example,

lines 2–3 describe a sequence of 2⌈log𝑘⌉ register program instruc-

tions with a different pair (𝑐, 𝑖) associated to each, and the block

from lines 2–9 is repeated𝑚 times with different values of 𝑗 . Lines

4 and 7 are shorthand for inserting complete copies of the register

programs 𝑃ℓ , 𝑃𝑟 , 𝑃
−1
ℓ

, 𝑃−1𝑟 .

On the other hand, each of lines 3, 6, and 9 represents a single

instruction (to be repeated several times due to the surrounding

for loops), even though computing line 6 involves poly(𝑘) field
arithmetic operations. Recall from Section 2 that a single instruction

of a space 𝑐 uniform register program may compute any function

computable in space 𝑐 . See the end of the proof of Theorem 4 for

an account of the space 𝑐 required for these instructions.

To make the inverse program 𝑃−1𝑢 , replace the − on line 6 with

+.
We now analyze the correctness of the program. At the start of

an iteration of the loop, we have 𝑅𝑐,𝑖 = 𝜏𝑐,𝑖 , and since lines 7–9 are

the inverse of lines 3–4, this invariant is maintained at the end of

the iteration; this additionally implies that 𝑅𝑐,𝑖 = 𝜏𝑐,𝑖 at the end of

the program as required. Going into lines 5 and 6, we have that

𝑅𝑐,𝑖 = 𝜔 𝑗𝜏𝑐,𝑖 + 𝑣𝑐,𝑖 ∀𝑐 ∈ {ℓ, 𝑟 }, 𝑖 ∈ [⌈log𝑘⌉]

where𝑚 is larger than the degree of each 𝑞𝑢,𝑖 , and so correctness

follows from Lemma 8 and the fact that𝑞𝑢,𝑖 (𝑦, 𝑧) = (𝑓𝑢 (𝑦, 𝑧))𝑖 when
all 𝑦𝑖 , 𝑧𝑖 ∈ {0, 1}. □

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada James Cook and Ian Mertz

The above program can be made more efficient, as we will show

in Lemma 10 in Section 5, but even as stated Lemma 9 is sufficient

to serve as our main TreeEval subroutine.

Proof of Theorem 4. We will show that our TreeEval𝑘,ℎ in-

stance can be cleanly computed by a register program of length

at most (4|K |)ℎ ⌈log𝑘⌉ and using 3⌈log𝑘⌉ registers over K , and
that the register program is space 𝑂 (ℎ log |K | + log𝑘) uniform. By

Proposition 1, our space usage will ultimately be

𝑂 (ℎ log |K | + log𝑘 + log𝑘 · log |K |)

which is𝑂 ((ℎ + log𝑘) log log𝑘) if we chooseK to be a field of size

𝑂 (log𝑘).
We build our register program by induction, showing that for ev-

ery node𝑢 of height 𝑑 ≤ ℎ such a program of length (4|K |)𝑑 ⌈log𝑘⌉
computing 𝑓𝑢 exists. For 𝑑 = 0, i.e. a leaf node, both 𝑃𝑢 and 𝑃−1𝑢 can

be computed by reading the node’s value directly from the input,

which gives register programs of length

⌈log𝑘⌉ = (4 · |K |)0 ⌈log𝑘⌉

since one instruction is needed for each of the ⌈log𝑘⌉ output regis-
ters.

Now for a node 𝑢 at height 𝑑 + 1, we will inductively assume

we have register programs 𝑃ℓ , 𝑃𝑟 for the children ℓ, 𝑟 of 𝑢, each of

length (4 · |K |)𝑑 ⌈log𝑘⌉ and which use 3⌈log𝑘⌉ registers. We will

organize our registers into tuples 𝑅ℓ , 𝑅𝑟 , 𝑅𝑢 , where 𝑃ℓ will compute

𝑓ℓ into 𝑅ℓ and 𝑃𝑟 will compute 𝑓𝑟 into 𝑅𝑟 ; our goal then will be to

compute 𝑓𝑢 into 𝑃𝑢 .

Assuming |K |−1 > 2⌈log𝑘⌉, we apply Lemma 9 to𝑢, inductively

giving us a program of length

(|K | − 1) · [4 · (4 · |K |)𝑑 ⌈log𝑘⌉ + 5⌈log𝑘⌉] ≤ (4 · |K |)𝑑+1 ⌈log𝑘⌉

This completes the recursion. We choose

K = F
2
⌈log(2⌈log𝑘⌉+2)⌉

which satisfies our two conditions
2
: 1)K has size𝑂 (log𝑘), ensuring

efficiency; and 2) |K | − 1 > 2⌈log𝑘⌉, ensuring correctness.
It remains only to show that our register program is space

𝑂 (ℎ log |K | + log𝑘) uniform. Recall this means (Definition 2) that

on input (𝑡, 𝑥), we can perform the 𝑡-th step of the program in space

𝑂 (ℎ log |K | + log𝑘).
The first task is to figure out what the 𝑡-th instruction is. The reg-

ister program given by Lemma 9 has an outer loop with𝑚 = |K | −1
iterations, so the first step is to figure out which iteration the instruc-

tion lies within—i.e. the value of 𝑗—and which instruction number

𝑡 ′ it is within that iteration: 𝑡 = 𝑇 𝑗 + 𝑡 ′ where 𝑇 is the length of

each iteration. Then based on 𝑡 ′ we must determine where within

the iteration the instruction lies; for example, if 𝑡 ′ ≤ 2⌈log𝑘⌉,
it’s line 3, with the values of 𝑐 ∈ {ℓ, 𝑟 } and 𝑖 ∈ [⌈log𝑘⌉] deter-
mined by 𝑡 ′. If the instruction lies within one of the recursive calls

to 𝑃ℓ , 𝑃𝑟 , 𝑃
−1
ℓ

, 𝑃−1𝑟 , then we must figure out where within that re-

cursive call the instruction lies, and so on. This can all be done

2
Any other K satisfying these constraints would work: for example, F𝑝 where 𝑝 is a

prime number between 2⌈log𝑘 ⌉ + 2 and 4⌈log𝑘 ⌉ + 4.

with simple arithmetic; since the length of the program is at most

(4|K |)ℎ ⌈log𝑘⌉, this requires space 𝑂 (ℎ log |K | + log𝑘).3
Finally the instruction itself must be performed. Lines 3 and 9 can

be performed in space 𝑂 (log𝑘 + log |K |), because field operations

can be performed in space 𝑂 (log |K |) (Proposition 2), and log 𝑗 ≤
log𝑘 bits suffice to create a loop to compute 𝜔 𝑗

.

It remains to compute line 6. We do this using the definition of

𝑞𝑢,𝑖 as stated in Equation 1. Taking the outer sum means storing

three values in [𝑘], for 3⌈log𝑘⌉ bits in total, plus𝑂 (log |K |) bits to
keep track of the total thus far. Each coefficient [𝑓𝑢 (𝛽,𝛾) = 𝛼] is
directly given in the input to TreeEval and can be addressed using

𝑂 (log𝑛) = 𝑂 (ℎ+ log𝑘) bits. We can compute the product one value

at a time, using one counter for the index and one field element for

the product thus far, giving ⌈log𝑘⌉ and𝑂 (log |K |) bits, respectively.
Lastly, by taking into account the 𝑂 (log |K |) space of computing

operations over K (again by Proposition 2), the total space usage is

at most 𝑂 (log𝑘 + ℎ + log |K |). □

5 IMPROVEMENTS AND GENERALIZATIONS
For the rest of this paper we will adapt the techniques used to

other questions in complexity theory. To do so, we will first state

Lemma 9, which is our main subroutine, in a more general and

efficient form.

Lemma 10. Let K be a finite field with a subfield F ⊆ K , let
𝑓 : F 𝑎 → F𝑏 be a function where 𝑎(|F | − 1) < |K | − 1, and let
𝑃𝑔 be a register program with at least 𝑎 + 𝑏 registers over K which
cleanly computes a value 𝑔 ∈ F 𝑎 into registers 𝑅1 . . . 𝑅𝑎 .

Then there exists a register program 𝑃𝑓 which cleanly computes
𝑓 (𝑔) into registers 𝑅𝑎+1 . . . 𝑅𝑎+𝑏 . The length of 𝑃𝑓 is (|K |−1) (𝑡 (𝑃𝑔)+
2𝑎 + 𝑏) where 𝑡 (𝑃𝑔) is the length of 𝑃𝑔 , and 𝑃𝑓 uses the same set of
registers as 𝑃𝑔 .

To see Lemma 9 as a special case
4
of Lemma 10, take F = F2,

𝑎 = 2⌈log𝑘⌉ and 𝑏 = ⌈log𝑘⌉, and let 𝑔 be the concatenation of the

values 𝑣ℓ , 𝑣𝑟 , with 𝑃𝑔 calling 𝑃ℓ then 𝑃𝑟 . Lemma 10 saves some time

by avoiding the need to call the inverse program 𝑃−1𝑔 .

The proof is essentially that of Lemma 9, and will appear at the

end of this section. First, we will use this statement to obtain our

results in the next two sections.

To get a sense of the utility of this generalization, as a first

application we show how to reduce the space used by our TreeEval
algorithm for storing registers. Our algorithm currently uses space

𝑂 (log𝑛 · log log𝑛) both to keep track of time and to store the

memory in the registers. We can improve this to logspace for one

of these two aspects, namely the register memory.

Theorem 5. Any TreeEval𝑘,ℎ instance can be computed in space
𝑂 (ℎ log log𝑘 + log𝑘).

One consequence of this theorem is that only TreeEval𝑘,ℎ in-

stances of essentially maximal height can possibly be used to prove

space lower bounds.

3
Put another way, tracking where we are within the recursive calls requires up to ℎ

stack frames, each storing a number 𝑗 ∈ [|K | − 1], plus𝑂 (log𝑘) bits to understand

which iteration of the loops on lines 2, 5, and 8 we are on if we are not inside a recursive

call, for a total of𝑂 (ℎ log |K | + log𝑘) space.
4
Strictly speaking, it is not a special case, since Lemma 9 encodes values as bit strings

(meaning F = F2 in terms of Lemma 10) but does not require F2 to be a subfield of K .

Tree Evaluation is in Space𝑂 (log𝑛 · log log𝑛) STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Theorem 6. Any TreeEval𝑘,ℎ instance withℎ = 𝑂 (log𝑘/log log𝑘)
can be computed in L.

Another consequence is that if we convert our algorithms into

layered branching programs (see Section 7) computing TreeEval𝑘,ℎ ,
we can reduce the width to poly(𝑛) with no asymptotic loss in

length. We will not formally state or prove this result.

The proof of Theorem 5 is similar to that of Theorem 4, except

that instead of representing elements of [𝑘] in binary, we represent

them as tuples of field elements for some larger field F ⊆ K . The
number of registers needed to represent elements of [𝑘] will thus
shrink by a factor of log |F |. Our fieldK will be polynomially larger

than before (because the degree of the polynomial interpolated by

Lemma 10 grows with |F |), but since our space usage was 𝑂 ((ℎ +
log𝑘) · log |K |), i.e. our space only depends logarithmically on |K |,
this will ultimately not impact our asymptotics.

Proof of Theorem 5. Let F = F2𝑟 andK = F2𝑟𝑠 where 𝑟 and 𝑠
will be determined later. By Proposition 3 we may assume F ⊆ K .
An element of [𝑘] can be represented using ⌈(log𝑘)/𝑟⌉ elements

of F , but our registers will hold values in the larger field K .
The induction proof, after converting 𝑓𝑢 into polynomials 𝑞𝑢,𝑖 for

each 𝑖 ∈ [⌈log𝑘⌉] as in the proof of Lemma 9, is the same as for The-

orem 4, except that instead of Lemma 9, we invoke Lemma 10 with

the two fields F ⊆ K , and with 𝑓𝑢 : F 2⌈ (log𝑘)/𝑟 ⌉ → F ⌈ (log𝑘)/𝑟 ⌉
working with encodings as elements of F instead of binary. Let

𝑡 (ℎ′) be the length of the program for a node at height ℎ′ ≤ ℎ. Then

the two children of a node at height ℎ′ + 1 can be computed in time

2𝑡 (ℎ′), so by Lemma 10,

𝑡 (ℎ′ + 1) ≤ 2|K | · 𝑡 (ℎ′) + poly(𝑘)

and thus 𝑡 (ℎ) is at most (2|K |)𝑂 (ℎ) poly(𝑘).
Now we are ready to choose F = F2𝑟 and K = F2𝑟𝑠 . Our algo-

rithm uses 3⌈(log𝑘)/𝑟⌉ registers, each needing 𝑟𝑠 bits to store, for

a total of

3⌈(log𝑘)/𝑟⌉ · 𝑟𝑠 = 𝑂 (𝑠 log𝑘)
space devoted to storing registers. As stated above, the register

program has length (2|K |)𝑂 (ℎ) poly(𝑘), and so we need

log

(
(2 · 2𝑟𝑠)𝑂 (ℎ) poly(𝑘)

)
= 𝑂 (ℎ𝑟𝑠 + log𝑘)

space to track our position in the program.

Our register program is space 𝑂 (ℎ log |K | + log𝑘) = 𝑂 (ℎ𝑟𝑠 +
log𝑘) uniform. Recall (Definition 2) that to show this, we must

show that given (𝑡, 𝑥), we can perform the 𝑡-th instruction on

input 𝑥 in space 𝑂 (ℎ log |K | + log𝑘). Similar to the argument in

Theorem 4, determining which instruction is the 𝑡-th can be done

in space 𝑂 (log 𝑡 (ℎ)) = 𝑂 (ℎ log |K | + log𝑘). Then, each individual

instruction can be computed in space 𝑂 (log |K | + log𝑘). Looking
ahead to the program given in the proof of Lemma 10, lines 2 and

4 are field arithmetic operations which require 𝑂 (log |K |) space
(Proposition 2). Line 5 requires evaluating the polynomial 𝑝𝑖 , which,

examining Equation 2, can be done by looping over all 𝑘𝑂 (1) values
of (𝑧1 . . . 𝑧𝑎) in the sum, all 𝑎 = 𝑂 (log𝑘) values for ℓ in the product,

and then looping up to |F | − 1 to compute the exponent in 𝑞𝑧ℓ ,

plus 𝑂 (log |K |) space to do field arithmetic and store intermediate

results, for a total of 𝑂 (log |K | + log𝑘) space.

By Proposition 1, in total we need space

𝑂 (ℎ𝑟𝑠 + log𝑘) +𝑂 (𝑠 log𝑘) = 𝑂 (ℎ𝑟𝑠 + 𝑠 log𝑘)

In order to use Lemma 10 we require

2⌈(log𝑘)/𝑟⌉ (2𝑟 − 1) < 2
𝑟𝑠 − 1

Choosing 𝑟 = ⌈log log𝑘⌉ gives us

2⌈(log𝑘)/𝑟⌉ (2𝑟 − 1) ≤ 4(log𝑘)2/log log𝑘 < 2
2 log log𝑘 − 1

and thus choosing 𝑠 = 2 satisfies our condition, resulting in an

algorithm using space

𝑂 (ℎ𝑟𝑠 + 𝑠 log𝑘) = 𝑂 (ℎ log log𝑘 + log𝑘) □

The rest of the paper will focus on applications of Lemma 10, as

it will prove to be stronger and more flexible than Lemma 9 as seen

above. To end this section we will prove it, with a proof closely

mirroring that of Lemma 9.

Proof of Lemma 10. For each 𝑖 = 1 . . . 𝑏 we define a polynomial

𝑝𝑖 (𝑦1 . . . 𝑦𝑎) which computes the 𝑖-th coordinate of 𝑓 (𝑦1 . . . 𝑦𝑎).
Our inspiration will be the formula

𝑓𝑖 (𝑦1 . . . 𝑦𝑎) =
∑︁

(𝑧1 ...𝑧𝑎) ∈F𝑎
𝑓𝑖 (𝑧1 . . . 𝑧𝑎)

𝑎∏
ℓ=1

[𝑦ℓ = 𝑧ℓ]

To make this a polynomial, we replace each indicator function

[𝑦ℓ = 𝑧ℓ] with the polynomial

𝑞𝑧ℓ (𝑦ℓ) = 1 − (𝑦ℓ − 𝑧ℓ) | F |−1

𝑞𝑧ℓ (𝑦ℓ) has degree |F | − 1, and by Fermat’s little theorem we have

𝑞𝑧ℓ (𝑦ℓ) = [𝑦ℓ = 𝑧ℓ] for any 𝑦ℓ , 𝑧ℓ ∈ F . Define

𝑝𝑖 (𝑦1 . . . 𝑦𝑎) =
∑︁

(𝑧1 ...𝑧𝑎) ∈F𝑎
𝑓 (𝑧1 . . . 𝑧𝑎)

𝑎∏
ℓ=1

𝑞𝑧ℓ (𝑦ℓ) (2)

Thus 𝑝𝑖 is a polynomial of degree 𝑎(|F | − 1).
Now let𝑚 = |K | − 1 and let 𝜔 be a primitive root of unity of

order𝑚 in K . By assumption, 𝑎(|F | − 1) < |K | − 1, so𝑚 is greater

than the degree of the polynomials 𝑝𝑖 . Let 𝜏ℓ ∈ K be the initial

value of each register 𝑅ℓ . By Lemma 8,

𝑚∑︁
𝑗=1

−1 · 𝑝𝑖 (𝜔 𝑗𝜏1 + 𝑦1 . . . 𝜔 𝑗𝜏𝑎 + 𝑦𝑎) = 𝑝𝑖 (𝑦1 . . . 𝑦𝑎)

This leads to the following algorithm. It replaces the inefficient

warm-up version presented in the proof of Lemma 9 which required

an extra𝑚 copies of 𝑃−1𝑔 .

1: for 𝑗 = 1 . . .𝑚 do
2: 𝑅ℓ ← (𝜔−1 − 1)−1 · 𝑅ℓ for ℓ = 1 . . . 𝑎

3: 𝑃𝑔
4: 𝑅ℓ ← (1 − 𝜔) · 𝑅ℓ for ℓ = 1 . . . 𝑎

5: 𝑅𝑎+𝑖 ← 𝑅𝑎+𝑖 + (−1) · 𝑝𝑖 (𝑅1 . . . 𝑅𝑎) for 𝑖 = 1 . . . 𝑏

We may assume𝑚 > 1 (otherwise 𝑝𝑖 has degree 0, so is a constant),

so 𝜔 ≠ 1 and (𝜔−1 − 1)−1 exists and can be used on line 2.

To analyse this algorithm, define 𝜏 ′
ℓ
= 𝜏ℓ − 𝑔ℓ for ℓ = 1 . . . 𝑎. At

the start of the 𝑗-th iteration of the loop, the following invariants

hold for ℓ ∈ [𝑎], 𝑖 ∈ [𝑏]:

𝑅ℓ =𝜔
𝑗−1𝜏 ′ℓ + 𝑔ℓ

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada James Cook and Ian Mertz

𝑅𝑎+𝑖 =𝜏𝑎+𝑖 +
𝑗−1∑︁
𝑗 ′=1

−1 · 𝑝𝑖 (𝜔 𝑗 ′𝜏 ′
1
+ 𝑔1, . . . , 𝜔 𝑗 ′𝜏 ′𝑎 + 𝑔𝑎)

It is straightforward to verify this invariant holds after each itera-

tion. After the last iteration, Lemma 8 tells us that for ℓ ∈ [𝑎], 𝑖 ∈ [𝑏]
𝑅ℓ =𝜔

𝑚𝜏 ′ℓ + 𝑔ℓ
=𝜏ℓ − 𝑔ℓ + 𝑔ℓ = 𝜏ℓ

𝑅𝑎+𝑖 =𝜏𝑎+𝑖 +
𝑚∑︁
𝑗=1

−1 · 𝑝𝑖 (𝜔 𝑗𝜏 ′
1
+ 𝑔1, . . . , 𝜔 𝑗𝜏 ′𝑎 + 𝑔𝑎)

=𝜏𝑎+𝑖 + 𝑝𝑖 (𝑔1 . . . 𝑔𝑎)
This register program includes𝑚 copies of 𝑃𝑔 and has a total

length of𝑚(2𝑎 + 𝑏 + 𝑡 (𝑃𝑔)). □

6 APPLICATION 1: THE KRW CONJECTURE
SEPARATES L AND NC1

We now move on to applications of the statement and proof of

Theorem 1. In this section we study its implications in the study of

formula lower bounds.

6.1 KRW and TEP
To begin, we formally state the KRW conjecture to fit the discussion

from Section 1.

Conjecture 1 (KRWConjecture [21]). For a function 𝑓 , let𝑑𝑒𝑝𝑡ℎ(𝑓)
denote the smallest depth of any fan-in two formula computing 𝑓 .
For any functions 𝑔1 : {0, 1}𝑛1 → {0, 1} and 𝑔2 : {0, 1}𝑛2 → {0, 1},
define their composition to be

𝑔1◦𝑔2 (𝑥1,1 . . . 𝑥𝑛1,𝑛2
) := 𝑔1 (𝑔2 (𝑥1,1 . . . 𝑥1,𝑛2

) . . . 𝑔2 (𝑥𝑛1,1 . . . 𝑥𝑛1,𝑛2
))

Then for almost all functions 𝑔1, 𝑔2, it holds that

𝑑𝑒𝑝𝑡ℎ(𝑔1 ◦ 𝑔2) ≥ 𝑑𝑒𝑝𝑡ℎ(𝑔1) + 𝑑𝑒𝑝𝑡ℎ(𝑔2) −𝑂 (1)
We note that this conjecture can be weakened by increasing the 𝑂 (1)
subtractive term.

To see why this is connected to TreeEval, we need to consider

the unbounded fan-in version of TreeEval. A TreeEval𝑘,𝑑,ℎ instance

is as before, a tree of height ℎ and using alphabet size 𝑘 , but now

each internal node has 𝑑 children rather than 2.

Lemma 11. Conjecture 1 implies 𝑑𝑒𝑝𝑡ℎ(TreeEval
2,𝑑,ℎ) = Ω(𝑑ℎ).

Proof. For each layer ℓ ∈ [ℎ], pick a random function 𝑓ℓ :

{0, 1}𝑑 → {0, 1}, and fix each internal TreeEval
2,𝑑,ℎ node at height

ℓ to 𝑓ℓ . By a counting argument, each 𝑓ℓ requires formula depth

Ω(𝑑) with high probability. We apply the KRW Conjecture first

to 𝑔1 = 𝑓1 and 𝑔2 = 𝑓2, then 𝑔1 = 𝑓1 ◦ 𝑓2 and 𝑔2 = 𝑓3, and so on

ℎ − 1 times, until we ultimately get that the composition of all

𝑓ℓ—which is to say, the TreeEval
2,𝑑,ℎ instance in question—requires

depth Ω(𝑑ℎ). □

Since TreeEval𝑘,𝑑,ℎ has input size 𝑛 = 𝑑ℎ𝑘𝑑 log𝑘 , fixing 𝑘 =

2 gives us log𝑛 = 𝑂 (ℎ log𝑑 + 𝑑), which implies that Ω(𝑑ℎ) =

𝜔 (log𝑛)—and thus TreeEval
2,𝑑,ℎ ∉ NC1

, assuming Conjecture 1—

for the right setting of parameters. We give exact details after estab-

lishing the other side of Theorem 2, namely the space complexity

of TreeEval
2,𝑑,ℎ .

6.2 Space Bounds for TreeEval𝑘,𝑑,ℎ
Using Lemma 10, we can generalize Theorem 1, and in fact Theo-

rem 5, to degrees 𝑑 other than 2:

Theorem 7. Any TreeEval𝑘,𝑑,ℎ instance can be computed in space
𝑂 (ℎ log(𝑑 log𝑘) + 𝑑 log𝑘).

Proof. The proof is the same as for Theorem 5 but with 𝑑 inputs

instead of 2. Let F = F2𝑟 and K = F2𝑟𝑠 where 𝑟 and 𝑠 will be

determined later. As before, we represent elements of [𝑘] as tuples
of ⌈(log𝑘)/𝑟⌉ field elements, and consider the function at node

𝑢 as 𝑓𝑢 : F𝑑 ⌈ (log𝑘)/𝑟 ⌉ → F ⌈ (log𝑘)/𝑟 ⌉ . Our algorithm uses (𝑑 +
1) ⌈(log𝑘)/𝑟⌉ registers, each needing 𝑟𝑠 bits to store, for a total of

(𝑑 + 1) ⌈(log𝑘)/𝑟⌉ · 𝑟𝑠 = 𝑂 (𝑑𝑠 log𝑘)
space devoted to storing registers. Using Lemma 10, we get a register

program of length (𝑑 |K |)𝑂 (ℎ) poly(𝑘) (in this case the program 𝑃𝑔
in Lemma 10 must evaluate all 𝑑 children, hence the 𝑑 in the base

of the exponent), and so we need

log

(
(𝑑2𝑟𝑠)𝑂 (ℎ) poly(𝑘)

)
= 𝑂 (ℎ𝑟𝑠 + ℎ log𝑑 + log𝑘)

space to track our position in the program. Lastly our program is

𝑂 (ℎ𝑟𝑠 +ℎ log𝑑 + log𝑘 +𝑑 ⌈(log𝑘)/𝑟⌉𝑟) = 𝑂 (ℎ𝑟𝑠 +ℎ log𝑑 +𝑑 log𝑘)
uniform by the same argument as in Theorem 4 and 5. By Proposi-

tion 1, in total we need space

𝑂 (ℎ𝑟𝑠 + ℎ log𝑑 + log𝑘) +𝑂 (𝑑𝑠 log𝑘) +𝑂 (ℎ𝑟𝑠 + ℎ log𝑑 + 𝑑 log𝑘)
=𝑂 (ℎ𝑟𝑠 + ℎ log𝑑 + 𝑑𝑠 log𝑘)
In order to use Lemma 10 we require

𝑑 ⌈(log𝑘)/𝑟⌉ (2𝑟 − 1) < 2
𝑟𝑠 − 1 (3)

Let 𝑟 = ⌈log(𝑑 log𝑘)⌉ and 𝑠 = 2. This will result in an algorithm

using space

𝑂 (ℎ𝑟𝑠 + ℎ log𝑑 + 𝑑𝑠 log𝑘) = 𝑂 (ℎ log(𝑑 log𝑘) + 𝑑 log𝑘)
It remains to show (3), which we do by considering two cases. If

𝑟 ≤ log𝑘 , then for sufficiently large 𝑑 log𝑘 ,

𝑑 ⌈(log𝑘)/𝑟⌉ (2𝑟−1) ≤ 4(𝑑 log𝑘)2/log(𝑑 log𝑘) < 2
⌈2 log(𝑑 log𝑘) ⌉−1

Otherwise (𝑟 > log𝑘),

𝑑 ⌈(log𝑘)/𝑟⌉ (2𝑟 − 1) ≤𝑑2𝑟 − 1

=2⌈log(𝑑 log𝑘) ⌉+log𝑑 − 1

≤22⌈log(𝑑 log𝑘) ⌉ − 1 □

6.3 Main Result
The input to TreeEval𝑘,𝑑,ℎ is of length 𝑑ℎ · 𝑘𝑑 log𝑘 , and thus The-

orem 7 gives us an algorithm using space 𝑂 (log𝑛 · log log𝑛) for
every setting of 𝑘 , 𝑑 , and ℎ. As with Theorem 6, this also shows

that some parameterizations of TreeEval𝑘,𝑑,ℎ are easy.

Theorem 8. Any TreeEval𝑘,𝑑,ℎ instance with𝑑 ≥ (log𝑘)Ω (1) can
be computed in L.

Proof. Theorem 7 gives an algorithm for TreeEval𝑘,𝑑,ℎ which

uses space𝑂 (ℎ log(𝑑 log𝑘) +𝑑 log𝑘), which for log𝑘 ≤ 𝑑𝑂 (1) is at
most 𝑂 (ℎ log𝑑 + 𝑑 log𝑘) = 𝑂 (log(𝑑ℎ · 𝑘𝑑 log𝑘)). □

Tree Evaluation is in Space𝑂 (log𝑛 · log log𝑛) STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

This immediately yields Theorem 2, which we state in a more

quantitative form.

Theorem 9. Assume Conjecture 1 holds. Then there exists a func-
tion in L which requires formulas of depth Ω(log2 𝑛/log log𝑛).

Proof. Let 𝑑 = Θ(log𝑛) and ℎ = Θ(log𝑛/log log𝑛) be such

that 𝑑ℎ · 2𝑑 = 𝑛. Then by Theorem 8 we have TreeEval
2,𝑑,ℎ ∈ L,

while Lemma 11 states that TreeEval
2,𝑑,ℎ requires depth Ω(𝑑ℎ) =

Ω(log2 𝑛/log log𝑛) as claimed. □

Theorem 9 applies to the strongest case of Conjecture 1, but

as stated in the introduction, any weakening which implies that

TreeEval
2,𝑑,ℎ requires superlogarithmic formula depth is sufficient,

with the lower bound derived translating to one of equal asymp-

totics against L.

7 APPLICATION 2: NEAR-OPTIMAL
CATALYTIC BRANCHING PROGRAMS

Our second contribution outside of TreeEval is to the study of

catalytic branching programs for computing arbitrary functions.

7.1 Catalytic Branching Programs
7.1.1 Definitions and Motivation. We have thus far avoided dis-

cussing any syntactic space-bounded models except in passing.

While we assume familiarity on the part of the reader with branch-
ing programs in the usual sense, to understand our second auxiliary

result we must formally define the model of [15] now.

Definition 6. Let 𝑛 ∈ N and let 𝑓 : {0, 1}𝑛 → {0, 1} be an arbitrary
function. An𝑚-catalytic branching program is a directed acyclic

graph 𝐺 with the following properties:

• There are𝑚 source nodes and 2𝑚 sink nodes.

• Every non-sink node is labeled with an input variable 𝑥𝑖 for

𝑖 ∈ [𝑛], and has two outgoing edges labeled 0 and 1.

• For every source node 𝑣 there is one sink node labeled with

(𝑣, 0) and one with (𝑣, 1).
We say that 𝐺 computes 𝑓 if for every 𝑥 ∈ {0, 1}𝑛 and source node

𝑣 , the path defined by starting at 𝑣 and following the edges labeled

by the value of the 𝑥𝑖 labeling each node ends at the sink labeled

by (𝑣, 𝑓 (𝑥)).
The size of 𝐺 is the number of nodes in 𝐺 . For this paper all

branching programs will be layered, meaning all nodes are orga-

nized into groups, called layers, where all edges from layer 𝑖 go to

nodes in layer 𝑖 + 1 for all 𝑖 . The width of𝐺 is the largest size of any

layer, while the length of 𝐺 is the number of layers.

The (logarithm of the) size of an ordinary branching program

computing 𝑓 non-uniformly corresponds to the space needed to

compute 𝑓 , as we need only remember where in the program we

currently are. By contrast, the reader should think of the𝑚-catalytic

branching program model as providing some initial memory 𝜏 in

the form of the label of some start node, and the (logarithm of

the) size of the program is the space required to compute 𝑓 while

remembering this string 𝜏 .

Clearly this can be done with 𝑠𝑚 nodes, where 𝑠 is the size of

the smallest branching program for 𝑓 , by simply taking𝑚 disjoint

copies of an optimal branching program for 𝑓 ; we are interested

in when this value can be reduced. This corresponds to using the

space needed to store 𝜏 in a non-trivial way during the computation

of 𝑓 . This view also motivated Potechin [24] to alternately view

catalytic branching programs as amortized branching programs, as

we can think of taking these𝑚 disjoint branching programs for 𝑓

and letting them share memory states, i.e. internal nodes, while

still preserving the same disjoint source-sink behavior.

7.1.2 Past Results. In addition to characterizing𝑚-catalytic branch-

ing programs as amortized branching programs, Potechin [24]

showed that, given enough amortization, every function can be

computed by branching programs of amortized linear size. Robere

and Zuiddam [27] studied two different amortized branching pro-

gram models, with one being catalytic branching programs, and

concluded along with [24] that a linear upper bound holds; they

also improved the amount of amortization needed for functions 𝑓

that can be represented as low-degree F2 polynomials.

Later, Cook and Mertz [9] showed the results of [24, 27] can

be captured by clean register programs. As with traditional space,

clean register programs can utilize this initial memory 𝜏 as the

setting of its registers at the beginning of the program, with the

clean condition exactly giving back the pairing between source and

sink nodes.

Proposition 12. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a function, let F be
a finite field of characteristic 𝑝 . Assume that there exists a register
program 𝑃 using 𝑡 instructions—each of which only reads one input
bit5—and 𝑠 registers over F , whose net result is to cleanly compute
𝑓 into some register. Then 𝑓 can be computed by an 𝑚-catalytic
branching program of width𝑚 · 𝑝 and length 𝑡 , where𝑚 = |F |𝑠/𝑝 .

Proof. Each of the |F |𝑠 nodes in a given layer will represent a

unique setting to all the registers. We will execute one instruction of

the register program per layer, querying the input bit corresponding

to that instruction.

Finally, we will consider, for each source and sink node, the

corresponding assignment to the designated output register. Find

a basis {𝑒1 . . . 𝑒𝑟 } for F considered as a vector space over F𝑝 such

that 𝑒1 is the field element 1 ∈ F . We delete all source nodes except

those whose first coordinate is 0—leaving us with |F |𝑠/𝑝 source

nodes as claimed—and similarly we delete all sink nodes except

those whose corresponding assignment to the first coordinate is

either 0 or 1. By construction, each source whose assignment is

𝜏 will reach the sink node labeled by the same 𝜏 , except that if

𝑓 (𝑥1, . . . , 𝑥𝑛) = 1, then 1 is added to the output register, so that the

its first coordinate is 1 instead of 0. □

In [24, 27], the amount of amortization required to achieve linear

upper bounds was 2
2
𝑛
in the worst case. Using Proposition 12 plus

the central TreeEval subroutines of [7, 8], [9] improved this to 2
2
𝜖𝑛

for any 𝜖 > 0. This is still the best known result for achieving linear

amortized braching program size.

We also mention in passing that the𝑚-catalytic branching pro-

grams produced by Proposition 12 can be made into permutation

5
This is different from our earlier condition, given by Proposition 1, that each in-

struction be computable in small space. In non-uniform models we can compute any

function of the current space in one step, but need to take careful account of the length

as the exact number of variable reads.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada James Cook and Ian Mertz

branching programs—a classic and much more well-studied model—

of the same width and length. In fact they are more restricted,

and for example only have one accepting vertex; recently, Hoza,

Pyne, and Vadhan [19] and Pyne and Vadhan [25] showed a lower

bound against the read-once version of such programs for infinite
width. See [9] for more discussion of the connections between these

models and of how close to read-once our programs can be made.

7.2 One-Shot Clean Polynomials
Given our connection between register programs and𝑚-catalytic

branching programs, and the fact that Lemma 10 gives us a way

to cleanly compute arbitrary polynomials, it seems natural to ask

whether our techniques can improve the parameters of computing

arbitrary functions using 𝑚-catalytic branching programs. This

will require us to leave behind our strategy of using Lemma 10 in a

recursive way, and instead apply it directly to the whole function 𝑓

in question.

Using this idea to prove Theorem 3 will be the subject of the rest

of the section; we will prove a more general, fine-grained version.

Theorem 10. Let 𝑓 be any function on𝑛 bits, and let 𝑟, 𝑠 be positive
integers such that

⌈𝑛/𝑟⌉ (2𝑟 − 1) < 2
𝑟𝑠 − 1

Then there exists an𝑚-catalytic branching program of width 2𝑚 and
length 2

𝑟𝑠𝑛(1 + 2/𝑟 + 3/𝑛) computing 𝑓 , where𝑚 ≤ 2
(𝑛+2𝑟)𝑠 .

Proof. Let F = F2𝑟 and K = F2𝑟𝑠 . We will group the input into

groups of 𝑟 bits, and encode each group of bits as an element of

F = F2𝑟 . This grouping and encoding together define a function

𝑔 : {0, 1}𝑛 → F ⌈𝑛/𝑟 ⌉ , which will play the role of 𝑔 in the statement

of Lemma 10, with 𝑎 = ⌈𝑛/𝑟⌉. The program 𝑃𝑔 (which cleanly

computes 𝑔) can be implemented as a sequence of 𝑛 instructions,

reading each input once.

Applying Lemma 10 gives a register program of length

(|K | − 1) (𝑡 (𝑃𝑔) + 2𝑎 + 𝑏) = (2𝑟𝑠 − 1) (𝑛 + 2⌈𝑛/𝑟⌉ + 1)
< 2

𝑟𝑠𝑛(1 + 2/𝑟 + 3/𝑛)

which uses

𝑎 + 𝑏 = ⌈𝑛/𝑟⌉ + 1

registers over K . By Proposition 12, this gives us an𝑚-catalytic

branching program of length 2
𝑟𝑠𝑛(1 + 2/𝑟 + 3/𝑛) and width 2𝑚,

where

𝑚 = |K |⌈𝑛/𝑟 ⌉+1/2 = (2𝑟𝑠) ⌈𝑛/𝑟 ⌉+1/2 < 2
(𝑛+2𝑟)𝑠

Finally Lemma 10 requires 𝑎(|F | − 1) < |K | − 1; that is,

⌈𝑛/𝑟⌉ (2𝑟 − 1) < 2
𝑟𝑠 − 1

which completes the proof. □

7.3 Main Result
Theorem 3 will follow by analyzing various parameter regimes

from Theorem 10.

Proof of Theorem 3. We analyze three ways to choose 𝑟 and 𝑠

to satisfy the precondition of Theorem 10, each corresponding to

one claim of the theorem.
6

Constant 𝑠 . Let 𝑠 be any integer greater than 1. We consider two

settings, 𝑠 = 2 and 𝑠 ≥ 3. In the latter case, let

𝑟 =

⌈
1

𝑠 − 1 log𝑛

⌉
<

1

𝑠 − 1 log𝑛 + 1

Then the length of the program given by Theorem 10 is at most

2
𝑟𝑠𝑛(1 + 2/𝑟 + 3/𝑛) ≤ 2

𝑠 · 2(𝑠/(𝑠−1)) log𝑛 · 𝑛 · (1 + 𝑜 (1))

= (2𝑠 + 𝑜 (1))𝑛 (2𝑠−1)/(𝑠−1)

and for𝑚 we have

𝑚 ≤ 2
(𝑛+2𝑟)𝑠

< 2
(𝑛+2)𝑠 · 𝑛2𝑠/(𝑠−1)

Let 𝜖 = 1

𝑠−1 ∈ (0, 1/2], so 𝑠 = 1 + 1/𝜖 . This gives us length at most

(21+1/𝜖 + 𝑜 (1)) · 𝑛2+𝜖 = 𝑂 (𝑛2+𝜖) and𝑚 at most

2
(𝑛+2) (1+1/𝜖)𝑛2(1+𝜖) < 2

(1+1/𝜖+𝑜 (1))𝑛

which gives us the first program of Theorem 3. Note that 𝜖 can be

made arbitrarily small by increasing 𝑠 .

For the second program, we move to the 𝑠 = 2 case. Fix 𝑟 =

⌈log𝑛 − log log𝑛 + 1⌉ < log𝑛 − log log𝑛 + 2. Our length is at most

2
𝑟𝑠𝑛(1 + 2/𝑟 + 3/𝑛) ≤ 2

2(log𝑛−log log𝑛+2)𝑛(1 + 𝑜 (1))

= (16 + 𝑜 (1))
(

𝑛3

log
2 𝑛

)
while for𝑚 we have

𝑚 ≤ 2
2(𝑛+2𝑟)

< 2
2(𝑛+2 log𝑛−2 log log𝑛+4)

= 2
8 · 22𝑛

(
𝑛

log𝑛

)
4

Constant 𝑟 . Let 𝑟 be any integer greater than 1, and set

𝑠 =

⌈
log𝑛 − log 𝑟

𝑟
+ 1

𝑛

⌉
+ 1 <

log𝑛 − log 𝑟
𝑟

+ 1

𝑛
+ 2

Thus our length is at most

2
𝑟𝑠𝑛(1 + 2/𝑟 + 3/𝑛) < 2

𝑟 ((log𝑛−log 𝑟)/𝑟+(1/𝑛)+2)𝑛(1 + 2/𝑟 + 3/𝑛)

=
𝑛

𝑟
· 2𝑟/𝑛 · 22𝑟 · 𝑛 · (1 + 2/𝑟 + 3/𝑛)

≤ (1 + 𝑜 (1))
(
2
2𝑟

(
1

𝑟
+ 2

𝑟2

)
𝑛2

)
≤ (1 + 𝑜 (1))22𝑟𝑛2

and for the width we get

𝑚 < 2
(𝑛+2𝑟) ((log𝑛−log 𝑟)/𝑟+1/𝑛+2)

≤ 2
(𝑛 log𝑛)/𝑟+𝑛 (2−(log 𝑟)/𝑟+𝑜 (1))

Setting 𝜖 = 1/𝑟 gives us our third program—𝜖 can be made arbitrar-

ily small by increasing 𝑟—which completes the proof. □

6
In what follows, all asymptotics (𝑂 (), 𝑜 ()) take𝑛 as the growing variable, with either

𝑟 or 𝑠 fixed and the other a function of 𝑛.

Tree Evaluation is in Space𝑂 (log𝑛 · log log𝑛) STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

8 CONCLUSION
The most immediate question left open by this work is whether or

not TreeEval ∈ L. Both answers are entirely possible, and it is no

longer clear why one should be wholly convinced of either.

Similarly, we may take the chance to consider what answer we

might expect on the KRW conjecture. We have stated Theorem 2

about the implications of composition theorems for formulas, but

since our main theorem can and should be read as a failure of com-

position theorems in the space-bounded case, it is natural, possibly

more so than before, to also believe that they could fail for formulas

as well. Here one should read the contrapositive of Theorem 2 as

giving a different angle: if one can show that deterministic uniform

logspace has formulas of depth 𝑜 (log2 𝑛/log log𝑛)—barely above

the bound given by Savitch’s Theorem [28] for non-deterministic

non-uniform space—then the KRW conjecture falls in tandem.

There is also a broader question of how to apply our techniques

to other problems in space-bounded complexity. The result of

Lemma 10, of cleanly and efficiently computing arbitrary poly-

nomials, seems to be a heavy hammer, but thus far it has only

found a few nails.

Recently, Mertz [23] surveyed a number of techniques for space-

bounded complexity, including the use of clean register programs

seen in this and previous papers. The survey posed a host of open

questions of how they can be further strengthened and applied, such

as showing the power of catalytic computing. To take one example

where our results may be relevant, they conjecture that an optimal

improvement to Lemma 9 could also show that catalytic logspace
contains NC2

. However, whether our more modest improvement

in this paper can be useful in making progress on this or any other

questions posed remains unknown.

ACKNOWLEDGMENTS
The authors would like to thank Robert Robere, Bruno Loff, and

Manuel Stoeckl for many insightful discussions, as well as Igor

Oliveira, Ninad Rajgopal, Pierre McKenzie, and the reviewers of

ECCC and STOC for feedback on earlier drafts. The second author

received support from the Royal Society University Research Fellow-

ship URF\R1\191059 and from the Centre for Discrete Mathematics

and its Applications (DIMAP) at the University of Warwick.

REFERENCES
[1] David A. Mix Barrington. 1989. Bounded-Width Polynomial-Size Branching

Programs Recognize Exactly Those Languages in NC
1
. J. Comput. Syst. Sci. 38, 1

(1989), 150–164. https://doi.org/10.1016/0022-0000(89)90037-8

[2] Michael Ben-Or and Richard Cleve. 1992. Computing Algebraic Formulas Using

a Constant Number of Registers. SIAM J. Comput. 21, 1 (1992), 54–58. https:

//doi.org/10.1137/0221006

[3] Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma. 2022. On pure space

vs catalytic space. Theor. Comput. Sci. 921 (2022), 112–126. https://doi.org/10.

1016/J.TCS.2022.04.005

[4] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.

2014. Computing with a full memory: catalytic space. In Symposium on Theory of
Computing, STOC 2014. ACM, 857–866. https://doi.org/10.1145/2591796.2591874

[5] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. 2018. Cat-

alytic Space: Non-determinism and Hierarchy. Theory Comput. Syst. 62, 1 (2018),
116–135. https://doi.org/10.1007/S00224-017-9784-7

[6] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, OrMeir, and Toniann Pitassi.

2021. Query-to-Communication Lifting Using Low-Discrepancy Gadgets. SIAM

J. Comput. 50, 1 (2021), 171–210. https://doi.org/10.1137/19M1310153

[7] James Cook and Ian Mertz. 2020. Catalytic approaches to the tree evaluation prob-

lem. In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing,
STOC 2020. ACM, 752–760. https://doi.org/10.1145/3357713.3384316

[8] James Cook and Ian Mertz. 2021. Encodings and the Tree Evaluation Problem.

Electron. Colloquium Comput. Complex. (2021), 54. https://eccc.weizmann.ac.il/

report/2021/054

[9] James Cook and Ian Mertz. 2022. Trading Time and Space in Catalytic Branch-

ing Programs. In 37th Computational Complexity Conference, CCC 2022 (LIPIcs,
Vol. 234). 8:1–8:21. https://doi.org/10.4230/LIPIcs.CCC.2022.8

[10] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul

Santhanam. 2012. Pebbles and Branching Programs for Tree Evaluation. ACM
Trans. Comput. Theory 3, 2 (2012), 4:1–4:43. https://doi.org/10.1145/2077336.

2077337

[11] Don Coppersmith and Edna K. Grossman. 1975. Generators for Certain Alter-

nating Groups with Applications to Cryptography. Siam Journal on Applied
Mathematics 29 (1975), 624–627. https://doi.org/10.1137/0129051

[12] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari.

2020. Randomized and Symmetric Catalytic Computation. In CSR (Lecture Notes
in Computer Science, Vol. 12159). Springer, 211–223. https://doi.org/10.1007/978-

3-030-50026-9_15

[13] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, and Robert

Robere. 2020. KRW Composition Theorems via Lifting. In FOCS. IEEE, 43–49.
https://doi.org/10.1109/FOCS46700.2020.00013

[14] Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. 2018. Hardness of

Function Composition for Semantic Read once Branching Programs. In 33rd Com-
putational Complexity Conference, CCC 2018 (LIPIcs, Vol. 102). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 15:1–15:22. https://doi.org/10.4230/LIPICS.

ICALP.2016.36

[15] Vincent Girard, Michal Koucký, and Pierre McKenzie. 2015. Nonuniform catalytic

space and the direct sum for space. Electronic Colloquium on Computational
Complexity (ECCC) 138 (2015).

[16] Mika Göös, Toniann Pitassi, and Thomas Watson. 2018. Deterministic Com-

munication vs. Partition Number. SIAM J. Comput. 47, 6 (2018), 2435–2450.

https://doi.org/10.1137/16M1059369

[17] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. 2019. Un-

ambiguous Catalytic Computation. In 39th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS 2019
(LIPIcs, Vol. 150). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 16:1–16:13.

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.16

[18] John E. Hopcroft, Wolfgang J. Paul, and Leslie G. Valiant. 1977. On Time Versus

Space. J. ACM 24, 2 (1977), 332–337. https://doi.org/10.1145/322003.322015

[19] William Hoza, Edward Pyne, and Salil Vadhan. 2021. Pseudorandom generators

for unbounded-width permutation branching programs. In 12th Innovations in
Theoretical Computer Science (ITCS’21) (LIPIcs). https://doi.org/10.4230/LIPIcs.

ITCS.2021.7

[20] Kazuo Iwama and Atsuki Nagao. 2019. Read-Once Branching Programs for

Tree Evaluation Problems. ACM Trans. Comput. Theory 11, 1 (2019), 5:1–5:12.

https://doi.org/10.1145/3282433

[21] Mauricio Karchmer, Ran Raz, and AviWigderson. 1995. Super-Logarithmic Depth

Lower Bounds Via the Direct Sum in Communication Complexity. Comput.
Complex. 5, 3/4 (1995), 191–204. https://doi.org/10.1007/BF01206317

[22] David Liu. 2013. Pebbling Arguments for Tree Evaluation. CoRR abs/1311.0293

(2013). https://doi.org/10.48550/arXiv.1311.0293

[23] Ian Mertz. 2023. Reusing Space: Techniques and Open Problems. B.EATCS 141
(2023), 57–106.

[24] Aaron Potechin. 2017. A Note on Amortized Branching Program Complexity. In

Computational Complexity Conference (LIPIcs, Vol. 79). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 4:1–4:12. https://doi.org/10.4230/LIPIcs.CCC.2017.4

[25] Edward Pyne and Salil Vadhan. 2021. Pseudodistributions That Beat All Pseu-

dorandom Generators (Extended Abstract). In 36th Computational Complex-
ity Conference (CCC’21). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

https://doi.org/10.4230/LIPIcs.CCC.2021.33

[26] Ran Raz and Pierre McKenzie. 1999. Separation of the Monotone NC Hierarchy.

Comb. 19, 3 (1999), 403–435. https://doi.org/10.1007/S004930050062

[27] Robert Robere and Jeroen Zuiddam. 2021. Amortized Circuit Complexity, Formal

Complexity Measures, and Catalytic Algorithms. In FOCS. IEEE, 759–769. https:

//doi.org/10.1109/FOCS52979.2021.00079

[28] Walter J. Savitch. 1970. Relationships Between Nondeterministic and Deter-

ministic Tape Complexities. J. Comput. Syst. Sci. 4, 2 (1970), 177–192. https:

//doi.org/10.1016/S0022-0000(70)80006-X

Received 12-NOV-2023; accepted 2024-02-11

https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1137/0221006
https://doi.org/10.1137/0221006
https://doi.org/10.1016/J.TCS.2022.04.005
https://doi.org/10.1016/J.TCS.2022.04.005
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1007/S00224-017-9784-7
https://doi.org/10.1137/19M1310153
https://doi.org/10.1145/3357713.3384316
https://eccc.weizmann.ac.il/report/2021/054
https://eccc.weizmann.ac.il/report/2021/054
https://doi.org/10.4230/LIPIcs.CCC.2022.8
https://doi.org/10.1145/2077336.2077337
https://doi.org/10.1145/2077336.2077337
https://doi.org/10.1137/0129051
https://doi.org/10.1007/978-3-030-50026-9_15
https://doi.org/10.1007/978-3-030-50026-9_15
https://doi.org/10.1109/FOCS46700.2020.00013
https://doi.org/10.4230/LIPICS.ICALP.2016.36
https://doi.org/10.4230/LIPICS.ICALP.2016.36
https://doi.org/10.1137/16M1059369
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.16
https://doi.org/10.1145/322003.322015
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.1145/3282433
https://doi.org/10.1007/BF01206317
https://doi.org/10.48550/arXiv.1311.0293
https://doi.org/10.4230/LIPIcs.CCC.2017.4
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://doi.org/10.1007/S004930050062
https://doi.org/10.1109/FOCS52979.2021.00079
https://doi.org/10.1109/FOCS52979.2021.00079
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X

	Abstract
	1 Introduction
	1.1 Tree Evaluation and Composition
	1.2 Known Upper Bounds
	1.3 Main Result
	1.4 Implications

	2 Preliminaries
	2.1 Register Programs
	2.2 Finite Fields

	3 Roots of unity
	4 Tree Evaluation in low space
	5 Improvements and generalizations
	6 Application 1: The KRW conjecture separates L and NC1
	6.1 KRW and TEP
	6.2 Space Bounds for TreeEvalk,d,h
	6.3 Main Result

	7 Application 2: Near-optimal catalytic branching programs
	7.1 Catalytic Branching Programs
	7.2 One-Shot Clean Polynomials
	7.3 Main Result

	8 Conclusion
	Acknowledgments
	References

